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Introduction

S
QL: The Complete Reference, Second Edition provides a comprehensive, in-depth
treatment of the SQL language for both technical and nontechnical users,
programmers, data processing professionals, and managers who want to

understand the impact of SQL in today’s computer industry. This book offers a
conceptual framework for understanding and using SQL, describes the history of
SQL and SQL standards, and explains the role of SQL in various computer industry
segments, from enterprise data processing to data warehousing to web site architectures.
This new edition contains new chapters specially focused on the role of SQL in
application server architectures, and the integration of SQL with XML and other
object-based technologies.

This book will show you, step-by-step, how to use SQL features, with many
illustrations and realistic examples to clarify SQL concepts. The book also compares
SQL products from leading DBMS vendors—describing their advantages benefits and
trade-offs—to help you select the right product for your application. The accompanying
CD-ROM contains actual trial versions of three of the leading brands of SQL DBMS, plus
instructions on how to download a trial version of a fourth version, so you can try them
for yourself and gain actual experience in using the major DBMS products from Oracle,
Microsoft, and IBM, and the popular open source DBMS MySQL.
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In some of the chapters, the subject matter is explored at two different levels—a
fundamental description of the topic, and an advanced discussion intended for computer
professionals who need to understand some of the internals behind SQL. The more
advanced information is covered in sections marked with an asterisk (*). You do not
need to read these sections to obtain an understanding of what SQL is and what it does.

How This Book Is Organized
The book is divided into six parts that cover various aspects of the SQL language:

� Part One, “An Overview of SQL,” provides an introduction to SQL and a
market perspective of its role as a database language. Its four chapters describe
the history of SQL, the evolution of SQL standards, and how SQL relates to
the relational data model and to earlier database technologies. Part One also
contains a quick tour of SQL that briefly illustrates its most important features
and provides you with an overview of the entire language early in the book.

� Part Two, “Retrieving Data,” describes the features of SQL that allow you
to perform database queries. The first chapter in this part describes the basic
structure of the SQL language. The next four chapters start with the simplest
SQL queries and progressively build to more complex queries, including
multitable queries, summary queries, and queries that use subqueries.

� Part Three, “Updating Data,” shows how you can use SQL to add new data
to a database, delete data from a database, and modify existing database data.
It also describes the database integrity issues that arise when data is updated,
and how SQL addresses these issues. The last of the three chapters in this
part discusses the SQL transaction concept and SQL support for multiuser
transaction processing.

� Part Four, “Database Structure,” deals with creating and administering a
SQL-based database. Its four chapters tell you how to create the tables, views,
and indexes that form the structure of a relational database. It also describes
the SQL security scheme that prevents unauthorized access to data, and the
SQL system catalog that describes the structure of a database. This part also
discusses the significant differences between the database structures supported
by various SQL-based DBMS products.

� Part Five, “Programming with SQL,” describes how application programs
use SQL for database access. It discusses the embedded SQL specified by the
ANSI standard and used by IBM, Oracle, Ingres, Informix, and many other
SQL-based DBMS products. It also describes the dynamic SQL interface that
is used to build general-purpose database tables, such as report writers and
database browsing programs. Finally, this part describes the popular SQL
APIs, including ODBC, the ISO-standard Call-Level Interface, and JDBC, the
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standard call-level interface for Java, as well as proprietary call-level interfaces
such as Oracle’s OCI API.

� Part Six, “SQL Today and Tomorrow,” examines the use of SQL in several
of today’s “hottest” application areas, and the current state of SQL-based
DBMS products. Two chapters describe the use of SQL stored procedures
and triggers for online transaction processing, and the contrasting use of SQL
for data warehousing. Four additional chapters describe SQL-based distributed
databases, the influence of object technologies on SQL, and the integration of
SQL with XML technologies. Finally, the last chapter explores the future of SQL
and some of the most important trends in SQL-based data management.

Conventions Used In This Book
SQL: The Complete Reference, Second Edition describes the SQL features and functions
available in the most popular SQL-based DBMS products and those described in the
ANSI/ISO SQL standards. Whenever possible, the SQL statement syntax described in
this book and used in the examples applies to all dialects of SQL. When the dialects
differ, the differences are pointed out in the text, and the examples follow the most
common practice. In these cases, you may have to modify the SQL statements in the
examples slightly to suit your particular brand of DBMS.

Throughout the book, technical terms appear in italics the first time they are used
and defined. SQL language elements, including SQL keywords, table, and column
names, and sample SQL statements, appear in an UPPERCASE MONOSPACE font. SQL
API function names appear in a lowercase monospace font. Program listings also
appear in monospace font, and use the normal case conventions for the particular
programming language (uppercase for COBOL and FORTRAN, lowercase for C and
Java). Note that these conventions are used solely to improve readability; most SQL
implementations will accept either uppercase or lowercase statements. Many of the
SQL examples include query results, which appear immediately following the SQL
statement as they would in an interactive SQL session. In some cases, long query
results are truncated after a few rows; this is indicated by a vertical ellipsis (…)
following the last row of query results.

Why This Book Is For You
SQL: The Complete Reference, Second Edition is the right book for anyone who wants to
understand and learn SQL, including database users, data processing professionals and
architects, programmers, students, and managers. It describes—in simple, understandable
language liberally illustrated with figures and examples—what SQL is, why it is important,
and how you use it. This book is not specific to one particular brand or dialect of SQL.
Rather, it describes the standard, central core of the SQL language and then goes on
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to describe the differences among the most popular SQL products, including Oracle,
Microsoft SQL Server, IBM’s DB2 Universal Database and Informix, Sybase, and MySQL.
It also explains the importance of SQL-based standards, such as ODBC and JDBC, and
the ANSI/ISO standards for SQL and SQL-related technologies. This second edition
contains new chapters and sections that cover the latest SQL innovations, in the areas
of object-relational technologies, XML, and application server architectures.

If you are a new to SQL, this book offers comprehensive, step-by-step treatment of
the language, building from simple queries to more advanced concepts. The structure of
the book will allow you to quickly start using SQL, but the book will continue to be
valuable as you begin to use the more complex features of the language. You can use
the SQL software on the companion CD-ROM to try out the examples and build your
SQL skills.

If you are a data processing professional, architect, or manager, this book will give
you a perspective on the impact that SQL is having across the information technology
industry—from personal computers to mainframes to data warehousing to Internet
web sites and Internet-based distributed applications. The early chapters describe the
history of SQL, its role in the market, and its evolution from earlier database technologies.
Later chapters describe the future of SQL and the development of new database
technologies, such as distributed databases, object-oriented extensions to SQL, business
intelligence databases, and database/XML integration.

If you are a programmer, this book offers a very complete treatment of programming
with SQL. Unlike the reference manuals of many DBMS products, it offers a conceptual
framework for SQL programming, explaining the why as well as the how of developing
a SQL-based application. It contrasts the SQL programming interfaces offered by all of
the leading SQL products, including embedded SQL, dynamic SQL, ODBC, JDBC, and
proprietary APIs such as the Oracle Call Interface. The description and comparison of
programming techniques provides a perspective not found in any other book.

If you are selecting a DBMS product, this book offers a comparison of the SQL features,
advantages, and benefits offered by the various DBMS vendors. The differences between
the leading DBMS products are explained, not only in technical terms, but also in terms
of their impact on applications and their evolving competitive position in the marketplace.
The DBMS software on the companion CD-ROM can be used to try out these features
in a prototype of your own application.

In short, both technical and nontechnical users can benefit from this book. It is the
most comprehensive source of information available about the SQL language, SQL
features and benefits, popular SQL-based products, the history of SQL, and the impact
of SQL on the future direction of the information technology industry.
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Part I
An Overview of SQL

The first four chapters of this book provide a perspective and a quick

introduction to SQL. Chapter 1 describes what SQL is and explains its

major features and benefits. In Chapter 2, a quick tour of SQL shows

you many of its capabilities with simple, rapid-fire examples. Chapter 3

offers a market perspective of SQL by tracing its history, describing

theSQL standards and the major vendors of SQL-based products,

and identifying the reasons for SQL’s prominence today. Chapter 4

describes the relational data model upon which SQL is based and

compares it to earlier data models.
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Chapter 1
Introduction
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T
he SQL language and relational database systems based on it are one of the most
important foundation technologies in the computer industry. Over the last two
decades, SQL has grown from its first commercial use into a computer product

and services market segment worth tens of billions of dollars per year, and SQL stands
today as the standard computer database language. Literally hundreds of database
products now support SQL, running on computer systems from mainframes to personal
computers and even handheld devices. An official international SQL standard has been
adopted and expanded twice. Virtually every major enterprise software product relies
on SQL for its data management, and SQL is at the core of the database products from
Microsoft, Oracle, and IBM, the three largest software companies in the world. SQL is
also at the heart of open-source database products that are helping to fuel the popularity
of Linux and the open-source movement. From its obscure beginnings as an IBM research
project, SQL has leaped to prominence as both an important computer technology and
a powerful market force.

What, exactly, is SQL? Why is it important? What can it do, and how does it work?
If SQL is really a standard, why are there so many different versions and dialects? How
do popular SQL products like SQL Server, Oracle, Informix, Sybase, and DB2 compare?
How does SQL relate to Microsoft standards, such as ODBC and COM? How does
JDBC link SQL to the world of Java and object technology? What role does it play in the
emerging “web services” architecture, and the competing web services architectures
from the Microsoft and Java-based camps? Does SQL really scale from mainframes to
handheld devices? Has it really delivered the performance needed for high-volume
transaction processing? How will SQL impact the way you use computers, and how
can you get the most out of this important data management tool?

The SQL Language
SQL is a tool for organizing, managing, and retrieving data stored by a computer
database. The acronym SQL is an abbreviation for Structured Query Language. For
historical reasons, SQL is usually pronounced “sequel,” but the alternate pronunciation
“S.Q.L.” is also used. As the name implies, SQL is a computer language that you use to
interact with a database. In fact, SQL works with one specific type of database, called a
relational database.

Figure 1-1 shows how SQL works. The computer system in the figure has a database
that stores important information. If the computer system is in a business, the database
might store inventory, production, sales, or payroll data. On a personal computer, the
database might store data about the checks you have written, lists of people and their
phone numbers, or data extracted from a larger computer system. The computer
program that controls the database is called a database management system, or DBMS.

When you need to retrieve data from a database, you use the SQL language to make
the request. The DBMS processes the SQL request, retrieves the requested data, and
returns it to you. This process of requesting data from a database and receiving back the
results is called a database query—hence the name Structured Query Language.
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The name Structured Query Language is actually somewhat of a misnomer. First
of all, SQL is far more than a query tool, although that was its original purpose, and
retrieving data is still one of its most important functions. SQL is used to control all of
the functions that a DBMS provides for its users, including:

� Data definition. SQL lets a user define the structure and organization of the
stored data and relationships among the stored data items.

� Data retrieval. SQL allows a user or an application program to retrieve stored
data from the database and use it.

� Data manipulation. SQL allows a user or an application program to update the
database by adding new data, removing old data, and modifying previously
stored data.

� Access control. SQL can be used to restrict a user’s ability to retrieve, add, and
modify data, protecting stored data against unauthorized access.

� Data sharing. SQL is used to coordinate data sharing by concurrent users,
ensuring that they do not interfere with one another.

� Data integrity. SQL defines integrity constraints in the database, protecting it
from corruption due to inconsistent updates or system failures.

SQL is thus a comprehensive language for controlling and interacting with a database
management system.

Second, SQL is not really a complete computer language like COBOL, C, C++, or
Java. SQL contains no IF statement for testing conditions, and no GOTO, DO, or FOR
statements for program flow control. Instead, SQL is a database sublanguage, consisting
of about 40 statements specialized for database management tasks. These SQL statements

Figure 1-1. Using SQL for database access



can be embedded into another language, such as COBOL or C, to extend that language
for use in database access. Alternatively, they can be explicitly sent to a database
management system for processing, via a call-level interface from a language such as C,
C++, or Java, or via messages sent over a computer network.

Finally, SQL is not a particularly structured language, especially when compared to
highly structured languages such as C, Pascal, or Java. Instead, SQL statements resemble
English sentences, complete with “noise words” that don’t add to the meaning of the
statement but make it read more naturally. There are quite a few inconsistencies in
the SQL language, and there are also some special rules to prevent you from constructing
SQL statements that look perfectly legal, but don’t make sense.

Despite the inaccuracy of its name, SQL has emerged as the standard language for
using relational databases. SQL is both a powerful language and one that is relatively
easy to learn. The quick tour of SQL in Chapter 2 will give you a good overview of the
language and its capabilities.

The Role of SQL
SQL is not itself a database management system, nor is it a stand-alone product. You
cannot go into a computer store and “buy SQL.” Instead, SQL is an integral part of a
database management system, a language and a tool for communicating with the DBMS.
Figure 1-2 shows some of the components of a typical DBMS, and how SQL acts as the
glue that links them together.

The database engine is the heart of the DBMS, responsible for actually structuring,
storing, and retrieving the data in the database. It accepts SQL requests from other
DBMS components—such as a forms facility, report writer, or interactive query
facility—from user-written application programs, and even from other computer
systems. As the figure shows, SQL plays many different roles:

� SQL is an interactive query language. Users type SQL commands into an
interactive SQL program to retrieve data and display it on the screen,
providing a convenient, easy-to-use tool for ad hoc database queries.

� SQL is a database programming language. Programmers embed SQL commands
into their application programs to access the data in a database. Both user-
written programs and database utility programs (such as report writers and
data entry tools) use this technique for database access.

� SQL is a database administration language. The database administrator responsible
for managing a minicomputer or mainframe database uses SQL to define the
database structure and control access to the stored data.

� SQL is a client/server language. Personal computer programs use SQL to
communicate over a network with database servers that store shared data.
This client/server architecture has become very popular for enterprise-class
applications.
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� SQL is an Internet data access language. Internet web servers that interact with
corporate data and Internet applications servers all use SQL as a standard
language for accessing corporate databases.

� SQL is a distributed database language. Distributed database management systems
use SQL to help distribute data across many connected computer systems. The
DBMS software on each system uses SQL to communicate with the other
systems, sending requests for data access.

� SQL is a database gateway language. In a computer network with a mix of
different DBMS products, SQL is often used in a gateway that allows one brand
of DBMS to communicate with another brand.

SQL has thus emerged as a useful, powerful tool for linking people, computer
programs, and computer systems to the data stored in a relational database.

Figure 1-2. Components of a typical database management system
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SQL Features and Benefits
SQL is both an easy-to-understand language and a comprehensive tool for managing
data. Here are some of the major features of SQL and the market forces that have made
it successful:

� Vendor independence

� Portability across computer systems

� SQL standards

� IBM endorsement and commitment (DB2)

� Microsoft commitment (SQL Server, ODBC, and ADO)

� Relational foundation

� High-level, English-like structure

� Interactive, ad hoc queries

� Programmatic database access

� Multiple views of data

� Complete database language

� Dynamic data definition

� Client/server architecture

� Enterprise application support

� Extensibility and object technology

� Internet database access

� Java integration (JDBC)

� Industry infrastructure

These are the reasons why SQL has emerged as the standard tool for managing
data on personal computers, minicomputers, and mainframes. They are described in
the sections that follow.

Vendor Independence
SQL is offered by all of the leading DBMS vendors, and no new database product over
the last decade has been highly successful without SQL support. A SQL-based database
and the programs that use it can be moved from one DBMS to another vendor’s DBMS
with minimal conversion effort and little retraining of personnel. Database tools, such as
query tools, report writers, and application generators, work with many different brands
of SQL databases. The vendor independence thus provided by SQL was one of the most
important reasons for its early popularity and remains an important feature today.
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Portability Across Computer Systems
SQL-based database products run on computer systems ranging from mainframes and
midrange systems to personal computers, workstations, a wide range of specialized
server computers, and even handheld devices. They operate on stand-alone computer
systems, in departmental local area networks, and in enterprisewide or Internetwide
networks. SQL-based applications that begin on single-user or departmental server
systems can be moved to larger server systems as they grow. Data from corporate
SQL-based databases can be extracted and downloaded into departmental or personal
databases. Finally, economical personal computers can be used to prototype a
SQL-based database application before moving it to an expensive multiuser system.

SQL Standards
An official standard for SQL was initially published by the American National Standards
Institute (ANSI) and the International Standards Organization (ISO) in 1986, and was
expanded in 1989 and again in 1992 and 1999. SQL is also a U.S. Federal Information
Processing Standard (FIPS), making it a key requirement for large government computer
contracts. Over the years, other international, government, and vendor groups have
pioneered the standardization of new SQL capabilities, such as call-level interfaces or
object-based extensions. Many of these new initiatives have been incorporated into the
ANSI/ISO standard over time. The evolving standards serve as an official stamp of
approval for SQL and have speeded its market acceptance.

IBM Endorsement and Commitment (DB2)
SQL was originally invented by IBM researchers and has since become a strategic
product for IBM based on its flagship DB2 database. SQL support is available on all
major IBM product families, from personal computers through midrange systems
(AS/400 and UNIX-based servers) to IBM mainframes. IBM’s initial work provided a
clear signal of IBM’s direction for other database and system vendors to follow early in
the development of SQL and relational databases. Later, IBM’s commitment and broad
support speeded the market acceptance of SQL. IBM’s SQL reach today extends well
beyond its own computer systems business. SQL-based products that IBM has developed
or acquired now run across a broad range of hardware, in many cases from competing
computer vendors such as Sun or Hewlett-Packard.

Microsoft Commitment (SQL Server, ODBC, and ADO)
Microsoft has long considered database access a key part of its Windows personal
computer software architecture. Both desktop and server versions of Windows provide
standardized relational database access through Open Database Connectivity (ODBC),
a SQL-based call-level API. Leading Windows software applications (spreadsheets,
word processors, databases, etc.) from Microsoft and other vendors support ODBC,

C h a p t e r 1 : I n t r o d u c t i o n 9



and all leading SQL databases provide ODBC access. Microsoft has enhanced ODBC
support with higher-level, more object-oriented database access layers as part of its
Object Linking and Embedding technology (OLE DB), and more recently as part of
Active/X (Active/X Data Objects, or ADO). When Microsoft began its effort in the late
1980s to make Windows a viable server operating system, it introduced SQL Server as
its own SQL-based offering. SQL Server continues today as a flagship Microsoft product,
and a key component of its .NET architecture for web services.

Relational Foundation
SQL is a language for relational databases, and it has become popular along with the
relational database model. The tabular, row/column structure of a relational database
is intuitive to users, keeping the SQL language simple and easy to understand. The
relational model also has a strong theoretical foundation that has guided the evolution
and implementation of relational databases. Riding a wave of acceptance brought about
by the success of the relational model, SQL has become the database language for
relational databases.

High-Level, English-Like Structure
SQL statements look like simple English sentences, making SQL easy to learn and
understand. This is in part because SQL statements describe the data to be retrieved,
rather than specifying how to find the data. Tables and columns in a SQL database can
have long, descriptive names. As a result, most SQL statements “say what they mean”
and can be read as clear, natural sentences.

Interactive, Ad Hoc Queries
SQL is an interactive query language that gives users ad hoc access to stored data.
Using SQL interactively, a user can get answers even to complex questions in minutes
or seconds, in sharp contrast to the days or weeks it would take for a programmer to
write a custom report program. Because of SQL’s ad hoc query power, data is more
accessible and can be used to help an organization make better, more informed
decisions. SQL’s ad hoc query capability was an important advantage over nonrelational
databases early in its evolution and more recently has continued as a key advantage
over pure object-based databases.

Programmatic Database Access
SQL is also a database language used by programmers to write applications that access
a database. The same SQL statements are used for both interactive and programmatic
access, so the database access parts of a program can be tested first with interactive
SQL and then embedded into the program. In contrast, traditional databases provided
one set of tools for programmatic access and a separate query facility for ad hoc requests,
without any synergy between the two modes of access.

10 S Q L : T h e C o m p l e t e R e f e r e n c e



Multiple Views of Data
Using SQL, the creator of a database can give different users of the database different
views of its structure and contents. For example, the database can be constructed so that
each user sees data only for his or her department or sales region. In addition, data
from several different parts of the database can be combined and presented to the user
as a simple row/column table. SQL views can thus be used to enhance the security of a
database and tailor it to the particular needs of individual users.

Complete Database Language
SQL was first developed as an ad hoc query language, but its powers now go far
beyond data retrieval. SQL provides a complete, consistent language for creating a
database, managing its security, updating its contents, retrieving data, and sharing data
among many concurrent users. SQL concepts that are learned in one part of the
language can be applied to other SQL commands, making users more productive.

Dynamic Data Definition
Using SQL, the structure of a database can be changed and expanded dynamically,
even while users are accessing database contents. This is a major advance over static
data definition languages, which prevented access to the database while its structure
was being changed. SQL thus provides maximum flexibility, allowing a database to
adapt to changing requirements while online applications continue uninterrupted.

Client/Server Architecture
SQL is a natural vehicle for implementing applications using a distributed, client/
server architecture. In this role, SQL serves as the link between “front-end” computer
systems optimized for user interaction and “back-end” systems specialized for database
management, allowing each system to do what it does best. SQL also allows personal
computers to function as front-ends to network servers or to larger minicomputer and
mainframe databases, providing access to corporate data from personal computer
applications.

Enterprise Application Support
The largest enterprise applications that support the daily operation of large companies
and organizations all use SQL-based databases to store and organize their data. Data
about business transactions (orders, sales amounts, customers, inventory levels,
payment amounts, etc.) tends to have a structured, records-and-fields format, which
converts easily into the row/column format of SQL. By constructing their applications
to use enterprise-class SQL databases, major application vendors eliminate the need to
develop their own data management software and can benefit from existing tools and
programming skills. Because every major enterprise application requires a SQL-based
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database for its operation, new sales of enterprise applications automatically generate
“drag-along” demand for new copies of database software.

Extensibility and Object Technology
The major challenge to SQL’s continued dominance as a database standard has come
from the emergence of object-based programming, and the introduction of object-based
databases as an extension of the broad market trend toward object-based technology.
SQL-based database vendors have responded to this challenge by slowly expanding
and enhancing SQL to include object features. These “object/relational” databases,
which continue to be based on SQL, have emerged as a more popular alternative to
“pure object” databases and have perpetuated SQL’s dominance through the last
decade. The newest wave of object technology, embodied in the XML standard and
web services architectures, has once again created a crop of “XML databases” and
alternative query languages to challenge SQL. Previous history tends to suggest that
XML-based extensions to SQL and the relational model will once again meet this
challenge and insure SQL’s continuing importance.

Internet Database Access
With the exploding popularity of the Internet and the World Wide Web, and their
standards-based foundation, SQL found a new role in the late 1990s as an Internet data
access standard. Early in the development of the Web, developers needed a way to
retrieve and present database information on web pages and used SQL as a common
language for database gateways. More recently, the emergence of three-tiered Internet
architectures with distinct thin client, application server and database server layers, has
established SQL as the standard link between the application and database tiers. In the
future, the role of SQL in the Internet will extend beyond web site architectures to
include data management for collaborating applications and distributed objects in a
web services architecture.

Java Integration (JDBC)
A major area of SQL development over the last five to ten years has been the
integration of SQL with Java. Seeing the need to link the Java language to existing
relational databases, Sun Microsystems (the creator of Java) introduced Java Database
Connectivity (JDBC), a standard API that allows Java programs to use SQL for
database access. JDBC received a further boost when it was adopted as the data access
standard within the Java2 Enterprise Edition (J2EE) specification, which defines the
operating environment provided by all of the leading Internet application servers. In
addition to its role as a programming language from which databases are used, many
of the leading database vendors have also announced or implemented Java support
within their database systems, allowing Java to be used as a language for stored



procedures and business logic within the database itself. This trend toward integration
between Java and SQL will insure the continued importance of SQL in the new era of
Java-based programming.

Industry Infrastructure
Perhaps the most important factor contributing to the growing importance of SQL is
the emergence of an entire computer industry infrastructure based on SQL. SQL-based
relational database systems are an important part of this infrastructure. Enterprise
applications that use SQL and require a SQL-based database are another important
part, as are reporting tools, data-entry tools, design tools, programming tools, and a
host of other tools that simplify the use of SQL. A large pool of experienced SQL
programmers is a critical part of the infrastructure. Another important part is the
training and support services that surround SQL and help to create and perpetuate
SQL expertise. An entire subindustry has emerged around SQL consulting, optimization,
and performance-tuning. All parts of this infrastructure tend to reinforce one another
and contribute to the ongoing success of the other parts. Simply stated, to solve data
management problems, the easiest, lowest-risk, lowest-cost solution is almost always
a solution based on SQL.
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B
efore diving into the details of SQL, it’s a good idea to develop an overall perspective
on the language and how it works. This chapter contains a quick tour of SQL that
illustrates its major features and functions. The goal of the quick tour is not to

make you proficient in writing SQL statements; that is the goal of Part II of this book.
Rather, by the time you’ve finished this chapter, you will have a basic familiarity with
the SQL language and an overview of its capabilities.

A Simple Database
The examples in the quick tour are based on a simple relational database for a small
distribution company. The database, shown in Figure 2-1, stores the information

Figure 2-1. A simple relational database



C h a p t e r 2 : A Q u i c k T o u r o f S Q L 17
A

N
O

V
E
R

V
IE

W
O

F
S
Q

L

needed to implement a small order processing application. Specifically, it stores the
following information:

� The customers who buy the company’s products

� The orders placed by those customers

� The salespeople who sell the products to customers

� The sales offices where those salespeople work

This database, like most others, is a model of the “real world.” The data stored in
the database represents real entities—customers, orders, salespeople, and offices. There
is a separate table of data for each different kind of entity. Database requests that you
make using the SQL language parallel real-world activities, as customers place, cancel,
and change orders, as you hire and fire salespeople, and so on. Let’s see how you can
use SQL to manipulate data.

Retrieving Data
First, let’s list the sales offices, showing the city where each one is located and its year-
to-date sales. The SQL statement that retrieves data from the database is called SELECT.
This SQL statement retrieves the data you want:

SELECT CITY, OFFICE, SALES

FROM OFFICES

CITY          OFFICE        SALES

------------ ------- ------------

Denver            22  $186,042.00

New York          11  $692,637.00

Chicago           12  $735,042.00

Atlanta           13  $367,911.00

Los Angeles       21  $835,915.00

The SELECT statement asks for three pieces of data—the city, the office number,
and the amount of sales—for each office. It also specifies that all of this data comes
from the OFFICES table, which stores data about sales offices. The results of the query
appear, in tabular form, immediately after the request.

The SELECT statement is used for all SQL queries. For example, here is a query that
lists the names and year-to-date sales for each salesperson in the database. It also shows
the quota (sales target) and the office number where each person works. In this case, the
data comes from the next SALESREPS table.
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SELECT NAME, REP_OFFICE, SALES, QUOTA

FROM SALESREPS

NAME            REP_OFFICE        SALES        QUOTA

-------------- ----------- ------------ ------------

Bill Adams              13  $367,911.00  $350,000.00

Mary Jones              11  $392,725.00  $300,000.00

Sue Smith               21  $474,050.00  $350,000.00

Sam Clark               11  $299,912.00  $275,000.00

Bob Smith               12  $142,594.00  $200,000.00

Dan Roberts             12  $305,673.00  $300,000.00

Tom Snyder            NULL   $75,985.00         NULL

Larry Fitch             21  $361,865.00  $350,000.00

Paul Cruz               12  $286,775.00  $275,000.00

Nancy Angelli           22  $186,042.00  $300,000.00

SQL also lets you ask for calculated results. For example, you can ask SQL to calculate
the amount by which each salesperson is over or under quota:

SELECT NAME, SALES, QUOTA, (SALES - QUOTA)

FROM SALESREPS

NAME                  SALES        QUOTA  (SALES-QUOTA)

-------------- ------------ ------------ --------------

Bill Adams      $367,911.00  $350,000.00     $17,911.00

Mary Jones      $392,725.00  $300,000.00     $92,725.00

Sue Smith       $474,050.00  $350,000.00    $124,050.00

Sam Clark       $299,912.00  $275,000.00     $24,912.00

Bob Smith       $142,594.00  $200,000.00    -$57,406.00

Dan Roberts     $305,673.00  $300,000.00      $5,673.00

Tom Snyder       $75,985.00         NULL           NULL

Larry Fitch     $361,865.00  $350,000.00     $11,865.00

Paul Cruz       $286,775.00  $275,000.00     $11,775.00

Nancy Angelli   $186,042.00  $300,000.00   -$113,958.00

The requested data (including the calculated difference between sales and quota for
each salesperson) once again appears in a row/column table. Perhaps you would like
to focus on the salespeople whose sales are less than their quotas. SQL lets you retrieve
that kind of selective information very easily, by adding a mathematical comparison
to the previous request:
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SELECT NAME, SALES, QUOTA, (SALES - QUOTA)

FROM SALESREPS

WHERE SALES < QUOTA

NAME                  SALES        QUOTA  (SALES-QUOTA)

-------------- ------------ ------------  -------------

Bob Smith       $142,594.00  $200,000.00    -$57,406.00

Nancy Angelli   $186,042.00  $300,000.00   -$113,958.00

You can use the same technique to list large orders in the database and find out
which customer placed the order, which product was ordered, and in what quantity.
You can also ask SQL to sort the orders based on the order amount:

SELECT ORDER_NUM, CUST, PRODUCT, QTY, AMOUNT

FROM ORDERS

WHERE AMOUNT > 25000.00

ORDER BY AMOUNT

ORDER_NUM  CUST PRODUCT   QTY      AMOUNT

---------- ----- -------- ---- -----------

112987  2103 4100Y      11  $27,500.00

113069  2109 775C       22  $31,350.00

112961  2117 2A44L       7  $31,500.00

113045  2112 2A44R      10  $45,000.00

Summarizing Data
SQL not only retrieves individual pieces of data from the database, but it can be used to
summarize the database contents as well. What’s the average size of an order in the
database? This request asks SQL to look at all the orders and find the average amount:

SELECT AVG(AMOUNT)

FROM ORDERS

AVG(AMOUNT)

------------

$8,256.37



You could also ask for the average order size for a particular customer:

SELECT AVG(AMOUNT)

FROM ORDERS

WHERE CUST = 2103

AVG(AMOUNT)

-----------

$8,895.50

Finally, let’s find out the total value of the orders placed by each customer. To do this,
you can ask SQL to group the orders together by customer number and then total the
orders for each customer:

SELECT CUST, SUM(AMOUNT)

FROM ORDERS

GROUP BY CUST

CUST  SUM(AMOUNT)

----- ------------

2101    $1,458.00

2102    $3,978.00

2103   $35,582.00

2106    $4,026.00

2107   $23,132.00

2108    $7,255.00

2109   $31,350.00

2111    $6,445.00

2112   $47,925.00

2113   $22,500.00

2114   $22,100.00

2117   $31,500.00

2118    $3,608.00

2120    $3,750.00

2124    $3,082.00

Adding Data to the Database
You can also use SQL to add new data to the database. For example, suppose you just
opened a new Western region sales office in Dallas, with target sales of $275,000. Here’s
the INSERT statement that adds the new office to the database, as office number 23:

20 S Q L : T h e C o m p l e t e R e f e r e n c e
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INSERT INTO OFFICES (CITY, REGION, TARGET, SALES, OFFICE)

VALUES ('Dallas', 'Western', 275000.00, 0.00, 23)

1 row inserted.

Similarly, if Mary Jones (employee number 109) signs up a new customer, Acme
Industries, this INSERT statement adds the customer to the database as customer
number 2125 with a $25,000 credit limit:

INSERT INTO CUSTOMERS (COMPANY, CUST_REP, CUST_NUM, CREDIT_LIMIT)

VALUES ('Acme Industries', 109, 2125, 25000.00)

1 row inserted.

Deleting Data
Just like the SQL INSERT statement adds new data to the database, the SQL DELETE
statement removes data from the database. If Acme Industries decides a few days later
to switch to a competitor, you can delete Acme’s customer information from the database
with this statement:

DELETE FROM CUSTOMERS

WHERE COMPANY = 'Acme Industries'

1 row deleted.

And if you decide to terminate all salespeople whose sales are less than their quotas,
you can remove them from the database with this DELETE statement:

DELETE FROM SALESREPS

WHERE SALES < QUOTA

2 rows deleted.

Updating the Database
You can also use SQL to modify data that is already stored in the database. For example,
to increase the credit limit for First Corp. to $75,000, you would use the SQL UPDATE
statement:

UPDATE CUSTOMERS

SET CREDIT_LIMIT = 75000.00

WHERE COMPANY = 'First Corp.'

1 row updated.
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The UPDATE statement can also make many changes in the database at once. For
example, this UPDATE statement raises the quota for all salespeople by $15,000:

UPDATE SALESREPS

SET QUOTA = QUOTA + 15000.00

8 rows updated.

Protecting Data
An important role of a database is to protect the stored data from access by unauthorized
users. For example, suppose your assistant, named Mary, has not been previously
authorized to insert data about new customers into the database. This SQL statement
grants her that permission:

GRANT INSERT

ON CUSTOMERS

TO MARY

Privilege granted.

Similarly, the following SQL statement gives Mary permission to update data about
customers and to retrieve customer data with the SELECT statement:

GRANT UPDATE, SELECT

ON CUSTOMERS

TO MARY

Privilege granted.

If Mary is no longer allowed to add new customers to the database, this REVOKE
statement will disallow it:

REVOKE INSERT

ON CUSTOMERS

FROM MARY

Privilege revoked.
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Similarly, this REVOKE statement will revoke all of Mary’s privileges to access customer
data in any way:

REVOKE ALL

ON CUSTOMERS

FROM MARY

Privilege revoked.

Creating a Database
Before you can store data in a database, you must first define the structure of the
data. Suppose you want to expand the sample database by adding a table of data
about the products your company sells. For each product, the data to be stored
includes the following:

� A three-character manufacturer ID code

� A five-character product ID code

� A product description of up to 30 characters

� The price of the product

� The quantity currently on hand

This SQL CREATE TABLE statement defines a new table to store the products’ data:

CREATE TABLE PRODUCTS

(MFR_ID CHAR(3),

PRODUCT_ID CHAR(5),

DESCRIPTION VARCHAR(20),

PRICE MONEY,

QTY_ON_HAND INTEGER)

Table created.

Although more cryptic than the previous SQL statement examples, the CREATE
TABLE statement is still fairly straightforward. It assigns the name PRODUCTS to the
new table and specifies the name and type of data stored in each of its five columns.



Once the table has been created, you can fill it with data. Here’s an INSERT
statement for a new shipment of 250 size 7 widgets (product ACI-41007), which cost
$225.00 apiece:

INSERT INTO PRODUCTS (MFR_ID, PRODUCT_ID, DESCRIPTION, PRICE, QTY_ON_HAND)

VALUES ('ACI', '41007', 'Size 7 Widget', 225.00, 250)

1 row inserted.

Finally, if you discover later that you no longer need to store the products’ data in
the database, you can erase the table (and all of the data it contains) with the DROP
TABLE statement:

DROP TABLE PRODUCTS

Table dropped.

Summary
This quick tour of SQL showed you what SQL can do and illustrated the style of the
SQL language, using eight of the most commonly used SQL statements. To summarize:

� Use SQL to retrieve data from the database, using the SELECT statement.
You can retrieve all or part of the stored data, sort it, and ask SQL to
summarize the data, using totals and averages.

� Use SQL to update the database, by adding new data with the INSERT
statement, deleting data with the DELETE statement, and modifying
existing data with the UPDATE statement.

� Use SQL to control access to the database, by granting and revoking specific
privileges for specific users with the GRANT and REVOKE statements.

� Use SQL to create the database by defining the structure of new tables and
dropping tables when they are no longer needed, using the CREATE and
DROP statements.
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S
QL is both a de facto and an official standard language for database management.
What does it mean for SQL to be a standard? What role does SQL play as a
database language? How did SQL become a standard, and what impact is the SQL

standard having on personal computers, local area networks, minicomputers, and
mainframes? To answer these questions, this chapter traces the history of SQL and
describes its current role in the computer market.

SQL and Database Management
One of the major tasks of a computer system is to store and manage data. To handle this
task, specialized computer programs known as database management systems began to
appear in the late 1960s and early 1970s. A database management system, or DBMS, helped
computer users to organize and structure their data and allowed the computer system to
play a more active role in managing the data. Although database management systems
were first developed on large mainframe systems, their popularity quickly spread to
minicomputers, and then to personal computers and workstations. Today, many database
management systems operate on specialized server computers.

Database management has also played a key role in the explosion of computer
networking and the Internet. Early database systems ran on large, monolithic computer
systems, where the data, the database management software, and the user or application
program accessing the database all operated on the same system. The 1980s and 1990s
saw the explosion of a new client/server model for database access, in which a user or
an application program running on a personal computer accesses a database on a
separate computer system using a network. In the late 1990s, the increasing popularity
of the Internet and the World Wide Web intertwined the worlds of networking and
data management even further. Now users require little more than a web browser to
access and interact with databases, not only within their own organizations, but
around the world. Often, these Internet-based architectures involve three or more
separate computer systems—one computer that runs the web browser and interacts
with the user, connected to a second system that runs an application program or
application server, which is in turn connected to a third system that runs the database
management system.

Today, database management is very big business. Independent software companies
and computer vendors ship billions of dollars worth of database management products
every year. The vast majority of enterprise-class computer applications that support the
daily operation of large companies and other organizations use databases. These
applications include some of the fastest-growing application categories, such as
Enterprise Resource Planning (ERP), Customer Relationship Management (CRM),
Supply Chain Management (SCM), Sales Force Automation (SFA), and financial
applications. Computer manufacturers develop and deliver server computers that are
specially configured as database servers; these systems constitute a multibillion-
dollar-per-year market of their own. Databases provide the intelligence behind most
transaction-oriented web sites, and they are used to capture and to analyze user
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interactions with web sites. Database management thus touches every segment of the
computer market.

Since the late 1980s a specific type of DBMS, called a relational database management
system (RDBMS), has become so popular that it is the standard database form. Relational
databases organize data in a simple, tabular form and provide many advantages over
earlier types of databases. SQL is specifically a relational database language used to
work with relational databases.

A Brief History of SQL
The history of the SQL language is intimately intertwined with the development of
relational databases. Table 3-1 shows some of the milestones in its 30-year history.
The relational database concept was originally developed by Dr. E.F. “Ted” Codd, an
IBM researcher. In June 1970, Dr. Codd published an article entitled “A Relational
Model of Data for Large Shared Data Banks” that outlined a mathematical theory of
how data could be stored and manipulated using a tabular structure. Relational
databases and SQL trace their origins to this article, which appeared in the Communications
of the Association for Computing Machinery.
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Date Event

1970 Codd defines relational database model

1974 IBM begins System/R project

1974 First article describing the SEQUEL language is published

1978 System/R customer tests are conducted

1979 Oracle introduces first commercial RDBMS

1981 Relational Technology introduces Ingres

1981 IBM announces SQL/DS

1982 ANSI forms SQL standards committee

1983 IBM announces DB2

1986 ANSI SQL1 standard is ratified

1986 Sybase introduces RDBMS for transaction processing

1987 ISO SQL1 standard is ratified

Table 3-1. Milestones in SQL Development
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Date Event

1988 Ashton-Tate and Microsoft announce SQL Server for OS/2

1989 First TPC benchmark (TPC-A) is published

1990 TPC-B benchmark is published

1991 SQL Access Group database access specification is published

1992 Microsoft publishes ODBC specification

1992 ANSI SQL2 standard (SQL-92) is ratified

1992 TPC-C (OLTP) benchmark is published

1993 Specialized SQL data warehousing systems are shipped for the first time

1993 ODBC products are shipped for the first time

1994 Parallel database server technology is shipped commercially

1996 Standard API for OLAP database access and OLAP benchmark

is published

1997 IBM DB2 UDB unifies DB2 architecture across IBM and other vendor
platforms

1997 Major DBMS vendors announce Java integration strategies

1998 Microsoft SQL Server 7 provides enterprise-level database support
for Windows NT

1998 Oracle 8i provides database/Internet integration and moves away
from client/server model

1998 Commercial in-memory database products are shipped for the
first time

1999 J2EE standardizes JDBC database access from application servers

2000 Oracle introduces application servers with integrated database caching

2000 Microsoft introduces SQL Server 2000, aimed at enterprise applications

2001 XML integration capabilities appear in mainstream RDBMS products

2001 IBM acquires Informix database business

2002 Gartner ranks IBM as #1 database vendor, passing Oracle

Table 3-1. Milestones in SQL Development (continued)
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The Early Years
Codd’s article triggered a flurry of relational database research, including a major
research project within IBM. The goal of the project, called System/R, was to prove the
workability of the relational concept and to provide some experience in actually
implementing a relational DBMS. Work on System/R began in the mid-1970s at IBM’s
Santa Teresa laboratories in San Jose, California.

In 1974 and 1975, the first phase of the System/R project produced a minimal
prototype of a relational DBMS. In addition to the DBMS itself, the System/R project
included work on database query languages. One of these languages was called
SEQUEL, an acronym for Structured English Query Language. In 1976 and 1977, the
System/R research prototype was rewritten from scratch. The new implementation
supported multitable queries and allowed several users to share access to the data.

The System/R implementation was distributed to a number of IBM customer sites
for evaluation in 1978 and 1979. These early customer sites provided some actual user
experience with System/R and its database language, which, for legal reasons, had
been renamed SQL, or Structured Query Language. Despite the name change, the
SEQUEL pronunciation remained and continues to this day. In 1979 the System/R
research project came to an end, with IBM concluding that relational databases were
not only feasible, but could be the basis for a useful commercial product.

Early Relational Products
The System/R project and its SQL database language were well-chronicled in technical
journals during the 1970s. Seminars on database technology featured debates on the
merits of the new and heretical relational model. By 1976, it was apparent that IBM was
becoming enthusiastic about relational database technology and that it was making a
major commitment to the SQL language.

The publicity about System/R attracted the attention of a group of engineers in
Menlo Park, California, who decided that IBM’s research foreshadowed a commercial
market for relational databases. In 1977 they formed a company, Relational Software,
Inc., to build a relational DBMS based on SQL. The product, named Oracle, shipped in
1979 and became the first commercially available relational DBMS. Oracle beat IBM’s
first product to market by a full two years and ran on Digital’s VAX minicomputers,
which were less expensive than IBM mainframes. The company aggressively sold the
merits of the new relational style of database management, and eventually renamed
itself after its flagship product. Today, Oracle Corporation is the leading vendor of
relational database management systems, and a major vendor of enterprise applications
based on the Oracle database, with annual sales of many billions of dollars.

Professors at the University of California’s Berkeley computer laboratories were
also researching relational databases in the mid-1970s. Like the IBM research team,
they built a prototype of a relational DBMS and called their system Ingres. The Ingres
project included a query language named QUEL that, although more structured than



SQL, was less English-like. Many of today’s database experts trace their involvement
with relational databases back to the Berkeley Ingres project, including the founders of
Sybase and Illustra (now owned by IBM), and many of the object-oriented database
startup companies.

In 1980, several professors left Berkeley and founded Relational Technology, Inc., to
build a commercial version of Ingres, which was announced in 1981. Ingres and Oracle
quickly became arch-rivals, but their rivalry helped to call attention to relational database
technology in this early stage. Despite its technical superiority in many areas, Ingres
became a clear second-place player in the market, competing against the SQL-based
capabilities (and the aggressive marketing and sales strategies) of Oracle. The original
QUEL query language was effectively replaced by SQL in 1986, a testimony to the
market power of the SQL standard. By the mid-1990s, the Ingres technology had been
sold to Computer Associates, a leading mainframe software vendor.

IBM Products
While Oracle and Ingres raced to become commercial products, IBM’s System/R
project had also turned into an effort to build a commercial product, named SQL/Data
System (SQL/DS). IBM announced SQL/DS in 1981 and began shipping the product in
1982. In 1983, IBM announced a version of SQL/DS for VM/CMS, an operating system
that was frequently used on IBM mainframes in corporate information center applications.

In 1983, IBM also introduced Database 2 (DB2), another relational DBMS for its
mainframe systems. DB2 operated under IBM’s MVS operating system, the workhorse
operating system used in large mainframe data centers. The first release of DB2 began
shipping in 1985, and IBM officials hailed it as a strategic piece of IBM software technology.
DB2 has since become IBM’s flagship relational DBMS, and with IBM’s weight behind
it, DB2’s SQL language became the de facto standard database language. DB2 technology
has now migrated across all IBM product lines, from personal computers to network
servers to mainframes. In 1997, IBM took the DB2 cross-platform strategy even farther,
by announcing DB2 versions for computer systems made by Sun Microsystems, Hewlett-
Packard, and other IBM hardware competitors.

IBM made another major stride in its cross-platform strategy in 2001, when it acquired
Informix’s database business, and especially Informix’s installed base on non-IBM
UNIX-based servers. According to most industry analysts, IBM is the second-largest
vendor of database management software, and some user surveys actually placed it
first, slightly ahead of Oracle in market share.

Commercial Acceptance
During the first half of the 1980s, the relational database vendors struggled for commercial
acceptance of their products. The relational products had several disadvantages when
compared to the traditional database architectures. The performance of relational databases
was seriously inferior to that of traditional databases. Except for the IBM products, the
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relational databases came from small upstart vendors. And, except for the IBM products,
the relational databases tended to run on minicomputers rather than on IBM mainframes.

The relational products did have one major advantage, however. Their relational
query languages (SQL, QUEL, and others) allowed users to pose ad hoc queries to the
database—and get immediate answers—without writing programs. As a result, relational
databases began slowly turning up in information center applications as decision-
support tools. By May 1985, Oracle proudly claimed to have over 1000 installations.
Ingres was installed in a comparable number of sites. DB2 and SQL/DS were also being
slowly accepted and counted their combined installations at slightly over 1000 sites.

During the last half of the 1980s, SQL and relational databases were rapidly
accepted as the database technology of the future. The performance of the relational
database products improved dramatically. Ingres and Oracle, in particular, leapfrogged
with each new version claiming superiority over the competitor and two or three times
the performance of the previous release. Improvements in the processing power of the
underlying computer hardware also helped to boost performance.

Market forces also boosted the popularity of SQL in the late 1980s. IBM stepped up
its evangelism of SQL, positioning DB2 as the data management solution for the 1990s.
Publication of the ANSI/ISO standard for SQL in 1986 gave SQL official status as a
standard. SQL also emerged as a standard on UNIX-based computer systems, whose
popularity accelerated in the 1980s. As personal computers became more powerful and
were linked in local area networks (LANs), they needed more sophisticated database
management. PC database vendors embraced SQL as the solution to these needs, and
minicomputer database vendors moved down market to compete in the emerging PC
local area network market.

Through the early 1990s, steadily improving SQL implementations and dramatic
improvements in processor speeds made SQL a practical solution for transaction
processing applications. Finally, SQL became a key part of the client/server architecture
that used PCs, local area networks, and network servers to build much lower-cost
information processing systems.

SQL’s supremacy in the database world has not gone unchallenged. By the early
1990s, object-oriented programming had emerged as the method of choice for applications
development, especially for personal computers and their graphical user interfaces.
The object model, with its objects, classes, methods, and inheritance, did not provide an
ideal fit with the relational model of tables, rows, and columns of data. A new generation
of venture capital-backed “object database” companies sprang up, hoping to make
relational databases and their vendors obsolete, just as SQL had done to the earlier,
nonrelational vendors. However, SQL and the relational model more than withstood
the challenge. Total annual revenues for object-oriented databases are measured in the
hundreds of millions of dollars, at best, while SQL and relational database systems,
tools, and services produce tens of billions of dollars of sales per year.

As SQL grew to address an ever-wider variety of data management tasks, the one-
size-fits-all approach showed serious strain. By the late 1990s, database management was
no longer a monolithic market. Specialized database systems sprang up to support

C h a p t e r 3 : S Q L i n P e r s p e c t i v e 31
A

N
O

V
E
R

V
IE

W
O

F
S
Q

L



different market needs. One of the fastest-growing segments was data warehousing,
where databases were used to search through huge amounts of data to discover
underlying trends and patterns. A second major trend was the incorporation of new
data types (such as multimedia data) and object-oriented principles into SQL. A third
important segment was mobile databases for portable personal computers that could
operate when sometimes connected to, and sometimes disconnected from, a centralized
database system. Another important application segment was embedded databases for
use within intelligent devices, such as network equipment. In-memory databases
emerged as another segment, designed for very high levels of performance.

Despite the emergence of subsegments of the database market, SQL has remained a
common denominator across them all. As the computer industry prepares for the next
century, SQL’s dominance as the database standard remains very strong. New challenges
continue to emerge—databases rooted in the eXtended Markup Language (XML) are
the latest attempt to move outside of the relational model and SQL—but the history of
the past 20 years indicates that SQL and the relational model have a powerful ability to
embrace and adapt to new data management needs.

SQL Standards
One of the most important developments in the market acceptance of SQL is the emergence
of SQL standards. References to “the SQL standard” usually mean the official standard
adopted by the American National Standards Institute (ANSI) and the International
Standards Organization (ISO). However, there are other important SQL standards,
including the de facto standard for some parts of the SQL language that have been defined
by IBM’s DB2 product family, and Oracle’s SQL dialect, which has a dominant installed-
base market share.

The ANSI/ISO Standards
Work on the official SQL standard began in 1982, when ANSI charged its X3H2 committee
with defining a standard relational database language. At first, the committee debated the
merits of various proposed database languages. However, as IBM’s commitment to SQL
increased and SQL emerged as a de facto standard in the market, the committee selected
SQL as their relational database language and turned their attention to standardizing it.

The resulting ANSI standard for SQL was largely based on DB2 SQL, although it
contains some major differences from DB2. After several revisions, the standard was
officially adopted as ANSI standard X3.135 in 1986, and as an ISO standard in 1987.
The ANSI/ISO standard has since been adopted as a Federal Information Processing
Standard (FIPS) by the U.S. government. This standard, slightly revised and expanded
in 1989, is usually called the SQL-89 or SQL1 standard.

Many of the ANSI and ISO standards committee members were representatives
from database vendors who had existing SQL products, each implementing a slightly
different SQL dialect. Like dialects of human languages, the SQL dialects were generally
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very similar to one another but were incompatible in their details. In many areas, the
committee simply sidestepped these differences by omitting some parts of the language
from the standard and specifying others as “implementor-defined.” These decisions
allowed existing SQL implementations to claim broad adherence to the resulting ANSI/
ISO standard but made the standard relatively weak.

To address the holes in the original standard, the ANSI committee continued its
work, and drafts for a new, more rigorous SQL2 standard were circulated. Unlike the
1989 standard, the SQL2 drafts specified features considerably beyond those found in
current commercial SQL products. Even more far-reaching changes were proposed for
a follow-on SQL3 standard. In addition, the draft standards attempted to officially
standardize parts of the SQL language where different proprietary standards had long
since been set by the various major DBMS brands. As a result, the proposed SQL2 and
SQL3 standards were a good deal more controversial than the initial SQL standard.
The SQL2 standard weaved its way through the ANSI approval process and was
finally approved in October 1992. While the original 1986 standard took less than 100
pages, the SQL2 standard (officially called SQL-92) takes nearly 600 pages.

The SQL2 standards committee acknowledged the large step from SQL1 to SQL2 by
explicitly creating three levels of SQL2 standards compliance. The lowest compliance
level (Entry-Level) requires only minimal additional capability beyond the SQL-89
standard. The middle compliance level (Intermediate-Level) was created as an achievable
major step beyond SQL-89, but one that avoids the most complex and most system-
dependent and DBMS brand-dependent issues. The third compliance level (Full)
requires a full implementation of all SQL2 capabilities. Throughout the 600 pages of the
standard, each description of each feature includes a definition of the specific aspects of
that feature that must be supported to achieve Entry, Intermediate, or Full compliance.

Despite the existence of a SQL2 standard for more than ten years, popular
commercial SQL products do not, in practice, fully implement the SQL2 specification,
and no two commercial SQL products support exactly the same SQL dialect. Moreover,
as database vendors introduce new capabilities, they continually expand their SQL
dialects and move them slightly further apart. The central core of the SQL language has
become fairly standardized, however. Where it could be done without hurting existing
customers or features, vendors have brought their products into conformance with the
SQL-89 standard, and with the most useful capabilities of the SQL2 standard.

In the meantime, work continues on standards beyond SQL2. The SQL3 effort
effectively fragmented into separate standardization efforts and focused on different
extensions to SQL. Some of these, such as stored procedure capabilities, are already
found in many commercial SQL products and pose the same standardization challenges
faced by SQL2. Others, such as proposed object extensions to SQL, are not yet widely
available or fully implemented, but have generated a great deal of controversy. With
most vendors only recently implementing major SQL2 capabilities, and with the
diversity of SQL extensions now available in commercial products, work on SQL3 has
taken on less commercial importance.
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The “real” SQL standard, of course, is the SQL implemented in products that are
broadly accepted by the marketplace. For the most part, programmers and users tend
to stick with those parts of the language that are fairly similar across a broad range of
products. The innovation of the database vendors continues to drive the invention of
new SQL capabilities; some products remain years later only for backward compatibility,
and some find commercial success and move into the mainstream.

Other SQL Standards
Although it is the most widely recognized, the ANSI/ISO standard is not the only
standard for SQL. X/OPEN, a European vendor group, also adopted SQL as part of its
suite of standards for a portable application environment based on UNIX. The X/OPEN
standards have played a major role in the European computer market, where portability
among computer systems from different vendors is a key concern. Unfortunately, the
X/OPEN standard differs from the ANSI/ISO standard in several areas.

IBM also included SQL in the specification of its bold 1990s Systems Application
Architecture (SAA) blueprint, promising that all of its SQL products would eventually
move to this SAA SQL dialect. Although SAA failed to achieve its promise of unifying
the IBM product line, the momentum toward a unified IBM SQL continued. With its
mainframe DB2 database as the flagship, IBM introduced DB2 implementations for
OS/2, its personal computer operating system, and for its RS/6000 line of UNIX-based
workstations and servers.

By 1997, IBM had moved DB2 beyond its own product line and shipped versions of
DB2-Universal Database for systems made by rival manufacturers Sun Microsystems,
Hewlett-Packard, and Silicon Graphics, and for Windows NT. IBM further shored up
its database software position on non-IBM hardware platforms with its 2001 acquisition
of the Informix database. With IBM’s historical leadership in relational database
technology, the SQL dialect supported by DB2 is a very powerful de facto standard.

ODBC and the SQL Access Group
An important area of database technology not addressed by official standards is database
interoperability—the methods by which data can be exchanged among different
databases, usually over a network. In 1989, a group of vendors formed the SQL Access
Group to address this problem. The resulting SQL Access Group specification for
Remote Database Access (RDA) was published in 1991. Unfortunately, the RDA
specification was closely tied to the OSI protocols, which were never widely implemented,
so it had little impact. Transparent interoperability among different vendors’ databases
remains an elusive goal.

A second standard from the SQL Access Group had far more market impact. At
Microsoft’s urging and insistence, the SQL Access Group expanded its focus to include
a call-level interface for SQL. Based on a draft from Microsoft, the resulting Call-Level
Interface (CLI) specification was published in 1992. Microsoft’s own Open Database
Connectivity (ODBC) specification, based on the CLI standard, was published the same
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year. With the market power of Microsoft behind it, and the “open standards” blessing
of the SQL Access Group, ODBC has emerged as the de facto standard interface for PC
access to SQL databases. Apple and Microsoft announced an agreement to support
ODBC on Macintosh and Windows in the spring of 1993, giving ODBC industry standard
status in both popular graphical user interface environments. ODBC implementations
for UNIX-based systems soon followed. In 1995, the ODBC interface effectively became
an ANSI/ISO standard, with the publication of the SQL/Call-Level Interface (CLI)
standard.

Today, ODBC is in its fourth major revision as a cross-platform database access
standard. ODBC support is available for all major DBMS brands. Most packaged
application programs that have database access as an important part of their capabilities
support ODBC, and they range from multimillion-dollar enterprise-class applications
like Enterprise Resource Planning (ERP) and Supply Chain Management (SCM) to PC
applications such as spreadsheets, query tools, and reporting programs. Microsoft’s
focus has moved beyond ODBC to higher-level interfaces (such as OLE/DB) and more
recently to Active/X Data Objects (ADO), but these new interfaces are layered on top
of ODBC for relational database access, and it remains a key cross-platform database
access technology.

SQL and Portability
The existence of published SQL standards has spawned quite a few exaggerated claims
about SQL and applications portability. Diagrams such as the one in Figure 3-1 are
frequently drawn to show how an application using SQL can work interchangeably
with any SQL-based database management system. In fact, the holes in the SQL-89
standard and the current differences between SQL dialects are significant enough that
an application must always be modified when moved from one SQL database to
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Figure 3-1. The SQL portability myth
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another. These differences, many of which were eliminated by the SQL2 standard but
have not yet been implemented in commercial products, include:

� Error codes. The SQL-89 standard does not specify the error codes to be returned
when SQL detects an error, and all of the commercial implementations use their
own set of error codes. The SQL2 standard specifies standard error codes.

� Data types. The SQL-89 standard defines a minimal set of data types, but it omits
some of the most popular and useful types, such as variable-length character
strings, dates and times, and money data. The SQL2 standard addresses these,
but not “new” data types such as graphics and multimedia objects.

� System tables. The SQL-89 standard is silent about the system tables that provide
information regarding the structure of the database itself. Each vendor has its
own structure for these tables, and even IBM’s four SQL implementations differ
from one another. The tables are standardized in SQL2, but only at the higher
levels of compliance, which are not yet provided by most vendors.

� Interactive SQL. The standard specifies only the programmatic SQL used by an
application program, not interactive SQL. For example, the SELECT statement
used to query the database in interactive SQL is absent from the SQL-89
standard. Again, the SQL2 standard addressed this issue, but long after all of the
major DBMS vendors had well-established interactive SQL capabilities.

� Programmatic interface. The original standard specifies an abstract technique for
using SQL from within an applications program written in COBOL, C, FORTRAN,
and other programming languages. No commercial SQL product uses this
technique, and there is considerable variation in the actual programmatic interfaces
used. The SQL2 standard specifies an embedded SQL interface for popular
programming languages but not a call-level interface. The 1995 SQL/CLI standard
finally addressed programmatic SQL access, but not before commercial DBMS
products had popularized proprietary interfaces and deeply embedded them in
hundreds of thousands of user applications and application packages.

� Dynamic SQL. The SQL-89 standard does not include the features required to
develop general-purpose database front-ends, such as query tools and report
writers. These features, known as dynamic SQL, are found in virtually all SQL
database systems, but they vary significantly from product to product. SQL2
includes a standard for dynamic SQL. But with hundreds of thousands of
existing applications dependent on backward compatibility, DBMS vendors
have not implemented it.

� Semantic differences. Because the standards specify certain details as
implementor-defined, it’s possible to run the same query against two different
conforming SQL implementations and produce two different sets of query
results. These differences occur in the handling of NULL values, column
functions, and duplicate row elimination.
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� Collating sequences. The SQL-89 standard does not address the collating
(sorting) sequence of characters stored in the database. The results of a sorted
query will be different if the query is run on a personal computer (with ASCII
characters) and a mainframe (with EBCDIC characters). The SQL2 standard
includes an elaborate specification for how a program or a user can request a
specific collating sequence, but it is an advanced-level feature that is not
typically supported in commercial products.

� Database structure. The SQL-89 standard specifies the SQL language to be used
once a particular database has been opened and is ready for processing. The
details of database naming and how the initial connection to the database is
established vary widely and are not portable. The SQL2 standard creates more
uniformity but cannot completely mask these details.

Despite these differences, commercial database tools boasting portability across
several different brands of SQL databases began to emerge in the early 1990s. In every
case, however, the tools require a special adapter for each supported DBMS, which
generates the appropriate SQL dialect, handles data type conversion, translates error
codes, and so on. Transparent portability across different DBMS brands based on
standard SQL is the major goal of SQL2 and ODBC, and significant progress has been
made. Today, virtually all programs that support multiple databases include specific
drivers for communicating with each of the major DBMS brands, and usually include
an ODBC driver for accessing the others.

SQL and Networking
The dramatic growth of computer networking in the 1990s had a major impact on
database management and gave SQL a new prominence. As networks became more
common, applications that traditionally ran on a central minicomputer or mainframe
moved to local area networks of desktop workstations and servers. In these networks,
SQL plays a crucial role as the link between an application running on a desktop
workstation with a graphical user interface and the DBMS that manages shared data on
a cost-effective server. More recently, the exploding popularity of the Internet and the
World Wide Web has reinforced the network role for SQL. In the emerging three-tier
Internet architecture, SQL once again provides the link between the application logic
(now running in the middle tier, on an application server or web server) and the database
residing in the back-end tier. The next few sections discuss the evolution of database
network architectures and the role of SQL in each one.

Centralized Architecture
Figure 3-2 shows the traditional database architecture used by DB2, SQL/DS, and the
original minicomputer databases such as Oracle and Ingres. In this architecture, the
DBMS and the physical data both reside on a central minicomputer or mainframe
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system, along with the application program that accepts input from the user’s terminal
and displays data on the user’s screen. The application program communicates with
the DBMS using SQL.

Suppose the user types a query that requires a sequential search of a database, such
as a request to find the average order size for all orders. The DBMS receives the query,
scans through the database fetching each record of data from the disk, calculates the
average, and displays the result on the terminal screen. Both the application processing
and the database processing occur on the central computer, so execution of this type of
query (and in fact, all kinds of queries) is very efficient.

The disadvantage of the centralized architecture is scalability. As more and more
users are added, each of them adds application processing workload to the system.
Because the system is shared, each user experiences degraded performance as the
system becomes more heavily loaded.

File Server Architecture
The introduction of personal computers and local area networks led to the development
of the file server architecture, shown in Figure 3-3. In this architecture, an application
running on a personal computer can transparently access data located on a file server,
which stores shared files. When a PC application requests data from a shared file, the
networking software automatically retrieves the requested block of the file from the
server. Early PC databases, such as dBASE and later Microsoft’s Access, supported this
file server approach, with each personal computer running its own copy of the DBMS
software.

For typical queries that retrieve only one row or a few rows from the database, this
architecture provides excellent performance, because each user has the full power of a
personal computer running its own copy of the DBMS. However, consider the query
made in the previous example. Because the query requires a sequential scan of the
database, the DBMS repeatedly requests blocks of data from the database, which is
physically located across the network on the server. Eventually, every block of the file
will be requested and sent across the network. Obviously, this architecture produces
very heavy network traffic and slow performance for queries of this type.

Figure 3-2. Database management in a centralized architecture
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Client/Server Architecture
Figure 3-4 shows the next stage of network database evolution—the client/server database
architecture. In this scheme, personal computers are combined in a local area network with
a database server that stores shared databases. The functions of the DBMS are split into two
parts. Database front-ends, such as interactive query tools, report writers, and application
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Figure 3-3. Database management in a file server architecture

Figure 3-4. Database management in a client/server architecture



programs, run on the personal computer. The back-end database engine that stores and
manages the data runs on the server. As the client/server architecture grew in popularity
during the 1990s, SQL became the standard database language for communication between
the front-end tools and the back-end engine in this architecture.

Consider once more the query requesting the average order size. In the client/server
architecture, the query travels across the network to the database server as a SQL
request. The database engine on the server processes the request and scans the
database, which also resides on the server. When the result is calculated, the database
engine sends it back across the network as a single reply to the initial request, and the
front-end application displays it on the PC screen.

The client/server architecture reduces the network traffic and splits the database
workload. User-intensive functions, such as handling input and displaying data, are
concentrated on the user’s PC. Data-intensive functions, such as file I/O and query
processing, are concentrated in the database server. Most importantly, the SQL
language provides a well-defined interface between the front-end and back-end
systems, communicating database access requests in an efficient manner.

By the mid-1990s, these advantages made the client/server architecture the most
popular scheme for implementing new applications. All of the most popular DBMS
products—Oracle, Informix, Sybase, SQL Server, DB2, and many more—offered
client/server capability. The database industry grew to include many companies
offering tools for building client/server applications. Some of these came from the
database companies themselves; others came from independent companies.

Like all architectures, client/server had its disadvantages. The most serious of
these was the problem of managing the applications software that was now distributed
across hundreds or thousands of desktop PCs instead of running on a central
minicomputer or mainframe. To update an application program in a large company,
the information systems department had to update thousands of PC systems, one at a
time. The situation was even worse if changes to the application program had to be
synchronized with changes to other applications, or to the DBMS system itself. In
addition, with personal computers on user’s desks, users tended to add new personal
software of their own or to change the configuration of their systems. Such changes
often disrupted existing applications, adding to the support burden. Companies developed
strategies to deal with these issues, but by the late 1990s, there was growing concern
about the manageability of client/server applications on large, distributed PC networks.

Multitier Architecture
With the emergence of the Internet and especially the World Wide Web, network
database architecture took another step in its evolution. At first, the Web was used to
access (browse) static documents and evolved outside of the database world. But as the
use of web browsers became widespread, it wasn’t long before companies thought
about using them as a simple way to provide access to corporate databases as well. For
example, suppose a company starts using the Web to provide product information to
its customers by making product descriptions and graphics available on its web site. A
natural next step is to give customers access to current product availability information
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through the same web browser interface. This requires linking the web server to the
database system that stores the (constantly changing) current product inventory levels.

The methods used to link web servers and DBMS systems evolved rapidly in the
late 1990s and early 2000s, and have converged on the three-tier network architecture
shown in Figure 3-5. The user interface is a web browser running on a PC or some
other thin client device in the front tier. It communicates with a web server in the
middle tier. When the user request is for something more complex than a simple web
page, the web server passes the request to an application server, whose role is to handle
the business logic required to process the request. Often, the request will involve access
to an existing (legacy) application running on a mainframe system or to a corporate
database. These systems run in the back tier of the architecture.

As with the client/server architecture, SQL is solidly entrenched as the standard
database language for communicating between the application server and back-
end databases. All of the packaged application server products provide a SQL-based
callable API for database access. As the application server market has converged
around the Java2 Enterprise Edition (J2EE) standard, Java DataBase Connectivity
(JDBC) has emerged as the standard API for application server access to databases.
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Figure 3-5. Database management in a three-tier Internet architecture
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The Proliferation of SQL
As the standard for relational database access, SQL has had a major impact on all parts
of the computer market. IBM has adopted SQL as a unifying database technology for
its product line. SQL-based databases dominate the market for UNIX-based computer
systems. In the PC market, SQL databases on server-oriented Windows operating systems
are mounting a serious challenge to the dominance of UNIX as a database processing
platform, especially for departmental applications. SQL is accepted as a technology for
online transaction processing (OLTP), fully refuting the conventional wisdom of the
1980s that relational databases would never offer performance good enough for
transaction processing applications. SQL-based data warehousing and data mining
applications are the standard for helping companies to discover customer purchase
patterns and offer better products and services. On the Internet, SQL-based databases
are the foundation of more personalized products, services, and information services
that are a key benefit of electronic commerce.

SQL and IBM’s Unified Database Strategy
SQL has played a key role as a common database access language across all of IBM’s
computer families. Originally, this role was part of IBM’s SAA strategy, announced in
March 1987. Although IBM’s grand goals for SAA were not achieved, the unifying role
of SQL has grown even more important over time. The DB2 database system, IBM’s
flagship SQL-based DBMS, now runs on a broad range of IBM and non-IBM computer
systems, including:

� Mainframes. DB2 started as the SQL standard-bearer for IBM mainframes
running MVS and has now replaced SQL/DS as the relational system for the
VM and VSE mainframe operating systems.

� AS/400. This SQL implementation runs on IBM’s family of midrange business
systems, targeted at small- and medium-sized businesses and server applications.

� Power-architecture servers. DB2 runs under the UNIX operating system on
IBM’s family of RISC-based workstations and servers, for engineering and
scientific applications, and as IBM’s own UNIX database server platform.

� Other UNIX platforms. IBM supports DB2 on UNIX-based server platforms
from Sun Microsystems and Hewlett-Packard, the two largest UNIX system
vendors, and on UNIX-based workstations from Silicon Graphics.

� Windows. A PC-LAN server version of DB2 competes with Microsoft SQL Server,
Oracle, and others on Windows-based database servers.

SQL on Minicomputers
Minicomputers were one of the most fertile early markets for SQL-based database systems.
Oracle and Ingres were both originally marketed on Digital’s VAX/VMS minicomputer
systems. Both products have since been ported to many other platforms. Sybase, a later
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database system specialized for online transaction processing, also targeted the VAX as
one of its primary platforms.

Through the 1980s, the minicomputer vendors also developed their own proprietary
relational databases featuring SQL. Digital considered relational databases so important
that it bundled a runtime version of its Rdb/VMS database with every VAX/VMS
system. Hewlett-Packard offered Allbase, a database that supported both its HPSQL
dialect and a nonrelational interface. Data General’s DG/SQL database replaced its
older nonrelational databases as DG’s strategic data management tool. In addition,
many of the minicomputer vendors resold relational databases from the independent
database software vendors. These efforts helped to establish SQL as an important
technology for midrange computer systems.

By the mid-1990s, the minicomputer vendors’ SQL products had largely disappeared,
beaten in the marketplace by multiplatform software from Oracle, Informix, Sybase,
and others. Accompanying this trend, the importance of proprietary minicomputer
operating systems has faded as well, replaced by widespread use of UNIX on midrange
systems. Yesterday’s minicomputer SQL market has effectively become today’s market
for UNIX-based database servers based on SQL.

SQL on UNIX-Based Systems
SQL has firmly established itself as the data management solution of choice for
UNIX-based computer systems. Originally developed at Bell Laboratories, UNIX
became very popular in the 1980s as a vendor-independent, standard operating system.
It runs on a wide range of computer systems, from workstations to mainframes, and
has become the standard operating system for high-end server systems, including
database servers.

In the early 1980s, four major databases were already available for UNIX systems.
Two of them, Ingres and Oracle, were UNIX versions of the products that ran on DEC’s
proprietary minicomputers. The other two, Informix and Unify, were written specifically
for UNIX. Neither of them originally offered SQL support, but by 1985, Unify offered
a SQL query language, and Informix had been rewritten as Informix-SQL, with full
SQL support.

Today, the Oracle, DB2, Informix, and Sybase DBMS products dominate the UNIX-
based database market and are available on all of the leading UNIX server platforms.
UNIX-based database servers are a mainstream building block for both client/server
and three-tier Internet architectures. The constant search for higher SQL database
performance has driven some of the most important trends in UNIX system hardware.
These include the emergence of symmetric multiprocessing (SMP) as a mainstream
server architecture, and the use of RAID (Redundant Array of Independent Disks)
technology to boost I/O performance.

SQL on Personal Computers
Databases have been popular on personal computers since the early days of the IBM
PC. Ashton-Tate’s dBASE product reached an installed base of over one million



MS-DOS-based PCs. Although these early PC databases often presented data in tabular
form, they lacked the full power of a relational DBMS and a relational database language
such as SQL. The first SQL-based PC databases were versions of popular minicomputer
products that barely fit on personal computers. For example, Professional Oracle for
the IBM PC, introduced in 1984, required two megabytes of memory—well above the
typical 640KB PC configuration of the day.

The real impact of SQL on personal computers began with the announcement of
OS/2 by IBM and Microsoft in April 1987. In addition to the standard OS/2 product,
IBM announced a proprietary OS/2 Extended Edition (OS/2 EE) with a built-in SQL
database and communications support. With the introduction, IBM again signaled its
strong commitment to SQL, saying in effect that SQL was so important that it belonged
in the computer’s operating system.

OS/2 Extended Edition presented Microsoft with a problem. As the developer
and distributor of standard OS/2 to other personal computer manufacturers, Microsoft
needed an alternative to the Extended Edition. Microsoft responded by licensing the
Sybase DBMS, which had been developed for VAX, and began porting it to OS/2. In
January 1988, in a surprise move, Microsoft and Ashton-Tate (the PC database leader at
the time with its dBASE product) announced that they would jointly sell the resulting
OS/2-based product, renamed SQL Server. Microsoft would sell SQL Server with OS/2
to computer manufacturers; Ashton-Tate would sell the product through retail
channels to PC users. In September 1989, Lotus Development (the other member of the
big three of PC software at the time) added its endorsement of SQL Server by investing
in Sybase. Later that year, Ashton-Tate relinquished its exclusive retail distribution
rights and sold its investment to Lotus.

SQL Server for OS/2 met with only limited success. But in typical Microsoft
fashion, Microsoft continued to invest heavily in SQL Server development and ported
it to its Windows NT operating system. For a while, Microsoft and Sybase remained
partners, with Sybase focused on the minicomputer and UNIX-based server markets
and Microsoft focused on PC LANs and Windows NT. As Windows NT and UNIX
systems became more and more competitive as database server operating system
platforms, the relationship became less cooperative and more competitive. Eventually,
Sybase and Microsoft went their separate ways. The common heritage of Sybase’s and
Microsoft’s SQL products can still be seen in product capabilities and some common
SQL extensions (for example, stored procedures), but the product lines have already
diverged significantly.

Today, SQL Server is a major database system on Windows-based servers. SQL
Server 7, which shipped in late 1998, provided a significant step up in the size and scale
of database applications that SQL Server can support. SQL Server 2000, which runs on
Windows 2000, provided another major step. SQL Server is slated to continue in a
major role as Microsoft rolls out more of its .NET server product family. In addition to
SQL Server’s impact, the availability of Oracle, and to a lesser extent, Informix, DB2,
and other mainstream DBMS products, has helped Windows-based servers to steadily
make inroads into UNIX’s dominance as a database server platform. While UNIX
continues to dominate the largest database server installations, server configurations
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of the Windows operating system and the Intel architecture systems on which it runs
have achieved credibility in the midrange market.

SQL and Transaction Processing
SQL and relational databases originally had very little impact in online transaction
processing (OLTP) applications. With their emphasis on queries, relational databases
were confined to decision support and low-volume online applications, where their
slower performance was not a disadvantage. For OLTP applications, where hundreds
of users needed online access to data and subsecond response times, IBM’s
nonrelational Information Management System (IMS) reigned as the dominant DBMS.

In 1986, a new DBMS vendor, Sybase, introduced a new SQL-based database
especially designed for OLTP applications. The Sybase DBMS ran on VAX/VMS
minicomputers and Sun workstations, and focused on maximum online performance.
Oracle Corporation and Relational Technology followed shortly with announcements
that they, too, would offer OLTP versions of their popular Oracle and Ingres database
systems. In the UNIX market, Informix announced an OLTP version of its DBMS,
named Informix-Turbo.

In 1988, IBM jumped on the relational OLTP bandwagon with DB2 Version 2, with
benchmarks showing the new version operating at over 250 transactions per second on
large mainframes. IBM claimed that DB2 performance was now suitable for all but the
most demanding OLTP applications, and encouraged customers to consider it as a
serious alternative to IMS. OLTP benchmarks have now become a standard sales tool
for relational databases, despite serious questions about how well the benchmarks
actually measure performance in real applications.

The suitability of SQL for OLTP improved dramatically through the 1990s, with
advances in relational technology and more powerful computer hardware both leading
to ever-higher transaction rates. DBMS vendors started to position their products based
on their OLTP performance, and for a few years database advertising focused almost
entirely on these performance benchmark wars. A vendor-independent organization,
the Transaction Processing Council, jumped into the benchmarking fray with a series of
vendor-independent benchmarks (TPC-A, TPC-B, and TPC-C), which only served to
intensify the performance focus of the vendors.

By the late 1990s, SQL-based relational databases on high-end UNIX-based database
servers evolved well past the 1000-transactions-per-second mark. Client/server systems
using SQL databases have become the accepted architecture for implementing OLTP
applications. From a position as “unsuitable for OLTP,” SQL has grown to be the industry
standard foundation for building OLTP applications.

SQL and Workgroup Databases
The dramatic growth of PC LANs through the 1980s and 1990s created a new opportunity
for departmental or workgroup database management. The original database systems
focused on this market segment ran on IBM’s OS/2 operating system. In fact, SQL
Server, now a key part of Microsoft’s Windows strategy, originally made its debut as
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an OS/2 database product. In the mid-1990s, Novell also made a concentrated effort to
make its NetWare operating system an attractive workgroup database server platform.
From the earliest days of PC LANs, NetWare had become established as the dominant
network operating system for file and print servers. Through deals with Oracle and
others, Novell sought to extend this leadership to workgroup database servers as well.

The arrival of Windows NT on the workgroup computing scene was the catalyst
that caused the workgroup database market to really take off. While NetWare offered a
clear performance advantage over NT as a workgroup file server, NT had a more
robust, general-purpose architecture, more like the minicomputer operating systems.
Microsoft successfully positioned NT as a more attractive platform for running workgroup
applications (as an application server) and workgroup databases. Microsoft’s own SQL
Server product was marketed (and often bundled) with NT as a tightly integrated
workgroup database platform. Corporate information systems departments were at
first very cautious about using relatively new and unproven technology, but the NT/SQL
Server combination allowed departments and non-IS executives to undertake smaller-
scale, workgroup-level projects on their own, without corporate IS help. This phenomenon,
like the grass roots support for personal computers a decade earlier, fueled the early
growth of the workgroup database segment.

Today, SQL is well established as a workgroup database standard. Microsoft’s SQL
Server has been joined by Oracle, Informix, Sybase, DB2, and many other DBMS brands
running on the Windows server platforms. Windows-based SQL databases are the
second largest segment of the DBMS market and are the fastest growing. From this
solid dominance in the workgroup segment, Windows-based server systems are
mounting a continued assault on enterprise-class database applications, slowly but
surely eating into low-end UNIX-based database deployments.

SQL and Data Warehousing
For several years, the effort to make SQL a viable technology for OLTP applications
shifted the focus away from the original relational database strengths of query
processing and decision making. Performance benchmarks and competition among the
major DBMS brands focused on simple transactions like adding a new order to the
database or determining a customer’s account balance. Because of the power of the
relational database model, the databases that companies used to handle daily business
operations could also be used to analyze the growing amounts of data that were being
accumulated. A frequent theme of conferences and trade show speeches for IS
managers was that a corporation’s accumulated data (stored in SQL databases, of
course) should be treated as a valuable asset and used to help improve the quality of
business decision making.

Although relational databases could, in theory, easily perform both OLTP and
decision-making applications, there were some very significant practical problems. OLTP
workloads consisted of many short database transactions, and the response time for users
was very important. In contrast, decision-support queries could involve sequential scans
of large database tables to answer questions like “What is the average order size by sales
region?” or “How do inventory trends compare with the same time a year ago?” These
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queries could take minutes or hours. If a business analyst tried to run one of these queries
during a time when business transaction volumes reached their peak, it could cause
serious degradation in OLTP performance. Another problem was that the data to answer
useful questions about business trends was often spread across many different databases,
typically involving different DBMS vendors and different computer platforms.

The desire to take advantage of accumulated business data, and the practical
performance problems it caused for OLTP applications, led to the concept of a data
warehouse, shown in Figure 3-6. Business data is extracted from OLTP systems,
reformatted and validated as necessary, and then placed into a separate database that
is dedicated to decision-making queries (the “warehouse”). The data extraction and
transformation can be scheduled for off-hours batch processing. Ideally, only new or
changed data can be extracted, minimizing the amount of data to be processed in the
monthly, weekly, or daily warehouse refresh cycle. With this scheme, the time-
consuming business analysis queries use the data warehouse, not the OLTP database,
as their source of data.

Figure 3-6. The data warehousing concept



SQL-based relational databases were a clear choice for the warehouse data store
because of their flexible query processing. A series of new companies was formed to
build the data extraction, transformation, and database query tools needed by the data
warehouse model. In addition, DBMS vendors started to focus on the kinds of database
queries that customers tended to run in the data warehouse. These queries tended to be
large and complex—such as analyzing tens or hundreds of millions of individual
cash-register receipts to look for product purchase patterns. They often involved
time-series data—for example, analyzing product sales or market share data over time.
They also tended to involve statistical summaries of data—total sales, average order
volume, percent growth, and so on—rather than the individual data items themselves.

To address the specialized needs of data warehousing applications (often called
OnLine Analytical Processing or OLAP), specialized databases began to appear. These
databases were optimized for OLAP workloads in several different ways. Their
performance was tuned for complex, read-only query access. They supported advanced
statistical and other data functions, such as built-in time-series processing. They
supported precalculation of database statistical data, so that retrieving averages and
totals could be dramatically faster. Some of these specialized databases did not use
SQL, but many did (leading to the companion term ROLAP, for Relational OnLine
Analytic Processing). As with so many segments of the database market, SQL’s
advantages as a standard proved to be a powerful force. Data warehousing has become
a one-billion-dollar-plus segment of the database market, and SQL-based databases
are firmly entrenched as the mainstream technology for building data warehouses.

SQL and Distributed Internet Applications
During the late 1990s, the World Wide Web and the web browsing capability that it
enabled were the driving force behind the growth of the Internet. With its focus on
delivering content in the form of text and graphics, the early uses of the Web had little
to do with data management. By the mid-1990s, however, much of the content delivered
from corporate web sites had its origins in SQL-based corporate databases. For example,
on a commercial web site for a retailer, web pages that contain information about products
available for sale, their prices, product availability, special promotions, and the like are
typically created on demand, based on data retrieved from a SQL database. The vast
majority of the pages displayed by an online auction site or by an online travel site are
similarly based on data retrieved from SQL databases, transformed into the Web’s
HTML page format. In the other direction, data entered by a user into browser page
forms is almost always captured into SQL databases that form part of the web site
architecture.

By the early 2000s, industry attention had turned to the next phase of the Internet,
and the role that Internet technologies can play in connecting computer applications to
one another. These distributed applications architectures received widespread trade
press coverage under the banner of web services. In the long-standing tradition of the
computer industry, competing camps emerged, championing different sets of
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standards and languages for implementing them—a Microsoft-led camp under the
.NET framework, and a rival camp focused on Java and J2EE-based application servers.
Both architectures embrace a key role for XML, a standard for exchanging structured
data like the data that resides in SQL databases.

In response to the industry attention on web services, a flurry of products has been
announced that link XML-formatted messages to SQL-based databases. Startup database
vendors and some of the object database vendors have announced XML-based database
products, arguing that they provide an ideal, native match for the XML-formatted
exchange of data over the Internet. The established relational database players have
responded with their own XML initiatives, adding XML input/output capabilities, and
in some cases, XML data type support, to their products. The interaction between XML
and SQL is one of the most active areas in data management today, and the activity in
this area will keep SQL in the industry spotlight well into the first decade of the twenty-
first century.

Summary
This chapter described the development of SQL and its role as a standard language for
relational database management:

� SQL was originally developed by IBM researchers, and IBM’s strong support
of SQL is a key reason for its success.

� There are official ANSI/ISO SQL standards and several other SQL standards,
each slightly different from the ANSI/ISO standards.

� Despite the existence of standards, there are many small variations among
commercial SQL dialects; no two SQLs are exactly the same.

� SQL has become the standard database management language across a broad
range of computer systems and applications areas, including mainframes,
workstations, personal computers, OLTP systems, client/server systems, data
warehousing, and the Internet.
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D
atabase management systems organize and structure data so that it can be retrieved
and manipulated by users and application programs. The data structures and
access techniques provided by a particular DBMS are called its data model. A data

model determines both the “personality” of a DBMS and the applications for which it is
particularly well suited.

SQL is a database language for relational databases that uses the relational data model.
What exactly is a relational database? How is data stored in a relational database? How
do relational databases compare to earlier technologies, such as hierarchical and network
databases? What are the advantages and disadvantages of the relational model? This
chapter describes the relational data model supported by SQL and compares it to earlier
strategies for database organization.

Early Data Models
As database management became popular during the 1970s and 1980s, a handful of
popular data models emerged. Each of these early data models had advantages and
disadvantages that played key roles in the development of the relational data model.
In many ways, the relational data model represented an attempt to streamline and
simplify the earlier data models. To understand the role and contribution of SQL and
the relational model, it is useful to briefly examine some data models that preceded the
development of SQL.

File Management Systems
Before the introduction of database management systems, all data permanently stored
on a computer system, such as payroll and accounting records, was stored in individual
files. A file management system, usually provided by the computer manufacturer as part
of the computer’s operating system, kept track of the names and locations of the files.
The file management system basically had no data model; it knew nothing about the
internal contents of files. To the file management system, a file containing a word
processing document and a file containing payroll data appeared the same.

Knowledge about the contents of a file—which data it contained and how the
data was organized—was embedded in the application programs that used the file,
as shown in Figure 4-1. In this payroll application, each of the COBOL programs that
processed the employee master file contained a file description (FD) that described the
layout of the data in the file. If the structure of the data changed—for example, if an
additional item of data was to be stored for each employee—every program that
accessed the file had to be modified. As the number of files and programs grew over
time, more and more of a data-processing department’s effort went into maintaining
existing applications rather than developing new ones.

The problems of maintaining large file-based systems led in the late 1960s to the
development of database management systems. The idea behind these systems was simple:
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take the definition of a file’s content and structure out of the individual programs, and
store it, together with the data, in a database. Using the information in the database, the
DBMS that controlled it could take a much more active role in managing both the data
and changes to the database structure.

Hierarchical Databases
One of the most important applications for the earliest database management systems
was production planning for manufacturing companies. If an automobile manufacturer
decided to produce 10,000 units of one car model and 5000 units of another model, it
needed to know how many parts to order from its suppliers. To answer the question,
the product (a car) had to be decomposed into assemblies (engine, body, chassis),
which were decomposed into subassemblies (valves, cylinders, spark plugs), and then
into sub-subassemblies, and so on. Handling this list of parts, known as a bill of materials,
was a job tailor-made for computers.

The bill of materials for a product has a natural hierarchical structure. To store this
data, the hierarchical data model, illustrated in Figure 4-2, was developed. In this model,
each record in the database represented a specific part. The records had parent/child
relationships, linking each part to its subpart, and so on.

Figure 4-1. A payroll application using a file management system



To access the data in the database, a program could perform the following tasks:

� Find a particular part by number (such as the left door)

� Move “down” to the first child (the door handle)

� Move “up” to its parent (the body)

� Move “sideways” to the next child (the right door)

Retrieving the data in a hierarchical database thus required navigating through the
records, moving up, down, and sideways one record at a time.

One of the most popular hierarchical database management systems was IBM’s
Information Management System (IMS), first introduced in 1968. The advantages of
IMS and its hierarchical model follow.

� Simple structure. The organization of an IMS database was easy to understand.
The database hierarchy paralleled that of a company organization chart or a
family tree.

� Parent/child organization. An IMS database was excellent for representing
parent/child relationships, such as “A is a part of B” or “A is owned by B.”

� Performance. IMS stored parent/child relationships as physical pointers from
one data record to another, so that movement through the database was rapid.
Because the structure was simple, IMS could place parent and child records
close to one another on the disk, minimizing disk input/output.
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IMS is still a very widely used DBMS on IBM mainframes. Its raw performance
makes it the database of choice in high-volume transaction-processing applications such
as processing bank ATM transactions, verifying credit card numbers, and tracking the
delivery of overnight packages. Although relational database performance has improved
dramatically over the last decade, the performance requirements of applications such as
these have also increased, so IMS continues to have a role. In addition, the large amount
of corporate data stored in IMS databases insures that IMS use will continue long after
relational databases have eliminated the performance barrier.

Network Databases
The simple structure of a hierarchical database became a disadvantage when the data
had a more complex structure. In an order-processing database, for example, a single
order might participate in three different parent/child relationships, linking the order
to the customer who placed it, the salesperson who took it, and the product ordered,
as shown in Figure 4-3. The structure of this type of data simply didn’t fit the strict
hierarchy of IMS.

To deal with applications such as order processing, a new network data model
was developed. The network data model extended the hierarchical model by allowing
a record to participate in multiple parent/child relationships, as shown in Figure 4-4.
These relationships were known as sets in the network model. In 1971, the Conference
on Data Systems Languages published an official standard for network databases,
which became known as the CODASYL model. IBM never developed a network DBMS
of its own, choosing instead to extend IMS over the years. But during the 1970s,
independent software companies rushed to embrace the network model, creating
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products such as Cullinet’s IDMS, Cincom’s Total, and the Adabas DBMS that became
very popular.

For a programmer, accessing a network database was very similar to accessing a
hierarchical database. An application program could do the following:

� Find a specific parent record by key (such as a customer number)

� Move down to the first child in a particular set (the first order placed by
this customer)

� Move sideways from one child to the next in the set (the next order placed
by the same customer)

� Move up from a child to its parent in another set (the salesperson who took
the order)

Once again, the programmer had to navigate the database record by record, this time
specifying which relationship to navigate as well as the direction.

Network databases had several advantages:

� Flexibility. Multiple parent/child relationships allowed a network database to
represent data that did not have a simple hierarchical structure.

� Standardization. The CODASYL standard boosted the popularity of the network
model, and minicomputer vendors such as Digital Equipment Corporation and
Data General implemented network databases.

� Performance. Despite their greater complexity, network databases boasted
performance approaching that of hierarchical databases. Sets were represented
by pointers to physical data records, and on some systems, the database
administrator could specify data clustering based on a set relationship.
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Network databases had their disadvantages, too. Like hierarchical databases, they
were very rigid. The set relationships and the structure of the records had to be specified
in advance. Changing the database structure typically required rebuilding the entire
database.

Both hierarchical and network databases were tools for programmers. To answer a
question such as “What is the most popular product ordered by Acme Manufacturing?”
a programmer had to write a program that navigated its way through the database.
The backlog of requests for custom reports often stretched to weeks or months, and by
the time the program was written, the information it delivered was often worthless.

The disadvantages of the hierarchical and network models led to intense interest
in the new relational data model when it was first described by Dr. Codd in 1970. At
first the relational model was little more than an academic curiosity. Network databases
continued to be important throughout the 1970s and early 1980s, particularly on the
minicomputer systems that were surging in popularity. However, by the mid-1980s, the
relational model was clearly emerging as the “new wave” in data management. By the
early 1990s, network databases were clearly declining in importance, and today they no
longer play a major role in the database market.

The Relational Data Model
The relational model proposed by Dr. Codd was an attempt to simplify database
structure. It eliminated the explicit parent/child structures from the database, and
instead represented all data in the database as simple row/column tables of data
values. Figure 4-5 shows a relational version of the network order-processing database
in Figure 4-4.

Unfortunately, the practical definition of “What is a relational database?” became
much less clear-cut than the precise, mathematical definition in Codd’s 1970 paper.
Early relational database management systems failed to implement some key parts of
Codd’s model. As the relational concept grew in popularity, many databases that were
called “relational” in fact were not.

In response to the corruption of the term “relational,” Dr. Codd wrote an article
in 1985 setting forth 12 rules to be followed by any database that called itself “truly
relational.” Codd’s 12 rules have since been accepted as the definition of a truly relational
DBMS. However, it’s easier to start with a more informal definition:

A relational database is a database where all data visible to the user is organized strictly
as tables of data values, and where all database operations work on these tables.

The definition is intended specifically to rule out structures such as the embedded
pointers of a hierarchical or network database. A relational DBMS can represent
parent/child relationships, but they are represented strictly by the data values contained
in the database tables.
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The Sample Database
Figure 4-6 shows a small relational database for an order-processing application. This
sample database is used throughout this book and provides the basis for most of the
examples. Appendix A contains a complete description of the database structure and
its contents.

The sample database contains five tables. Each table stores information about one
particular kind of entity:

� The CUSTOMERS table stores data about each customer, such as the company
name, credit limit, and the salesperson who calls on the customer.

� The SALESREPS table stores the employee number, name, age, year-to-date
sales, and other data about each salesperson.

� The OFFICES table stores data about each of the five sales offices, including the
city where the office is located, the sales region to which it belongs, and so on.

� The ORDERS table keeps track of every order placed by a customer, identifying
the salesperson who took the order, the product ordered, the quantity and
amount of the order, and so on. For simplicity, each order is for only one product.

� The PRODUCTS table stores data about each product available for sale, such as
the manufacturer, product number, description, and price.
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Figure 4-5. A relational order-processing database



Tables
The organizing principle in a relational database is the table, a rectangular row/
column arrangement of data values. Each table in a database has a unique table name
that identifies its contents. (Actually, each user can choose his or her own table names
without worrying about the names chosen by other users, as explained in Chapter 5.)

The row/column structure of a table is shown more clearly in Figure 4-7, which is
an enlarged view of the OFFICES table. Each horizontal row of the OFFICES table
represents a single physical entity—a single sales office. Together the five rows of the
table represent all five of the company’s sales offices. All of the data in a particular row
of the table applies to the office represented by that row.

Each vertical column of the OFFICES table represents one item of data that is stored
in the database for each office. For example, the CITY column holds the location of
each office. The SALES column contains each office’s year-to-date sales total. The MGR
column shows the employee number of the person who manages the office.
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Figure 4-6. The sample database
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Each row of a table contains exactly one data value in each column. In the row
representing the New York office, for example, the CITY column contains the value
"New York". The SALES column contains the value "$692,637.00", which is the year-
to-date sales total for the New York office.

For each column of a table, all of the data values in that column hold the same type
of data. For example, all of the CITY column values are words, all of the SALES values
are money amounts, and all of the MGR values are integers (representing employee
numbers). The set of data values that a column can contain is called the domain of the
column. The domain of the CITY column is the set of all names of cities. The domain of
the SALES column is any money amount. The domain of the REGION column is just
two data values, "Eastern" and "Western", because those are the only two sales regions
the company has.

Each column in a table has a column name, which is usually written as a heading at
the top of the column. The columns of a table must all have different names, but there
is no prohibition against two columns in two different tables having identical names. In
fact, frequently used column names, such as NAME, ADDRESS, QTY, PRICE, and SALES,
are often found in many different tables of a production database.

The columns of a table have a left-to-right order, which is defined when the table is
first created. A table always has at least one column. The ANSI/ISO SQL standard does

Figure 4-7. The row/column structure of a relational table
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not specify a maximum number of columns in a table, but almost all commercial SQL
products do impose a limit. Usually the limit is 255 columns per table or more.

Unlike the columns, the rows in a table do not have any particular order. In fact, if
you use two consecutive database queries to display the contents of a table, there is no
guarantee that the rows will be listed in the same order twice. Of course you can ask
SQL to sort the rows before displaying them, but the sorted order has nothing to do
with the actual arrangement of the rows within the table.

A table can have any number of rows. A table of zero rows is perfectly legal and is
called an empty table (for obvious reasons). An empty table still has a structure, imposed
by its columns; it simply contains no data. The ANSI/ISO standard does not limit the
number of rows in a table, and many SQL products will allow a table to grow until it
exhausts the available disk space on the computer. Other SQL products impose a
maximum limit, but it is always a very generous one—two billion rows or more
is common.

Primary Keys
Because the rows of a relational table are unordered, you cannot select a specific row by
its position in the table. There is no “first row,” “last row,” or “thirteenth row” of a table.
How, then, can you specify a particular row, such as the row for the Denver sales office?

In a well-designed relational database, every table has some column or combination of
columns whose values uniquely identify each row in the table. This column (or columns) is
called the primary key of the table. Look once again at the OFFICES table in Figure 4-7. At
first glance, either the OFFICE column or the CITY column could serve as a primary key
for the table. But if the company expands and opens two sales offices in the same city, the
CITY column could no longer serve as the primary key. In practice, “ID numbers,” such as
an office number (OFFICE in the OFFICES table), an employee number (EMPL_NUM in the
SALESREPS table), and customer numbers (CUST_NUM in the CUSTOMERS table), are often
chosen as primary keys. In the case of the ORDERS table, there is no choice—the only thing
that uniquely identifies an order is its order number (ORDER_NUM).

The PRODUCTS table, part of which is shown in Figure 4-8, is an example of a table
where the primary key must be a combination of columns. The MFR_ID column identifies
the manufacturer of each product in the table, and the PRODUCT_ID column specifies the
manufacturer’s product number. The PRODUCT_ID column might make a good primary
key, but there’s nothing to prevent two different manufacturers from using the same
number for their products. Therefore, a combination of the MFR_ID and PRODUCT_ID
columns must be used as the primary key of the PRODUCTS table. Every product in the
table is guaranteed to have a unique combination of data values in these two columns.

The primary key has a different unique value for each row in a table, so no two
rows of a table with a primary key are exact duplicates of one another. A table where
every row is different from all other rows is called a relation in mathematical terms.
The name “relational database” comes from this term, because relations (tables with
distinct rows) are at the heart of a relational database.



Although primary keys are an essential part of the relational data model, early
relational database management systems (System/R, DB2, Oracle, and others) did not
provide explicit support for primary keys. Database designers usually ensured that all
of the tables in their databases had a primary key, but the DBMS itself did not provide
a way to identify the primary key of a table. DB2 Version 2, introduced in April 1988,
was the first of IBM’s commercial SQL products to support primary keys. The ANSI/
ISO standard was subsequently expanded to include a definition of primary key support,
and today, most relational database management systems provide it.

Relationships
One of the major differences between the relational model and earlier data models is
that explicit pointers, such as the parent/child relationships of a hierarchical database,
are banned from relational databases. Yet obviously, these relationships exist in a relational
database. For example, in the sample database, each salesperson is assigned to a particular
sales office, so there is an obvious relationship between the rows of the OFFICES table
and the rows of the SALESREPS table. Doesn’t the relational model “lose information”
by banning these relationships from the database?

As shown in Figure 4-9, the answer to the question is “no.” The figure shows a
close-up of a few rows of the OFFICES and SALESREPS tables. Note that the REP_
OFFICE column of the SALESREPS table contains the office number of the sales office
where each salesperson works. The domain of this column (the set of legal values it
may contain) is precisely the set of office numbers found in the OFFICE column of the
OFFICES table. In fact, you can find the sales office where Mary Jones works by finding
the value in Mary’s REP_OFFICE column (11) and finding the row of the OFFICES table
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Figure 4-8. A table with a composite primary key



that has a matching value in the OFFICE column (in the row for the New York office).
Similarly, to find all the salespeople who work in New York, you could note the
OFFICE value for the New York row (11) and then scan down the REP_OFFICE
column of the SALESREPS table looking for matching values (in the rows for Mary
Jones and Sam Clark).

The parent/child relationship between a sales office and the people who work there
isn’t lost by the relational model, it’s just not represented by an explicit pointer stored
in the database. Instead, the relationship is represented by common data values stored in
the two tables. All relationships in a relational database are represented this way. One
of the main goals of the SQL language is to let you retrieve related data from the database
by manipulating these relationships in a simple, straightforward way.

Foreign Keys
A column in one table whose value matches the primary key in some other table is called
a foreign key. In Figure 4-9, the REP_OFFICE column is a foreign key for the OFFICES
table. Although REP_OFFICE is a column in the SALESREPS table, the values that this
column contains are office numbers. They match values in the OFFICE column, which
is the primary key for the OFFICES table. Together, a primary key and a foreign key
create a parent/child relationship between the tables that contain them, just like the
parent/child relationships in a hierarchical database.
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Figure 4-9. A parent/child relationship in a relational database



Just like a combination of columns can serve as the primary key of a table, a foreign key
can also be a combination of columns. In fact, the foreign key will always be a compound
(multicolumn) key when it references a table with a compound primary key. Obviously,
the number of columns and the data types of the columns in the foreign key and the
primary key must be identical to one another.

A table can contain more than one foreign key if it is related to more than one other
table. Figure 4-10 shows the three foreign keys in the ORDERS table of the sample database:

� The CUST column is a foreign key for the CUSTOMERS table, relating each
order to the customer who placed it.

� The REP column is a foreign key for the SALESREPS table, relating each
order to the salesperson who took it.

� The MFR and PRODUCT columns together are a composite foreign key for
the PRODUCTS table, relating each order to the product being ordered.

The multiple parent/child relationships created by the three foreign keys in the
ORDERS table may seem familiar to you, and they should. They are precisely the same
relationships as those in the network database of Figure 4-4. As the example shows,
the relational data model has all of the power of the network model to express complex
relationships.

Foreign keys are a fundamental part of the relational model because they create
relationships among tables in the database. Unfortunately, like with primary keys, foreign
key support was missing from early relational database management systems. They
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Figure 4-10. Multiple parent/child relationships in a relational database
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were added to DB2 Version 2, have since been added to the ANSI/ISO standard, and
now appear in many commercial products.

Codd’s 12 Rules *
In his 1985 Computerworld article, Ted Codd presented 12 rules that a database must obey
if it is to be considered truly relational. Codd’s 12 rules, shown in the following list, have
since become a semiofficial definition of a relational database. The rules come out of Codd’s
theoretical work on the relational model and actually represent more of an ideal goal
than a definition of a relational database.

1. Information rule. All information in a relational database is represented
explicitly at the logical level and in exactly one way—by values in tables.

2. Guaranteed access rule. Each and every datum (atomic value) in a relational
database is guaranteed to be logically accessible by resorting to a combination
of table name, primary key value, and column name.

3. Systematic treatment of NULL values. NULL values (distinct from an empty
character string or a string of blank characters and distinct from zero or any
other number) are supported in a fully relational DBMS for representing
missing information and inapplicable information in a systematic way,
independent of the data type.

4. Dynamic online catalog based on the relational model. The database description
is represented at the logical level in the same way as ordinary data, so that
authorized users can apply the same relational language to its interrogation as
they apply to the regular data.

5. Comprehensive data sublanguage rule. A relational system may support
several languages and various modes of terminal use (for example, the fill-in-
the-blanks mode). However, there must be at least one language whose statements
are expressible, per some well-defined syntax, as character strings, and that is
comprehensive in supporting all of the following items:

� Data definition

� View definition

� Data manipulation (interactive and by program)

� Integrity constraints

� Authorization

� Transaction boundaries (begin, commit, and rollback)

6. View updating rule. All views that are theoretically updateable are also updateable
by the system.
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7. High-level insert, update, and delete. The capability of handling a base relation
or a derived relation as a single operand applies not only to the retrieval of data,
but also to the insertion, update, and deletion of data.

8. Physical data independence. Application programs and terminal activities
remain logically unimpaired whenever any changes are made in either storage
representations or access methods.

9. Logical data independence. Application programs and terminal activities remain
logically unimpaired when information-preserving changes of any kind that
theoretically permit unimpairment are made to the base tables.

10. Integrity independence. Integrity constraints specific to a particular relational
database must be definable in the relational data sublanguage and storable in
the catalog, not in the application programs.

11. Distribution independence. A relational DBMS has distribution independence.

12. Nonsubversion rule. If a relational system has a low-level (single record at a
time) language, that low level cannot be used to subvert or bypass the integrity
rules and constraints expressed in the higher-level relational language (multiple
records at a time).

During the early 1990s, it became popular practice to compile “scorecards”
for commercial DBMS products, showing how well they satisfy each of the rules.
Unfortunately, the rules are subjective, so the scorecards were usually full of footnotes
and qualifications, and they didn’t reveal a great deal about the products. Today, the
basis of competition for database vendors tends to revolve around performance, features,
the availability of development tools, the quality of vendor support, the availability of
application programs that support the particular database system, and other issues,
rather than conformance to Codd’s rules. Nonetheless, they are an important part of
the history of the relational model.

Rule 1 is basically the informal definition of a relational database presented at the
beginning of this section.

Rule 2 stresses the importance of primary keys for locating data in the database.
The table name locates the correct table, the column name finds the correct column,
and the primary key value finds the row containing an individual data item of interest.
Rule 3 requires support for missing data through NULL values, which are described in
Chapter 5.

Rule 4 requires that a relational database be self-describing. In other words, the
database must contain certain system tables whose columns describe the structure of
the database itself. These tables are described in Chapter 16.

Rule 5 mandates using a relational database language, such as SQL, although SQL
is not specifically required. The language must be able to support all the central functions
of a DBMS—creating a database, retrieving and entering data, implementing database
security, and so on.

Rule 6 deals with views, which are virtual tables used to give various users of a
database different views of its structure. It is one of the most challenging rules to

66 S Q L : T h e C o m p l e t e R e f e r e n c e



A
N

O
V
E
R

V
IE

W
O

F
S
Q

L

implement in practice, and no commercial product fully satisfies it today. Views and
the problems of updating them are described in Chapter 14.

Rule 7 stresses the set-oriented nature of a relational database. It requires that rows
be treated as sets in insert, delete, and update operations. The rule is designed to prohibit
implementations that support only row-at-a-time, navigational modification of
the database.

Rule 8 and Rule 9 insulate the user or application program from the low-level
implementation of the database. They specify that specific access or storage techniques
used by the DBMS, and even changes to the structure of the tables in the database, should
not affect the user’s ability to work with the data.

Rule 10 says that the database language should support integrity constraints that
restrict the data that can be entered into the database and the database modifications
that can be made. This is another rule that is not supported in most commercial DBMS
products.

Rule 11 says that the database language must be able to manipulate distributed data
located on other computer systems. Distributed data and the challenges of managing it are
described in Chapter 23.

Finally, Rule 12 prevents “other paths” into the database that might subvert its
relational structure and integrity.

Summary
SQL is based on the relational data model that organizes the data in a database as a
collection of tables:

� Each table has a table name that uniquely identifies it.

� Each table has one or more named columns, which are arranged in a specific,
left-to-right order.

� Each table has zero or more rows, each containing a single data value in each
column. The rows are unordered.

� All data values in a given column have the same data type, and are drawn from
a set of legal values called the domain of the column.

Tables are related to one another by the data they contain. The relational data model
uses primary keys and foreign keys to represent these relationships among tables:

� A primary key is a column or combination of columns in a table whose value(s)
uniquely identify each row of the table. A table has only one primary key.

� A foreign key is a column or combination of columns in a table whose value(s)
are a primary key value for some other table. A table can contain more than one
foreign key, linking it to one or more other tables.

� A primary key/foreign key combination creates a parent/child relationship
between the tables that contain them.
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Part II
Retrieving Data

Queries are the heart of the SQL language, and many people use SQL as a

database query tool. The next five chapters describe SQL queries in

depth. Chapter 5 describes the basic SQL language structures that you

use to form SQL statements. Chapter 6 discusses simple queries that

draw data from a single table of data. Chapter 7 expands the discussion

to multitable queries. Queries that summarize data are described in

Chapter 8. Finally, Chapter 9 explains the SQL subquery capability that is

used to handle complex queries.
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T
his chapter begins a detailed description of the features of SQL. It describes the
basic structure of a SQL statement and the basic elements of the language, such
as keywords, data types, and expressions. The way that SQL handles missing

data through NULL values is also described. Although these are basic features of SQL,
there are some subtle differences in the way they are implemented by various popular
SQL products, and in many cases, the SQL products provide significant extensions to
the capabilities specified in the ANSI/ISO SQL standard. These differences and
extensions are also described in this chapter.

Statements
The main body of the SQL language consists of about 40 statements. The most important
and frequently used statements are summarized in Table 5-1. Each statement requests a
specific action from the DBMS, such as creating a new table, retrieving data, or inserting
new data into the database. All SQL statements have the same basic form, illustrated in
Figure 5-1.

Every SQL statement begins with a verb, a keyword that describes what the statement
does. CREATE, INSERT, DELETE, and COMMIT are typical verbs. The statement continues
with one or more clauses. A clause may specify the data to be acted on by the statement
or provide more detail about what the statement is supposed to do. Every clause also
begins with a keyword, such as WHERE, FROM, INTO, and HAVING. Some clauses are
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Statement Description

Data Manipulation

SELECT Retrieves data from the database

INSERT Adds new rows of data to the database

DELETE Removes rows of data from the database

UPDATE Modifies existing database data

Data Definition

CREATE TABLE Adds a new table to the database

DROP TABLE Removes a table from the database

ALTER TABLE Changes the structure of an existing table

Table 5-1. Major SQL Statements
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Statement Description

CREATE VIEW Adds a new view to the database

DROP VIEW Removes a view from the database

CREATE INDEX Builds an index for a column

DROP INDEX Removes the index for a column

CREATE SCHEMA Adds a new schema to the database

DROP SCHEMA Removes a schema from the database

CREATE DOMAIN Adds a new data value domain

ALTER DOMAIN Changes a domain definition

DROP DOMAIN Removes a domain from the database

Access Control

GRANT Grants user access privileges

REVOKE Removes user access privileges

Transaction Control

COMMIT Ends the current transaction

ROLLBACK Aborts the current transaction

SET TRANSACTION Defines data access characteristics of the current
transaction

Programmatic SQL

DECLARE Defines a cursor for a query

EXPLAIN Describes the data access plan for a query

OPEN Opens a cursor to retrieve query results

FETCH Retrieves a row of query results

CLOSE Closes a cursor

PREPARE Prepares a SQL statement for dynamic execution

EXECUTE Executes a SQL statement dynamically

DESCRIBE Describes a prepared query

Table 5-1. Major SQL Statements (continued)
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optional; others are required. The specific structure and content vary from one clause
to another. Many clauses contain table or column names; some may contain additional
keywords, constants, or expressions.

The ANSI/ISO SQL standard specifies the SQL keywords that are used as verbs
and in statement clauses. According to the standard, these keywords cannot be used to
name database objects, such as tables, columns, and users. Many SQL implementations
relax this restriction, but it’s generally a good idea to avoid the keywords when you name
your tables and columns. Table 5-2 lists the keywords included in the ANSI/ISO SQL2
standard, which roughly tripled the number of keywords reserved by the earlier
SQL1 standard.

Figure 5-1. The structure of a SQL statement

ABSOLUTE CROSS GET NEXT SPACE

ACTION CURRENT GLOBAL NO SQL

ADD CURRENT_
DATE

GO NOT SQLCODE

ALL CURRENT_
TIME

GOTO NULL SQLERROR

ALLOCATE CURRENT_
TIMESTAMP

GRANT OCTET_
LENGTH

SQLSTATE

ALTER CURRENT_
USER

GROUP OF SUBSTRING

AND CURSOR HAVING ON SUM

Table 5-2. ANSI/ISO SQL2 Keywords
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ANY DATE HOUR ONLY SYSTEM_
USER

ARE DAY IDENTITY OPEN TABLE

AS DEALLOCATE IMMEDIATE OPTION TEMPORARY

ASC DEC IN OR THEN

ASSERTION DECIMAL INDICATOR ORDER TIME

AT DECLARE INITIALLY OUTER TIMESTAMP

AUTHORIZATION DEFAULT INNER OUTPUT TIMEZONE_
HOUR

AVG DEFERRABLE INPUT OVERLAPS TIMEZONE_
MINUTE

BEGIN DEFERRED INSENSITIVE PAD TO

BETWEEN DELETE INSERT PARTIAL TRAILING

BIT DESC INT POSITION TRANSACTION

BIT_
LENGTH

DESCRIBE INTEGER PRECISION TRANSLATE

BOTH DESCRIPTOR INTERSECT PREPARE TRANSLATION

BY DIAGNOSTICS INTERVAL PRESERVE TRIM

CASCADE DISCONNECT INTO PRIMARY TRUE

CASCADED DISTINCT IS PRIOR UNION

CASE DOMAIN ISOLATION PRIVILEGES UNIQUE

CAST DOUBLE JOIN PROCEDURE UNKNOWN

CATALOG DROP KEY PUBLIC UPDATE

CHAR ELSE LANGUAGE READ UPPER

CHARACTER END LAST REAL USAGE

CHAR_
LENGTH

END-
EXEC

LEADING REFERENCES USER

CHARACTER_
LENGTH

ESCAPE LEFT RELATIVE USING

CHECK EXCEPT LEVEL RESTRICT VALUE

Table 5-2. ANSI/ISO SQL2 Keywords (continued)
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The SQL2 standard also includes a list of potential keywords that are candidates for
future revisions of the standard. These keywords are listed in Table 5-3.

Throughout this book, the acceptable forms of a SQL statement are illustrated by a
syntax diagram, such as the one shown in Figure 5-2. A valid SQL statement or clause
is constructed by “following the line” through the syntax diagram to the dot that marks
the end of the diagram. Keywords in the syntax diagram and in the examples (such as
DELETE and FROM in Figure 5-2) are always shown in UPPERCASE, but almost all SQL
implementations accept both uppercase and lowercase keywords, and it’s often more
convenient to actually type them in lowercase.

Variable items in a SQL statement (such as the table name and search condition in
Figure 5-2) are shown in lowercase italics. It’s up to you to specify the appropriate item
each time the statement is used. Optional clauses and keywords, such as the WHERE

CLOSE EXCEPTION LIKE REVOKE VALUES

COALESCE EXEC LOCAL RIGHT VARCHAR

COLLATE EXECUTE LOWER ROLLBACK VARYING

COLLATION EXISTS MATCH ROWS VIEW

COLUMN EXTERNAL MAX SCHEMA WHEN

COMMIT EXTRACT MIN SCROLL WHENEVER

CONNECT FALSE MINUTE SECOND WHERE

CONNECTION FETCH MODULE SECTION WITH

CONSTRAINT FIRST MONTH SELECT WORK

CONSTRAINTS FLOAT NAMES SESSION WRITE

CONTINUE FOR NATIONAL SESSION_
USER

YEAR

CONVERT FOREIGN NATURAL SET ZONE

CORRESPONDING FOUND NCHAR SIZE

COUNT FROM NULLIF SMALLINT

CREATE FULL NUMERIC SOME

Table 5-2. ANSI/ISO SQL2 Keywords (continued)



C h a p t e r 5 : S Q L B a s i c s 77
R

E
T
R

IE
V
IN

G
D

A
T
A

clause in Figure 5-2, are indicated by alternate paths through the syntax diagram.
When a choice of optional keywords is offered, the default choice (that is, the behavior
of the statement if no keyword is specified) is UNDERLINED.

AFTER EQUALS OLD RETURN TEST

ALIAS GENERAL OPERATION RETURNS THERE

ASYNC IF OPERATORS ROLE TRIGGER

BEFORE IGNORE OTHERS ROUTINE TYPE

BOOLEAN LEAVE PARAMETERS ROW UNDER

BREADTH LESS PENDANT SAVEPOINT VARIABLE

COMPLETION LIMIT PREORDER SEARCH VIRTUAL

CALL LOOP PRIVATE SENSITIVE VISIBLE

CYCLE MODIFY PROTECTED SEQUENCE WAIT

DATA NEW RECURSIVE SIGNAL WHILE

DEPTH NONE REF SIMILAR WITHOUT

DICTIONARY OBJECT REFERENCING SQLEXCEPTION

EACH OFF REPLACE SQLWARNING

ELSEIF OID RESIGNAL STRUCTURE

Table 5-3. ANSI/ISO SQL2 Potential Keywords

Figure 5-2. A sample syntax diagram



Names
The objects in a SQL-based database are identified by assigning them unique names.
Names are used in SQL statements to identify the database object on which the statement
should act. The most fundamental named objects in a relational database are table names
(which identify tables), column names (which identify columns), and user names (which
identify users of the database); conventions for naming these objects were specified in the
original SQL1 standard. The ANSI/ISO SQL2 standard significantly expanded the list of
named entities, to include schemas (collections of tables), constraints (restrictions on the
contents of tables and their relationships), domains (sets of legal values that may be
assigned to a column), and several other types of objects. Many SQL implementations
support additional named objects, such as stored procedures, primary key/foreign key
relationships, data entry forms, and data replication schemes.

The original ANSI/ISO standard specified that SQL names must contain 1 to 18
characters, must begin with a letter, and may not contain any spaces or special
punctuation characters. The SQL2 standard increased the maximum to 128 characters.
In practice, the names supported by SQL-based DBMS products vary significantly. It’s
common to see tighter restrictions on names that are connected to other software
outside of the database (such as user names, which may correspond to login names
used by an operating system), and looser restrictions on names that are private to the
database. The various products also differ in the special characters they permit in table
names. For portability, it’s best to keep names relatively short and to avoid the use of
special characters.

Table Names
When you specify a table name in a SQL statement, SQL assumes that you are referring
to one of your own tables (that is, a table that you created). Usually, you will want to
choose table names that are short but descriptive. The table names in the sample database
(ORDERS, CUSTOMERS, OFFICES, SALESREPS) are good examples. In a personal or
departmental database, the choice of table names is usually up to the database developer
or designer.

In a larger, shared-use corporate database, there may be corporate standards for
naming tables, to insure that table names do not conflict. In addition, most DBMS brands
allow different users to create tables with the same name (that is, both Joe and Sam can
create a table named BIRTHDAYS). The DBMS uses the appropriate table, depending
on which user is requesting data. With the proper permission, you can also refer to
tables owned by other users, by using a qualified table name. A qualified table name
specifies both the name of the table’s owner and the name of the table, separated by a
period (.). For example, Joe could access the BIRTHDAYS table owned by Sam by using
the qualified table name:

SAM.BIRTHDAYS
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A qualified table name generally can be used in a SQL statement wherever a table
name can appear.

The ANSI/ISO SQL2 standard generalizes the notion of a qualified table name even
further. It allows you to create a named collection of tables, called a schema. You can refer
to a table in a specific schema using a qualified table name. For example, the BIRTHDAYS
table in the EMPLOYEEINFO schema would be referenced as:

EMPLOYEEINFO.BIRTHDAYS

Chapter 13 provides more information about schemas, users, and other aspects of
SQL database structure.

Column Names
When you specify a column name in a SQL statement, SQL can normally determine
from the context which column you intend. However, if the statement involves two
columns with the same name from two different tables, you must use a qualified column
name to unambiguously identify the column you intend. A qualified column name
specifies both the name of the table containing the column and the name of the column,
separated by a period (.). For example, the column named SALES in the SALESREPS
table has the qualified column name:

SALESREPS.SALES

If the column comes from a table owned by another user, a qualified table name
is used in the qualified column name. For example, the BIRTHDATE column in the
BIRTHDAYS table owned by the user SAM is specified by the fully qualified column name:

SAM.BIRTHDAYS.BIRTH_DATE

Qualified column names can generally be used in a SQL statement wherever a simple
(unqualified) column name can appear; exceptions are noted in the descriptions of the
individual SQL statements.

Data Types
The ANSI/ISO SQL standard specifies the various types of data that can be stored in a
SQL-based database and manipulated by the SQL language. The original SQL1 standard
specified only a minimal set of data types. The SQL2 standard expanded this list to
include variable-length character strings, date and time data, bit strings, and other
types. Today’s commercial DBMS products can process a rich variety of different kinds
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of data, and there is considerable diversity in the particular data types supported across
different DBMS brands. Typical data types include the following:

� Integers. Columns holding this type of data typically store counts, quantities,
ages, and so on. Integer columns are also frequently used to contain ID numbers,
such as customer, employee, and order numbers.

� Decimal numbers. Columns with this data type store numbers that have fractional
parts and must be calculated exactly, such as rates and percentages. They are
also frequently used to store money amounts.

� Floating point numbers. Columns with this data type are used to store scientific
numbers that can be calculated approximately, such as weights and distances.
Floating point numbers can represent a larger range of values than decimal
numbers but can produce round-off errors in computations.

� Fixed-length character strings. Columns holding this type of data typically
store names of people and companies, addresses, descriptions, and so on.

� Variable-length character strings. This data type allows a column to store
character strings that vary in length from row to row, up to some maximum
length. (The SQL1 standard permitted only fixed-length character strings,
which are easier for the DBMS to process but can waste considerable space.)

� Money amounts. Many SQL products support a MONEY or CURRENCY type,
which is usually stored as a decimal or floating point number. Having a distinct
money type allows the DBMS to properly format money amounts when they
are displayed.

� Dates and times. Support for date/time values is also common in SQL products,
although the details can vary considerably from one product to another. Various
combinations of dates, times, timestamps, time intervals, and date/time arithmetic
are generally supported. The SQL2 standard includes an elaborate specification
for DATE, TIME, TIMESTAMP, and INTERVAL data types, including support for
time zones and time precision (for example, tenths or hundredths of seconds).

� Boolean data. Some SQL products, such as Informix Dynamic Server, support
logical (TRUE or FALSE) values as an explicit type, and some permit logical
operations (comparison, AND/OR, and so on) on the stored data within SQL
statements.

� Long text. Several SQL-based databases support columns that store long text
strings (typically up to 32,000 or 65,000 characters, and in some cases even
larger). This allows the database to store entire documents, product descriptions,
technical papers, resumés, and similar unstructured text data. The DBMS
usually restricts the use of these columns in interactive queries and searches.

� Unstructured byte streams. Several DBMS products allow unstructured, variable-
length sequences of bytes to be stored and retrieved. Columns containing this data
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are used to store compressed video images, executable code, and other types of
unstructured data. SQL Server’s IMAGE data type, for example, can store a stream
of up to 2 billion bytes of data.

� Non-Roman characters. As databases grow to support global applications,
DBMS vendors have added support for fixed-length and variable-length strings
of 16-bit characters used to represent Kanji and other Asian and Arabic characters.
While most modern databases support storing and retrieving such characters
(often using the UNICODE convention for representing them), support for
searching and sorting on these GRAPHIC and VARGRAPHIC types varies widely.

Table 5-4 lists the data types specified in the ANSI/ISO SQL standard.
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Data Type Description

CHAR(len)
CHARACTER(len)

Fixed-length character strings

VARCHAR(len)
CHAR VARYING(len)
CHARACTER VARYING(len)

Variable-length character strings*

NCHAR(len)
NATIONAL CHAR(len)
NATIONAL CHARACTER(len)

Fixed-length national character strings*

NCHAR VARYING(len)
NATIONAL CHAR VARYING(len)
NATIONAL CHARACTER VARYING(len)

Variable-length national character strings*

INTEGER
INT

Integer numbers

SMALLINT Small integer numbers

BIT(len) Fixed-length bit strings*

BIT VARYING(len) Variable-length bit strings*

NUMERIC(precision, scale)
DECIMAL(precision, scale)
DEC(precision, scale)

Decimal numbers

FLOAT(precision) Floating point numbers

Table 5-4. ANSI/ISO SQL Data Types



82 S Q L : T h e C o m p l e t e R e f e r e n c e

The differences between the data types offered in various SQL implementations is
one of the practical barriers to the portability of SQL-based applications. These differences
have come about as a result of innovation as relational databases have evolved to include
a broader range of capabilities. This has been the typical pattern:

� A DBMS vendor adds a new data type that provides useful new capabilities for
a certain group of users.

� Other DBMS vendors add the same or similar data types, adding their own
innovations to differentiate their products from the others.

� Over several years, the popularity of the data type grows, and it becomes a part
of the “mainstream” set of data types supported by most SQL implementations.

� The standards bodies become involved to try to standardize the new data type
and eliminate arbitrary differences between the vendor implementations. The
more well-entrenched the data type has become, the more difficult the set of
compromises faced by the standards group. Usually, this results in an addition
to the standard that does not exactly match any of the current implementations.

� DBMS vendors slowly add support for the new standardized data type as an
option to their systems, but because they have a large installed base that is using
the older (now “proprietary”) version of the data type, they must maintain
support for this form of the data type as well.

� Over a very long period of time (typically several major releases of the DBMS
product), users migrate to the new, standardized form of the data type, and the
DBMS vendor can begin the process of obsoleting the proprietary version.

Data Type Description

REAL Low-precision floating point numbers

DOUBLE PRECISION High-precision floating point numbers

DATE Calendar dates*

TIME(precision) Clock times*

TIMESTAMP(precision) Dates and times*

INTERVAL Time intervals*

*new data type in SQL2

Table 5-4. ANSI/ISO SQL Data Types (continued)
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Date/time data provides an excellent example of this phenomenon and the data
type variations it creates. DB2 offered early date/time support, with three different
date/time data types:

� DATE. Stores a date like June 30, 1991

� TIME. Stores a time of day like 12:30 P.M.

� TIMESTAMP. A specific instant in history, with a precision down to the nanosecond

Specific dates and times can be specified as string constants, and date arithmetic is
supported. Here is an example of a valid query using DB2 dates, assuming that the
HIREDATE column contains DATE data:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= '05/30/1989' + 15 DAYS

SQL Server was introduced with a single date/time data type, called DATETIME,
which closely resembles the DB2 TIMESTAMP data type. If HIRE_DATE contained
DATETIME data, SQL Server could accept this version of the query (without the date
arithmetic):

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= '06/14/1989'

Since no specific time on June 14, 1989, is specified in the query, SQL Server defaults
to midnight on that date. The SQL Server query thus really means:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= '06/14/1989 12:00AM'

If a salesperson’s hire date were stored in the database as noon on June 14, 1989, the
salesperson would not be included in the SQL Server query results but would have
been included in the DB2 results (because only the date would be stored). SQL Server
also supports date arithmetic through a set of built-in functions. Thus, the DB2-style
query can also be specified in this way:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= DATEADD(DAY, 15, '05/30/1989')

which is considerably different from the DB2 syntax.
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Oracle also supports date/time data, with a single data type called DATE. Like SQL
Server’s DATETIME type, an Oracle DATE is, in fact, a timestamp. Also like SQL Server,
the time part of an Oracle DATE value defaults to midnight if no time is explicitly
specified. The default Oracle date format is different from the DB2 and SQL Server
formats, so the Oracle version of the query becomes:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= '14-JUN-89'

Oracle also supports limited date arithmetic, so the DB2-style query can also be
specified but without the DAYS keyword:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE >= '30-MAY-89' + 15

Finally, the ANSI/ISO SQL2 standard added support for date/time data with a set
of data types based on, but not identical to, the DB2 types. In addition to the DATE,
TIME, and TIMESTAMP data types, the standard specifies an INTERVAL data type,
which can be used to store a time interval (for example, a timespan measured in days,
or a duration measured in hours, minutes, and seconds). The standard also provides a
very elaborate and complex method for dealing with date/time arithmetic, specifying
the precision of intervals, adjusting for time zone differences, and so on.

As these examples illustrate, the subtle differences in data types among various SQL
products lead to some significant differences in SQL statement syntax. They can even
cause the same SQL query to produce slightly different results on different database
management systems. The widely praised portability of SQL is thus true but only at a
general level. An application can be moved from one SQL database to another, and it can
be highly portable if it uses only the most mainstream, basic SQL capabilities. However,
the subtle variations in SQL implementations mean that data types and SQL statements
must almost always be adjusted somewhat if they are to be moved across DBMS brands.
The more complex the application, the more likely it is to become dependent on DBMS-
specific features and nuances, and the less portable it will become.

Constants
In some SQL statements a numeric, character, or date data value must be expressed in text
form. For example, in this INSERT statement, which adds a salesperson to the database:
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INSERT INTO SALESREPS (EMPL_NUM, NAME, QUOTA, HIRE_DATE, SALES)

VALUES (115, 'Dennis Irving', 175000.00, '21-JUN-90', 0.00)

the value for each column in the newly inserted row is specified in the VALUES clause.
Constant data values are also used in expressions, such as in this SELECT statement:

SELECT CITY

FROM OFFICES

WHERE TARGET > (1.1 * SALES) + 10000.00

The ANSI/ISO SQL standard specifies the format of numeric and string constants,
or literals, which represent specific data values. These conventions are followed by most
SQL implementations.

Numeric Constants
Integer and decimal constants (also called exact numeric literals) are written as ordinary
decimal numbers in SQL statements, with an optional leading plus or minus sign.

21  -375  2000.00  +497500.8778

You must not put a comma between the digits of a numeric constant, and not all SQL
dialects allow the leading plus sign, so it’s best to avoid it. For money data, most
SQL implementations simply use integer or decimal constants, although some allow
the constant to be specified with a currency symbol:

$0.75  $5000.00  $-567.89

Floating point constants (also called approximate numeric literals) are specified using
the E notation commonly found in programming languages such as C and FORTRAN.
Here are some valid SQL floating point constants:

1.5E3  -3.14159E1  2.5E-7  0.783926E21

The E is read “times ten to the power of,” so the first constant becomes “1.5 times ten
to the third power,” or 1500.

String Constants
The ANSI/ISO standard specifies that SQL constants for character data be enclosed in
single quotes (‘. . .’), as in these examples:

'Jones, John J.'  'New York'  'Western'
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If a single quote is to be included in the constant text, it is written within the
constant as two consecutive single quote characters. Thus, this constant value:

'I can''t'

becomes the seven-character string "I can’t".
Some SQL implementations, such as SQL Server and Informix, accept string constants

enclosed in double quotes (“. . .”):

"Jones, John J."  "New York"  "Western"

Unfortunately, the double quotes can pose portability problems with other SQL
products. The SQL2 standard provides the additional capability to specify string
constants from a specific national character set (for example, French or German) or
from a user-defined character set. The user-defined character set capabilities have
typically not been implemented in mainstream SQL products.

Date and Time Constants
In SQL products that support date/time data, constant values for dates, times, and
time intervals are specified as string constants. The format of these constants varies
from one DBMS to the next. Even more variation is introduced by the differences in the
way dates and times are written in different countries.

DB2 supports several different international formats for date, time, and timestamp
constants, as shown in Table 5-5. The choice of format is made when the DBMS is installed.
DB2 also supports durations specified as special constants, as in this example:

HIRE_DATE + 30 DAYS

Format Name Date Format Date Example Time Format Time Example

American mm/dd/yyyy 5/19/1960 hh:mm
am/pm

2:18 PM

European dd.mm.yyyy 19.5.1960 hh.mm.ss 14.18.08

Japanese yyyy-mm-dd 1960-5-19 hh:mm:ss 14:18:08

ISO yyyy-mm-dd 1960-5-19 hh.mm.ss 14.18.08

Table 5-5. IBM SQL Date and Time Formats



Note that a duration can’t be stored in the database, however, because DB2 doesn’t
have an explicit DURATION data type.

SQL Server also supports date/time data and accepts a variety of different formats
for date and time constants. The DBMS automatically accepts all of the alternate formats,
and you can intermix them if you like. Here are some examples of legal SQL Server
date constants:

March 15, 1990  Mar 15 1990  3/15/1990  3-15-90  1990 MAR 15

and here are some legal time constants:

15:30:25  3:30:25 PM  3:30:25 pm  3 PM

Oracle dates and times are also written as string constants, using this format:

15-MAR-90

You can also use Oracle’s built-in TO_DATE() function to convert date constants
written in other formats, as in this example:

SELECT NAME, AGE

FROM SALESREPS

WHERE HIRE_DATE = TO_DATE('JUN 14 1989', 'MON DD YYYY')

The SQL2 standard specifies a format for date and time constants, based on the ISO
format in Table 5-5, except that time constants are written with colons instead of periods
separating the hours, minutes, and seconds.
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Format Name Date Format Date Example Time Format Time Example

TIMESTAMP
format

yyyy-mm-dd-
hh.mm.ss.nnn
nnn

TIMESTAMP
example

1960-05-19-14.
18.08.048632

Table 5-5. IBM SQL Date and Time Formats (continued)
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Symbolic Constants
In addition to user-supplied constants, the SQL language includes special symbolic
constants that return data values maintained by the DBMS itself. For example, in some
DBMS brands, the symbolic constant CURRENT_DATE yields the value of the current
date and can be used in queries such as the following, which lists the salespeople whose
hire date is still in the future:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE > CURRENT_DATE

The SQL1 standard specified only a single symbolic constant (the USER constant
described in Chapter 15), but most SQL products provide many more. Generally, a
symbolic constant can appear in a SQL statement anywhere that an ordinary constant
of the same data type could appear. The SQL2 standard adopted the most useful
symbolic constants from current SQL implementations and provides for CURRENT_
DATE, CURRENT_TIME, and CURRENT_TIMESTAMP (note the underscores) as well as
USER, SESSION_USER, and SYSTEM_USER.

Some SQL products, including SQL Server, provide access to system values through
built-in functions rather than symbolic constants. The SQL Server version of the preceding
query is:

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE HIRE_DATE > GETDATE()

Built-in functions are described later in this chapter, in the section “Built-In Functions.”

Expressions
Expressions are used in the SQL language to calculate values that are retrieved from a
database and to calculate values used in searching the database. For example, this query
calculates the sales of each office as a percentage of its target:

SELECT CITY, TARGET, SALES, (SALES/TARGET) * 100

FROM OFFICES

and this query lists the offices whose sales are more than $50,000 over target:



SELECT CITY

FROM OFFICES

WHERE SALES > TARGET + 50000.00

The ANSI/ISO SQL standard specifies four arithmetic operations that can be used
in expressions: addition (X + Y), subtraction (X – Y), multiplication (X * Y), and division
(X / Y). Parentheses can also be used to form more complicated expressions, like this one:

(SALES * 1.05) - (TARGET * .95)

Strictly speaking, the parentheses are not required in this query because the
ANSI/ISO standard specifies that multiplication and division have a higher precedence
than addition and subtraction. However, you should always use parentheses to make
your expressions unambiguous because different SQL dialects may use different rules.
The parentheses also increase the readability of the statement and make programmatic
SQL statements easier to maintain.

The ANSI/ISO standard also specifies automatic data type conversion from integers
to decimal numbers, and from decimal numbers to floating point numbers, as required.
You can thus mix these data types in a numeric expression. Many SQL implementations
support other operators and allow operations on character and date data. DB2, for
example, supports a string concatenation operator, written as two consecutive vertical
bar characters (||). If two columns named FIRST_NAME and LAST_NAME contain the
values "Jim" and "Jackson", then this DB2 expression:

('Mr./Mrs. ' || FIRST_NAME || ' ' || LAST_NAME)

produces the string "Mr./Mrs. Jim Jackson". As already mentioned, DB2 also supports
addition and subtraction of DATE, TIME, and TIMESTAMP data, for occasions when
those operations make sense. This capability has been included in the SQL2 standard.

Built-In Functions
Although the SQL1 standard doesn’t specify them, most SQL implementations include
a number of useful built-in functions. These facilities often provide data type conversion
facilities. For example, DB2’s built-in MONTH() and YEAR() functions take a DATE or
TIMESTAMP value as their input and return an integer that is the month or year portion
of the value. This query lists the name and month of hire for each salesperson in the
sample database:

SELECT NAME, MONTH(HIRE_DATE)

FROM SALESREPS
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and this one lists all salespeople hired in 1988:

SELECT NAME, MONTH(HIRE_DATE)

FROM SALESREPS

WHERE YEAR(HIRE_DATE) = 1988

Built-in functions are also often used for data reformatting. Oracle’s built-in TO_
CHAR() function, for example, takes a DATE data type and a format specification as its
arguments and returns a string containing a formatted version of the date. In the results
produced by this query:

SELECT NAME, TO_CHAR(HIRE_DATE,'DAY MONTH DD, YYYY')

FROM SALESREPS

the hire dates will all have the format “Wednesday June 14, 1989” because of the built-
in function.

In general, a built-in function can be specified in a SQL expression anywhere that a
constant of the same data type can be specified. The built-in functions supported by
popular SQL dialects are too numerous to list here. The IBM SQL dialects include
about two dozen built-in functions, Oracle supports a different set of about two dozen
built-in functions, and SQL Server has several dozen. The SQL2 standard incorporated
the most useful built-in functions from these implementations, in many cases with slightly
different syntax. These functions are summarized in Table 5-6.

Function Returns

BIT_LENGTH (string) The number of bits in a bit string

CAST (value AS data_type) The value, converted to the specified data type
(e.g., a date converted to a character string)

CHAR_LENGTH (string) The length of a character string

CONVERT (string USING conv) A string converted as specified by a named
conversion function

CURRENT_DATE The current date

CURRENT_TIME (precision) The current time, with the specified precision

Table 5-6. Built-In SQL2 Functions
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Missing Data (NULL Values)
Because a database is usually a model of a real-world situation, certain pieces of data
are inevitably missing, unknown, or don’t apply. In the sample database, for example,
the QUOTA column in the SALESREPS table contains the sales goal for each salesperson.
However, the newest salesperson has not yet been assigned a quota; this data is missing
for that row of the table. You might be tempted to put a zero in the column for this
salesperson, but that would not be an accurate reflection of the situation. The salesperson
does not have a zero quota; the quota is just “not yet known.”

Similarly, the MANAGER column in the SALESREPS table contains the employee
number of each salesperson’s manager. But Sam Clark, the Vice President of Sales, has no

Function Returns

CURRENT_TIMESTAMP (precision) The current date and time, with the specified
precision

EXTRACT (part FROM source) The specified part (DAY, HOUR, etc.) from a
DATETIME value

LOWER (string) A string converted to all lowercase letters

OCTET_LENGTH (string) The number of 8-bit bytes in a character string

POSITION (target IN source) The position where the target string appears
within the source string

SUBSTRING (source FROM n
FOR len)

A portion of the source string, beginning at
the n-th character, for a length of len

TRANSLATE (string USING trans) A string translated as specified by a named
translation function

TRIM (BOTH char FROM string) A string with both leading and trailing
occurrences of char trimmed off

TRIM (LEADING char FROM string) A string with any leading occurrences of char
trimmed off

TRIM (TRAILING char FROM
string)

A string with any trailing occurrences of char
trimmed off

UPPER (string) A string converted to all uppercase letters

Table 5-6. Built-In SQL2 Functions (continued)



manager in the sales organization. This column does not apply to Sam. Again, you might
think about entering a zero, or a 9999 in the column, but neither of these values would
really be the employee number of Sam’s boss. No data value is applicable to this row.

SQL supports missing, unknown, or inapplicable data explicitly, through the concept
of a null value. A null value is an indicator that tells SQL (and the user) that the data is
missing or not applicable. As a convenience, a missing piece of data is often said to have
the value NULL. But the NULL value is not a real data value like 0, 473.83, or “Sam Clark.”
Instead, it’s a signal, or a reminder, that the data value is missing or unknown. Figure 5-3
shows the contents of the SALESREPS table. Note that the QUOTA and REP_OFFICE
values for Tom Snyder’s row and the MANAGER value for Sam Clark’s row of the table all
contain NULL values.

In many situations, NULL values require special handling by the DBMS. For example,
if the user requests the sum of the QUOTA column, how should the DBMS handle the
missing data when computing the sum? The answer is given by a set of special rules that
govern NULL value handling in various SQL statements and clauses. Because of these
rules, some leading database authorities feel strongly that NULL values should not be
used. Others, including Dr. Codd, have advocated the use of multiple NULL values, with
distinct indicators for “unknown” and “not applicable” data.

Regardless of the academic debates, NULL values are a well-entrenched part of the
ANSI/ISO SQL standard and are supported in virtually all commercial SQL products.
They also play an important, practical role in production SQL databases. The special
rules that apply to NULL values (and the cases where NULL values are handled
inconsistently by various SQL products) are pointed out throughout this book.
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Figure 5-3. NULL values in the SALESREPS table



Summary
This chapter described the basic elements of the SQL language. The basic structure of
SQL can be summarized as follows:

� The SQL language that is in common use includes about 30 statements, each
consisting of a verb and one or more clauses. Each statement performs a single,
specific function.

� SQL-based databases can store various types of data, including text, integers,
decimal numbers, floating point numbers, and usually many more vendor-
specific data types.

� SQL statements can include expressions that combine column names, constants,
and built-in functions, using arithmetic and other vendor-specific operators.

� Variations in data types, constants, and built-in functions make portability of
SQL statements more difficult than it may seem at first.

� NULL values provide a systematic way of handling missing or inapplicable data
in the SQL language.
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I
n many ways, queries are the heart of the SQL language. The SELECT statement,
which is used to express SQL queries, is the most powerful and complex of the SQL
statements. Despite the many options afforded by the SELECT statement, it’s possible

to start simply and then work up to more complex queries. This chapter discusses the
simplest SQL queries—those that retrieve data from a single table in the database.

The SELECT Statement
The SELECT statement retrieves data from a database and returns it to you in the form
of query results. You have already seen many examples of the SELECT statement in the
quick tour presented in Chapter 2. Here are several more sample queries that retrieve
information about sales offices:

List the sales offices with their targets and actual sales.

SELECT CITY, TARGET, SALES

FROM OFFICES

CITY               TARGET        SALES

------------ ------------ ------------

Denver        $300,000.00  $186,042.00

New York      $575,000.00  $692,637.00

Chicago       $800,000.00  $735,042.00

Atlanta       $350,000.00  $367,911.00

Los Angeles   $725,000.00  $835,915.00

List the Eastern region sales offices with their targets and sales.

SELECT CITY, TARGET, SALES

FROM OFFICES

WHERE REGION = 'Eastern'

CITY               TARGET        SALES

------------ ------------ ------------

New York      $575,000.00  $692,637.00

Chicago       $800,000.00  $735,042.00

Atlanta       $350,000.00  $367,911.00

List Eastern region sales offices whose sales exceed their targets, sorted in alphabetical
order by city.
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SELECT CITY, TARGET, SALES

FROM OFFICES

WHERE REGION = 'Eastern'

AND SALES > TARGET

ORDER BY CITY

CITY               TARGET        SALES

------------ ------------ ------------

Atlanta       $350,000.00  $367,911.00

New York      $575,000.00  $692,637.00

What are the average target and sales for Eastern region offices?

SELECT AVG(TARGET), AVG(SALES)

FROM OFFICES

WHERE REGION = 'Eastern'

AVG(TARGET)   AVG(SALES)

------------ ------------

$575,000.00  $598,530.00

For simple queries, the English language request and the SQL SELECT statement
are very similar. When the requests become more complex, more features of the
SELECT statement must be used to specify the query precisely.

Figure 6-1 shows the full form of the SELECT statement, which consists of six
clauses. The SELECT and FROM clauses of the statement are required. The remaining
four clauses are optional. You include them in a SELECT statement only when you
want to use the functions they provide. The following list summarizes the function of
each clause:

� The SELECT clause lists the data items to be retrieved by the SELECT
statement. The items may be columns from the database, or columns to be
calculated by SQL as it performs the query. The SELECT clause is described
in the next section.

� The FROM clause lists the tables that contain the data to be retrieved by the
query. Queries that draw their data from a single table are described in this
chapter. More complex queries that combine data from two or more tables are
discussed in Chapter 7.

� The WHERE clause tells SQL to include only certain rows of data in the query
results. A search condition is used to specify the desired rows. The basic uses of
the WHERE clause are described in the “Row Selection (WHERE Clause)” section
later in this chapter. Those that involve subqueries are discussed in Chapter 9.
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� The GROUP BY clause specifies a summary query. Instead of producing one row
of query results for each row of data in the database, a summary query groups
together similar rows and then produces one summary row of query results for
each group. Summary queries are described in Chapter 8.

� The HAVING clause tells SQL to include only certain groups produced by the
GROUP BY clause in the query results. Like the WHERE clause, it uses a search
condition to specify the desired groups. The HAVING clause is described in
Chapter 8.

� The ORDER BY clause sorts the query results based on the data in one or more
columns. If it is omitted, the query results are not sorted. The ORDER BY clause
is described in the “Sorting Query Results (ORDER BY Clause)” section later in
this chapter.

98 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 6-1. SELECT statement syntax diagram



R
E
T
R

IE
V
IN

G
D

A
T
A

The SELECT Clause
The SELECT clause that begins each SELECT statement specifies the data items to be
retrieved by the query. The items are usually specified by a select list, a list of select items
separated by commas. Each select item in the list generates a single column of query
results, in left-to-right order. A select item can be one of the following:

� A column name, identifying a column from the table(s) named in the FROM
clause. When a column name appears as a select item, SQL simply takes the
value of that column from each row of the database table and places it in the
corresponding row of query results.

� A constant, specifying that the same constant value is to appear in every row
of the query results.

� A SQL expression, indicating that SQL must calculate the value to be placed
into the query results, in the style specified by the expression.

Each type of select item is described later in this chapter.

The FROM Clause
The FROM clause consists of the keyword FROM, followed by a list of table specifications
separated by commas. Each table specification identifies a table containing data to be
retrieved by the query. These tables are called the source tables of the query (and of the
SELECT statement) because they are the source of all of the data in the query results.
All of the queries in this chapter have a single source table, and every FROM clause
contains a single table name.

Query Results
The result of a SQL query is always a table of data, just like the tables in the database.
If you type a SELECT statement using interactive SQL, the DBMS displays the query
results in tabular form on your computer screen. If a program sends a query to the
DBMS using programmatic SQL, the table of query results is returned to the program.
In either case, the query results always have the same tabular, row/column format as
the actual tables in the database, as shown in Figure 6-2. Usually the query results will
be a table with several columns and several rows. For example, this query produces a
table of three columns (because it asks for three items of data) and ten rows (because
there are ten salespeople):

List the names, offices, and hire dates of all salespeople.

SELECT NAME, REP_OFFICE, HIRE_DATE

FROM SALESREPS
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NAME            REP_OFFICE HIRE_DATE

-------------- ----------- ----------

Bill Adams              13 12-FEB-88

Mary Jones              11 12-OCT-89

Sue Smith               21 10-DEC-86

Sam Clark               11 14-JUN-88

Bob Smith               12 19-MAY-87

Dan Roberts             12 20-OCT-86

Tom Snyder            NULL 13-JAN-90

Larry Fitch             21 12-OCT-89

Paul Cruz               12 01-MAR-87

Nancy Angelli           22 14-NOV-88

In contrast, the following query produces a single row because only one salesperson
has the requested employee number. Even though this single row of query results
looks less “tabular” than the multirow results, SQL still considers it to be a table of
three columns and one row.

100 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 6-2. The tabular structure of SQL query results



R
E
T
R

IE
V
IN

G
D

A
T
A

What are the name, quota, and sales of employee number 107?

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE EMPL_NUM = 107

NAME                  QUOTA        SALES

-------------- ------------ ------------

Nancy Angelli   $300,000.00  $186,042.00

In some cases the query results can be a single value, as in the following example:

What are the average sales of our salespeople?

SELECT AVG(SALES)

FROM SALESREPS

AVG(SALES)

------------

$289,353.20

These query results are still a table, although it’s a very small one consisting of one
column and one row.

Finally, it’s possible for a query to produce zero rows of query results, as in
this example:

List the name and hire date of anyone with sales over $500,000.

SELECT NAME, HIRE_DATE

FROM SALESREPS

WHERE SALES > 500000.00

NAME         HIRE_DATE

------------ ----------

Even in this situation, the query results are still a table. This one is an empty table
with two columns and zero rows.

Note that SQL’s support for missing data extends to query results as well. If a data
item in the database has a NULL value, the NULL value appears in the query results
when the data item is retrieved. For example, the SALESREPS table contains NULL values
in its QUOTA and MANAGER columns. The next query returns these NULL values in the
second and third columns of query results.
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List the salespeople, their quotas, and their managers.

SELECT NAME, QUOTA, MANAGER

FROM SALESREPS

NAME                  QUOTA  MANAGER

-------------- ------------ --------

Bill Adams      $350,000.00      104

Mary Jones      $300,000.00      106

Sue Smith       $350,000.00      108

Sam Clark       $275,000.00     NULL

Bob Smith       $200,000.00      106

Dan Roberts     $300,000.00      104

Tom Snyder             NULL      101

Larry Fitch     $350,000.00      106

Paul Cruz       $275,000.00      104

Nancy Angelli   $300,000.00      108

The fact that a SQL query always produces a table of data is very important. It
means that the query results can be stored back into the database as a table. It means
that the results of two similar queries can be combined to form a larger table of query
results. Finally, it means that the query results can themselves be the target of further
queries. A relational database’s tabular structure thus has a very synergistic relationship
with the relational query facilities of SQL. Tables can be queried, and queries
produce tables.

Simple Queries
The simplest SQL queries request columns of data from a single table in the database.
For example, this query requests three columns from the OFFICES table:

List the location, region, and sales of each sales office.

SELECT CITY, REGION, SALES

FROM OFFICES

CITY         REGION          SALES

------------ -------- ------------

Denver       Western   $186,042.00

New York     Eastern   $692,637.00

Chicago      Eastern   $735,042.00

Atlanta      Eastern   $367,911.00

Los Angeles  Western   $835,915.00
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The SELECT statement for simple queries like this one includes only the two
required clauses. The SELECT clause names the requested columns; the FROM clause
names the table that contains them.

Conceptually, SQL processes the query by going through the table named in the
FROM clause, one row at a time, as shown in Figure 6-3. For each row, SQL takes the
values of the columns requested in the select list and produces a single row of query
results. The query results thus contain one row of data for each row in the table.

Calculated Columns
In addition to columns whose values come directly from the database, a SQL query can
include calculated columns whose values are calculated from the stored data values. To
request a calculated column, you specify a SQL expression in the select list. As discussed
in Chapter 5, SQL expressions can involve addition, subtraction, multiplication, and
division. You can also use parentheses to build more complex expressions. Of course
the columns referenced in an arithmetic expression must have a numeric type. If you
try to add, subtract, multiply, or divide columns containing text data, SQL will report
an error.

This query shows a simple calculated column.
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List the city, region, and amount over/under target for each office.

SELECT CITY, REGION, (SALES - TARGET)

FROM OFFICES

CITY         REGION    (SALES-TARGET)

------------ -------- ---------------

Denver       Western     -$113,958.00

New York     Eastern      $117,637.00

Chicago      Eastern      -$64,958.00

Atlanta      Eastern       $17,911.00

Los Angeles  Western      $110,915.00

To process the query, SQL goes through the offices, generating one row of query
results for each row of the OFFICES table, as shown in Figure 6-4. The first two
columns of query results come directly from the OFFICES table. The third column of
query results is calculated, row by row, using the data values from the current row of
the OFFICES table.

Here are other examples of queries that use calculated columns:

104 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 6-4. Query processing with a calculated column



R
E
T
R

IE
V
IN

G
D

A
T
A

Show the value of the inventory for each product.

SELECT MFR_ID, PRODUCT_ID, DESCRIPTION, (QTY_ON_HAND * PRICE)

FROM PRODUCTS

MFR_ID  PRODUCT_ID  DESCRIPTION      (QTY_ON_HAND*PRICE)

------- ----------- --------------- --------------------

REI     2A45C       Ratchet Link              $16,590.00

ACI     4100Y       Widget Remover            $68,750.00

QSA     XK47        Reducer                   $13,490.00

BIC     41672       Plate                          $0.00

IMM     779C        900-lb Brace              $16,875.00

ACI     41003       Size 3 Widget             $22,149.00

ACI     41004       Size 4 Widget             $16,263.00

BIC     41003       Handle                     $1,956.00

Show me the result if I raised each salesperson’s quota by 3 percent of their year-to-date sales.

SELECT NAME, QUOTA, (QUOTA + (.03*SALES))

FROM SALESREPS

NAME                  QUOTA  (QUOTA+(.03*SALES))

-------------- ------------ --------------------

Bill Adams      $350,000.00          $361,037.33

Mary Jones      $300,000.00          $311,781.75

Sue Smith       $350,000.00          $364,221.50

Sam Clark       $275,000.00          $283,997.36

Bob Smith       $200,000.00          $204,277.82

Dan Roberts     $300,000.00          $309,170.19

Tom Snyder             NULL                 NULL

Larry Fitch     $350,000.00          $360,855.95

Paul Cruz       $275,000.00          $283,603.25

Nancy Angelli   $300,000.00          $305,581.26

As mentioned in Chapter 5, many SQL products provide additional arithmetic
operations, character string operations, and built-in functions that can be used in SQL
expressions. These can appear in select list expressions, as in the next DB2 example.
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List the name, month, and year of hire for each salesperson.

SELECT NAME, MONTH(HIRE_DATE), YEAR(HIRE_DATE)

FROM SALESREPS

SQL constants can also be used by themselves as items in a select list. This can be useful
for producing query results that are easier to read and interpret, as in the next example.

List the sales for each city.

SELECT CITY, 'has sales of', SALES

FROM OFFICES

CITY         HAS SALES OF         SALES

------------ ------------- ------------

Denver       has sales of   $186,042.00

New York     has sales of   $692,637.00

Chicago      has sales of   $735,042.00

Atlanta      has sales of   $367,911.00

Los Angeles  has sales of   $835,915.00

The query results appear to consist of a separate “sentence” for each office, but
they’re really a table of three columns. The first and third columns contain values from
the OFFICES table. The second column always contains the same 12-character text
string. This distinction is subtle when the query results are displayed on a screen, but it
is crucial in programmatic SQL, when the results are being retrieved into a program
and used for calculations.

Selecting All Columns (SELECT *)
Sometimes it’s convenient to display the contents of all the columns of a table. This can
be particularly useful when you first encounter a new database and want to get a quick
understanding of its structure and the data it contains. As a convenience, SQL lets you
use an asterisk (*) in place of the select list as an abbreviation for “all columns”:

Show me all the data in the OFFICES table.

SELECT *

FROM OFFICES

OFFICE CITY         REGION    MGR       TARGET        SALES

------- ------------ -------- ---- ------------ ------------

22 Denver       Western   108  $300,000.00  $186,042.00

11 New York     Eastern   106  $575,000.00  $692,637.00
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12 Chicago      Eastern   104  $800,000.00  $735,042.00

13 Atlanta      Eastern   105  $350,000.00  $367,911.00

21 Los Angeles  Western   108  $725,000.00  $835,915.00

The query results contain all six columns of the OFFICES table, in the same left-to-right
order as in the table itself.

The ANSI/ISO SQL standard specifies that a SELECT statement can have either an
all-column selection or a select list, but not both, as shown in Figure 6-1. However,
many SQL implementations treat the asterisk (*) as just another element of the select
list. Thus the query:

SELECT *, (SALES - TARGET)

FROM OFFICES

is legal in most commercial SQL dialects (for example, in DB2, Oracle, and SQL Server),
but it is not permitted by the ANSI/ISO standard.

The all-columns selection is most appropriate when you are using interactive SQL
casually. It should be avoided in programmatic SQL, because changes in the database
structure can cause a program to fail. For example, suppose the OFFICES table was
dropped from the database and then re-created with its columns rearranged and a new
seventh column added. SQL automatically takes care of the database-related details of
such changes, but it cannot modify your application program for you. If your program
expects a SELECT * FROM OFFICES query to return six columns of query results with
certain data types, it will almost certainly stop working when the columns are rearranged
and a new one is added.

These difficulties can be avoided if you write the program to request the columns it
needs by name. For example, the following query produces the same results as SELECT
* FROM OFFICES. It is also immune to changes in the database structure, as long as the
named columns continue to exist in the OFFICES table:

SELECT OFFICE, CITY, REGION, MGR, TARGET, SALES

FROM OFFICES

Duplicate Rows (DISTINCT)
If a query includes the primary key of a table in its select list, then every row of query
results will be unique (because the primary key has a different value in each row). If
the primary key is not included in the query results, duplicate rows can occur. For
example, suppose you made this request:

C h a p t e r 6 : S i m p l e Q u e r i e s 107



List the employee numbers of all sales office managers.

SELECT MGR

FROM OFFICES

MGR

----

108

106

104

105

108

The query results have five rows (one for each office), but two of them are exact
duplicates of one another. Why? Because Larry Fitch manages both the Los Angeles
and Denver offices, and his employee number (108) appears in both rows of the
OFFICES table. These query results are probably not exactly what you had in mind.
If there are four different managers, you might have expected only four employee
numbers in the query results.

You can eliminate duplicate rows of query results by inserting the keyword
DISTINCT in the SELECT statement just before the select list. Here is a version of the
previous query that produces the results you want:

List the employee numbers of all sales office managers.

SELECT DISTINCT MGR

FROM OFFICES

MGR

----

104

105

106

108

Conceptually, SQL carries out this query by first generating a full set of query
results (five rows) and then eliminating rows that are exact duplicates of one another to
form the final query results. The DISTINCT keyword can be specified regardless of the
contents of the SELECT list (with certain restrictions for summary queries, as described
in Chapter 8).

If the DISTINCT keyword is omitted, SQL does not eliminate duplicate rows. You
can also specify the keyword ALL to explicitly indicate that duplicate rows are to be
retained, but it is unnecessary since this is the default behavior.
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Row Selection (WHERE Clause)
SQL queries that retrieve all rows of a table are useful for database browsing and
reports, but for little else. Usually you’ll want to select only some of the rows in a table
and include only these rows in the query results. The WHERE clause is used to specify
the rows you want to retrieve. Here are some examples of simple queries that use the
WHERE clause:

Show me the offices where sales exceed target.

SELECT CITY, SALES, TARGET

FROM OFFICES

WHERE SALES > TARGET

CITY                SALES       TARGET

------------ ------------ ------------

New York      $692,637.00  $575,000.00

Atlanta       $367,911.00  $350,000.00

Los Angeles   $835,915.00  $725,000.00

Show me the name, sales, and quota of employee number 105.

SELECT NAME, SALES, QUOTA

FROM SALESREPS

WHERE EMPL_NUM = 105

NAME               SALES        QUOTA

----------- ------------ ------------

Bill Adams   $367,911.00  $350,000.00

Show me the employees managed by Bob Smith (employee 104).

SELECT NAME, SALES

FROM SALESREPS

WHERE MANAGER = 104

NAME                SALES

------------ ------------

Bill Adams    $367,911.00

Dan Roberts   $305,673.00

Paul Cruz     $286,775.00
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The WHERE clause consists of the keyword WHERE followed by a search condition that
specifies the rows to be retrieved. In the previous query, for example, the search condition
is MANAGER = 104. Figure 6-5 shows how the WHERE clause works. Conceptually, SQL goes
through each row of the SALESREPS table, one by one, and applies the search condition to
the row. When a column name appears in the search condition (such as the MANAGER
column in this example), SQL uses the value of the column in the current row. For each
row, the search condition can produce one of three results:

� If the search condition is TRUE, the row is included in the query results. For
example, the row for Bill Adams has the correct MANAGER value and is included.

� If the search condition is FALSE, the row is excluded from the query results. For
example, the row for Sue Smith has the wrong MANAGER value and is excluded.

� If the search condition has a NULL (unknown) value, the row is excluded from
the query results. For example, the row for Sam Clark has a NULL value for the
MANAGER column and is excluded.

Figure 6-6 shows another way to think about the role of the search condition in the
WHERE clause. Basically, the search condition acts as a filter for rows of the table. Rows
that satisfy the search condition pass through the filter and become part of the query
results. Rows that do not satisfy the search condition are trapped by the filter and
excluded from the query results.

Search Conditions
SQL offers a rich set of search conditions that allow you to specify many different kinds
of queries efficiently and naturally. Five basic search conditions (called predicates in the
ANSI/ISO standard) are summarized here and are described in the sections that follow:
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� Comparison test. Compares the value of one expression to the value of another
expression. Use this test to select offices in the Eastern region, or salespeople
whose sales are above their quotas.

� Range test. Tests whether the value of an expression falls within a specified
range of values. Use this test to find salespeople whose sales are between
$100,000 and $500,000.

� Set membership test. Checks whether the value of an expression matches one
of a set of values. Use this test to select offices located in New York, Chicago, or
Los Angeles.

� Pattern matching test. Checks whether the value of a column containing string
data matches a specified pattern. Use this test to select customers whose names
start with the letter E.

� Null value test. Checks whether a column has a NULL (unknown) value. Use
this test to find the salespeople who have not yet been assigned to a manager.

The Comparison Test (=, <>, <, <=, >, >=)
The most common search condition used in a SQL query is a comparison test. In a
comparison test, SQL computes and compares the values of two SQL expressions for
each row of data. The expressions can be as simple as a column name or a constant, or
they can be more complex arithmetic expressions. SQL offers six different ways of
comparing the two expressions, as shown in Figure 6-7.

Next are some examples of typical comparison tests.
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Find salespeople hired before 1988.

SELECT NAME

FROM SALESREPS

WHERE HIRE_DATE < '01-JAN-88'

NAME

------------

Sue Smith

Bob Smith

Dan Roberts

Paul Cruz

List the offices whose sales fall below 80 percent of target.

SELECT CITY, SALES, TARGET

FROM OFFICES

WHERE SALES < (.8 * TARGET)

CITY           SALES       TARGET

------- ------------ ------------

Denver   $186,042.00  $300,000.00

List the offices not managed by employee number 108.

SELECT CITY, MGR

FROM OFFICES

WHERE MGR <> 108
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CITY       MGR

--------- ----

New York   106

Chicago    104

Atlanta    105

As shown in Figure 6-7, the inequality comparison test is written as “A < > B”
according to the ANSI/ISO SQL specification. Several SQL implementations use alternate
notations, such as “A != B” (used by SQL Server) and “AØ=B” (used by DB2 and SQL/DS).
In some cases, these are alternative forms; in others, they are the only acceptable form of the
inequality test.

When SQL compares the values of the two expressions in the comparison test, three
results can occur:

� If the comparison is true, the test yields a TRUE result.

� If the comparison is false, the test yields a FALSE result.

� If either of the two expressions produces a NULL value, the comparison yields
a NULL result.

Single-Row Retrieval
The most common comparison test is one that checks whether a column’s value is
equal to some constant. When the column is a primary key, the test isolates a single
row of the table, producing a single row of query results, as in this example:

Retrieve the name and credit limit of customer number 2107.

SELECT COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE CUST_NUM = 2107

COMPANY             CREDIT_LIMIT

------------------ -------------

Ace International     $35,000.00

This type of query is the foundation of forms-based database retrieval programs.
The user enters a customer number into the form, and the program uses the number to
construct and execute a query. It then displays the retrieved data in the form.

Note that the SQL statements for retrieving a specific customer by number, as in
this example, and retrieving all customers with a certain characteristic (such as those
with credit limits over $25,000) both have exactly the same form. These two types of
queries (retrieval by primary key and retrieval based on a search of the data) would be
very different operations in a nonrelational database. This uniformity of approach makes
SQL much simpler to learn and use than earlier query languages.
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NULL Value Considerations
The behavior of NULL values in comparison tests can reveal some “obviously true”
notions about SQL queries to be, in fact, not necessarily true. For example, it would seem
that the results of these two queries would include every row of the SALESREPS table:

List salespeople who are over quota.

SELECT NAME

FROM SALESREPS

WHERE SALES > QUOTA

NAME

------------

Bill Adams

Mary Jones

Sue Smith

Sam Clark

Dan Roberts

Larry Fitch

Paul Cruz

List salespeople who are under or at quota.

SELECT NAME

FROM SALESREPS

WHERE SALES < = QUOTA

NAME

--------------

Bob Smith

Nancy Angelli

However, the queries produce seven and two rows, respectively, for a total of nine
rows, while there are ten rows in the SALESREPS table. Tom Snyder’s row has a NULL
value in the QUOTA column because he has not yet been assigned a quota. This row is
not listed by either query; it “vanishes” in the comparison test.

As this example shows, you need to think about NULL value handling when you
specify a search condition. In SQL’s three-valued logic, a search condition can yield a
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TRUE, FALSE, or NULL result. Only rows where the search condition yields a TRUE
result are included in the query results.

The Range Test (BETWEEN)
SQL provides a different form of search condition with the range test (BETWEEN)
shown in Figure 6-8. The range test checks whether a data value lies between two
specified values. It involves three SQL expressions. The first expression defines the
value to be tested; the second and third expressions define the low and high ends of
the range to be checked. The data types of the three expressions must be comparable.

This example shows a typical range test:

Find orders placed in the last quarter of 1989.

SELECT ORDER_NUM, ORDER_DATE, MFR, PRODUCT, AMOUNT

FROM ORDERS

WHERE ORDER_DATE BETWEEN '01-OCT-89' AND '31-DEC-89'

ORDER_NUM ORDER_DATE  MFR  PRODUCT       AMOUNT

---------- ----------- ---- -------- -----------

112961 17-DEC-89   REI  2A44L     $31,500.00

112968 12-OCT-89   ACI  41004      $3,978.00

112963 17-DEC-89   ACI  41004      $3,276.00

112983 27-DEC-89   ACI  41004        $702.00

112979 12-OCT-89   ACI  4100Z     $15,000.00

112992 04-NOV-89   ACI  41002        $760.00

112975 12-OCT-89   REI  2A44G      $2,100.00

112987 31-DEC-89   ACI  4100Y     $27,500.00
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The BETWEEN test includes the endpoints of the range, so orders placed on October 1
or December 31 are included in the query results. Here is another example of a range test:

Find the orders that fall into various amount ranges.

SELECT ORDER_NUM, AMOUNT

FROM ORDERS

WHERE AMOUNT BETWEEN 20000.00 AND 29999.99

ORDER_NUM      AMOUNT

---------- -----------

113036  $22,500.00

112987  $27,500.00

113042  $22,500.00

SELECT ORDER_NUM, AMOUNT

FROM ORDERS

WHERE AMOUNT BETWEEN 30000.00 AND 39999.99

ORDER_NUM      AMOUNT

---------- -----------

112961  $31,500.00

113069  $31,350.00

SELECT ORDER_NUM, AMOUNT

FROM ORDERS

WHERE AMOUNT BETWEEN 40000.00 AND 49999.99

ORDER_NUM      AMOUNT

---------- -----------

113045  $45,000.00

The negated version of the range test (NOT BETWEEN) checks for values that fall
outside the range, as in this example:

List salespeople whose sales are not between 80 percent and 120 percent of quota.

SELECT NAME, SALES, QUOTA

FROM SALESREPS

WHERE SALES NOT BETWEEN (.8 * QUOTA) AND (1.2 * QUOTA)
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NAME                  SALES        QUOTA

-------------- ------------ ------------

Mary Jones      $392,725.00  $300,000.00

Sue Smith       $474,050.00  $350,000.00

Bob Smith       $142,594.00  $200,000.00

Nancy Angelli   $186,042.00  $300,000.00

The test expression specified in the BETWEEN test can be any valid SQL expression,
but in practice, it’s usually just a column name, as in the previous examples.

The ANSI/ISO standard defines relatively complex rules for the handling of NULL
values in the BETWEEN test:

� If the test expression produces a NULL value, or if both expressions defining the
range produce NULL values, then the BETWEEN test returns a NULL result.

� If the expression defining the lower end of the range produces a NULL value,
then the BETWEEN test returns FALSE if the test value is greater than the upper
bound, and NULL otherwise.

� If the expression defining the upper end of the range produces a NULL value,
then the BETWEEN test returns FALSE if the test value is less than the lower
bound, and NULL otherwise.

Before relying on this behavior, it’s a good idea to experiment with your DBMS.
It’s worth noting that the BETWEEN test doesn’t really add to the expressive power

of SQL, because it can be expressed as two comparison tests. The range test:

A BETWEEN B AND C

is completely equivalent to:

(A >= B) AND (A < = C)

However, the BETWEEN test is a simpler way to express a search condition when
you’re thinking of it in terms of a range of values.

C h a p t e r 6 : S i m p l e Q u e r i e s 117



The Set Membership Test (IN)
Another common search condition is the set membership test (IN), shown in Figure 6-9.
It tests whether a data value matches one of a list of target values. Here are several queries
that use the set membership test:

List the salespeople who work in New York, Atlanta, or Denver.

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE REP_OFFICE IN (11, 13, 22)

NAME                  QUOTA        SALES

-------------- ------------ ------------

Bill Adams      $350,000.00  $367,911.00

Mary Jones      $300,000.00  $392,725.00

Sam Clark       $275,000.00  $299,912.00

Nancy Angelli   $300,000.00  $186,042.00

Find all orders placed on a Thursday in January 1990.

SELECT ORDER_NUM, ORDER_DATE, AMOUNT

FROM ORDERS

WHERE ORDER_DATE IN ('04-JAN-90', '11-JAN-90', '18-JAN-90',

'25-JAN-90')

ORDER_NUM ORDER_DATE      AMOUNT

---------- ----------- ----------

113012 11-JAN-90    $3,745.00

113003 25-JAN-90    $5,625.00

Find all orders placed with four specific salespeople.

SELECT ORDER_NUM, REP, AMOUNT

FROM ORDERS

WHERE REP IN (107, 109, 101, 103)

ORDER_NUM  REP      AMOUNT

---------- ---- -----------

112968  101   $3,978.00

118 S Q L : T h e C o m p l e t e R e f e r e n c e



R
E
T
R

IE
V
IN

G
D

A
T
A

113058  109   $1,480.00

112997  107     $652.00

113062  107   $2,430.00

113069  107  $31,350.00

112975  103   $2,100.00

113055  101     $150.00

113003  109   $5,625.00

113057  103     $600.00

113042  101  $22,500.00

You can check whether the data value does not match any of the target values by
using the NOT IN form of the set membership test. The test expression in an IN test
can be any SQL expression, but it’s usually just a column name, as in the preceding
examples. If the test expression produces a NULL value, the IN test returns NULL. All of
the items in the list of target values must have the same data type, and that type must
be comparable to the data type of the test expression.

Like the BETWEEN test, the IN test doesn’t add to the expressive power of SQL,
because the search condition:

X IN (A, B, C)

is completely equivalent to:

(X = A) OR (X = B) OR (X = C)

However, the IN test offers a much more efficient way of expressing the search
condition, especially if the set contains more than a few values. The ANSI/ISO SQL
standard doesn’t specify a maximum limit to the number of items that can appear in
the value list, and most commercial implementations do not state an explicit upper
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Figure 6-9. Set membership test (IN) syntax diagram



limit either. For portability reasons, it’s generally a good idea to avoid lists with only a
single item, such as this one:

CITY IN ('New York')

and replace them with a simple comparison test:

CITY = 'New York'

The Pattern Matching Test (LIKE)
You can use a simple comparison test to retrieve rows where the contents of a text column
match some particular text. For example, this query retrieves a row of the CUSTOMERS table
by name:

Show the credit limit for Smithson Corp.

SELECT COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE COMPANY = 'Smithson Corp.'

However, you might easily forget whether the company’s name was “Smith,”
“Smithson,” or “Smithsonian.” You can use SQL’s pattern matching test to retrieve the
data based on a partial match of the customer’s name.

The pattern matching test (LIKE), shown in Figure 6-10, checks to see whether the data
value in a column matches a specified pattern. The pattern is a string that may include one
or more wildcard characters. These characters are interpreted in a special way.

Wildcard Characters
The percent sign (%) wildcard character matches any sequence of zero or more
characters. Here’s a modified version of the previous query that uses the percent sign
for pattern matching:

SELECT COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE COMPANY LIKE 'Smith% Corp.'
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The LIKE keyword tells SQL to compare the NAME column to the pattern “Smith%
Corp.” Any of the following names would match the pattern:

Smith Corp.   Smithson Corp.   Smithsen Corp.  Smithsonian Corp.

but these names would not:

SmithCorp    Smithson Inc.

The underscore (_) wildcard character matches any single character. If you are sure
that the company’s name is either “Smithson” or “Smithsen,” for example, you can use
this query:

SELECT COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE COMPANY LIKE 'Smiths_n Corp.'

In this case, any of these names will match the pattern:

Smithson Corp.   Smithsen Corp.   Smithsun Corp.

but these names will not:

Smithsoon Corp.   Smithsn Corp.

Wildcard characters can appear anywhere in the pattern string, and several wildcard
characters can be within a single string. This query allows either the “Smithson” or
“Smithsen” spelling and will also accept “Corp.,” “Inc.,” or any other ending on the
company name:

SELECT COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE COMPANY LIKE 'Smiths_n %'

You can locate strings that do not match a pattern by using the NOT LIKE form of
the pattern matching test. The LIKE test must be applied to a column with a string data
type. If the data value in the column is NULL, the LIKE test returns a NULL result.

If you have used computers through a command-line interface (such as the UNIX
shell), you’ve probably seen string pattern matching before. Frequently, the asterisk (*)
is used instead of SQL’s percent sign (%), and the question mark (?) is used instead of

C h a p t e r 6 : S i m p l e Q u e r i e s 121



SQL’s underscore (_), but the pattern matching capabilities themselves are similar in
most situations where a computer application offers the capability to match selected
parts of a word or text.

Escape Characters *
One of the problems with string pattern matching is how to match the wildcard characters
themselves as literal characters. To test for the presence of a percent sign character in a
column of text data, for example, you can’t simply include the percent sign in the
pattern because SQL will treat it as a wildcard. With some popular SQL products, you
cannot literally match the two wildcard characters. This usually doesn’t pose serious
problems, because the wildcard characters don’t frequently appear in names, product
numbers, and other text data of the sort that is usually stored in a database.

The ANSI/ISO SQL standard does specify a way to literally match wildcard
characters, using a special escape character. When the escape character appears in the
pattern, the character immediately following it is treated as a literal character rather
than as a wildcard character. (The latter character is said to be escaped.) The escaped
character can be either of the two wildcard characters, or the escape character itself,
which has now taken on a special meaning within the pattern.

The escape character is specified as a one-character constant string in the ESCAPE
clause of the search condition, as shown in Figure 6-10. Here is an example using a
dollar sign ($) as the escape character:

Find products whose product IDs start with the four letters "A%BC".

SELECT ORDER_NUM, PRODUCT

FROM ORDERS

WHERE PRODUCT LIKE 'A$%BC%' ESCAPE '$'

The first percent sign in the pattern, which follows an escape character, is treated as
a literal percent sign; the second functions as a wildcard.

The use of escape characters is very common in pattern matching applications,
which is why the ANSI/ISO standard specified it. However, it was not a part of the
early SQL implementations and has been slowly adopted. To insure portability, the
ESCAPE clause should be avoided.

The Null Value Test (IS NULL)
NULL values create a three-valued logic for SQL search conditions. For any given row,
the result of a search condition may be TRUE or FALSE, or it may be NULL because one
of the columns used in evaluating the search condition contains a NULL value. Sometimes
it’s useful to check explicitly for NULL values in a search condition and handle them
directly. SQL provides a special NULL value test (IS NULL), shown in Figure 6-11, to
handle this task.
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This query uses the NULL value test to find the salesperson in the sample database
who has not yet been assigned to an office:

Find the salesperson not yet assigned to an office.

SELECT NAME

FROM SALESREPS

WHERE REP_OFFICE IS NULL

NAME

-----------

Tom Snyder

The negated form of the NULL value test (IS NOT NULL) finds rows that do not
contain a NULL value:

List the salespeople who have been assigned to an office.

SELECT NAME

FROM SALESREPS

WHERE REP_OFFICE IS NOT NULL

NAME

--------------

Bill Adams

Mary Jones

Sue Smith

Sam Clark

Bob Smith

Dan Roberts

Larry Fitch

Paul Cruz

Nancy Angelli

Unlike the previously described search conditions, the NULL value test cannot yield
a NULL result. It is always either TRUE or FALSE.
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It may seem strange that you can’t just test for a NULL value using a simple
comparison search condition, such as this:

SELECT NAME

FROM SALESREPS

WHERE REP_OFFICE = NULL

The NULL keyword can’t be used here because it isn’t really a value; it’s just a signal
that the value is unknown. Even if the comparison test:

REP_OFFICE = NULL

were legal, the rules for handling NULL values in comparisons would cause it to behave
differently from what you might expect. When SQL encountered a row where the REP_
OFFICE column was NULL, the search condition would test:

NULL = NULL

Is the result TRUE or FALSE? Because the values on both sides of the equal sign are
unknown, SQL can’t tell, so the rules of SQL logic say that the search condition itself
must yield a NULL result. Because the search condition doesn’t produce a true result,
the row is excluded from the query results—precisely the opposite of what you wanted
to happen! As a result of the way SQL handles NULLs in comparisons, you must explicitly
use the NULL value test to check for NULL values.

Compound Search Conditions (AND, OR, and NOT)
The simple search conditions described in the preceding sections return a value of
TRUE, FALSE, or NULL when applied to a row of data. Using the rules of logic, you can
combine these simple SQL search conditions to form more complex ones, as shown in
Figure 6-12. Note that the search conditions combined with AND, OR, and NOT may
themselves be compound search conditions.

Figure 6-12. WHERE clause syntax diagram
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The keyword OR is used to combine two search conditions when one or the other
(or both) must be true:

Find salespeople who are under quota or with sales under $300,000.

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE SALES < QUOTA

OR SALES < 300000.00

NAME                  QUOTA        SALES

-------------- ------------ ------------

Sam Clark       $275,000.00  $299,912.00

Bob Smith       $200,000.00  $142,594.00

Tom Snyder             NULL   $75,985.00

Paul Cruz       $275,000.00  $286,775.00

Nancy Angelli   $300,000.00  $186,042.00

You can also use the keyword AND to combine two search conditions that must both
be true:

Find salespeople who are under quota and with sales under $300,000.

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE SALES < QUOTA

AND SALES < 300000.00

NAME                  QUOTA        SALES

-------------- ------------ ------------

Bob Smith       $200,000.00  $142,594.00

Nancy Angelli   $300,000.00  $186,042.00

Finally, you can use the keyword NOT to select rows where a search condition is false:

Find all salespeople who are under quota, but whose sales are not under $150,000.

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE SALES < QUOTA

AND NOT SALES < 150000.00



NAME                  QUOTA        SALES

-------------- ------------ ------------

Nancy Angelli   $300,000.00  $186,042.00

Using the logical AND, OR, and NOT keywords and parentheses to group the search
criteria, you can build very complex search criteria, such as the one in this query:

Find all salespeople who either: (a) work in Denver, New York, or Chicago; or (b) have no
manager and were hired since June 1988; or (c) are over quota, but have sales of $600,000
or less.

SELECT NAME

FROM SALESREPS

WHERE (REP_OFFICE IN (22, 11, 12))

OR (MANAGER IS NULL AND HIRE_DATE >= '01-JUN-88')

OR (SALES > QUOTA AND NOT SALES > 600000.00)

Exactly why you might want to see this particular list of names is a mystery, but the
example does illustrate a reasonably complex query.

As with simple search conditions, NULL values influence the outcome of compound
search conditions, and the results are subtle. In particular, the result of (NULL OR TRUE)
is TRUE, not NULL, as you might expect. Tables 6-1, 6-2, and 6-3 specify truth tables for
AND, OR, and NOT, respectively, and show the impact of NULL values.

When more than two search conditions are combined with AND, OR, and NOT, the
ANSI/ISO standard specifies that NOT has the highest precedence, followed by AND
and then OR. To ensure portability, it’s always a good idea to use parentheses and
remove any possible ambiguity.
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AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

Table 6-1. The AND Truth Table
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The SQL2 standard adds another logical search condition, the IS test, to the logic
provided by AND, OR, and NOT. Figure 6-13 shows the syntax of the IS test, which
checks to see whether the logical value of an expression or comparison test is TRUE,
FALSE, or UNKNOWN (NULL).

For example, the IS test:

((SALES - QUOTA) > 10000.00) IS UNKNOWN

can be used to find rows where the comparison cannot be done because either SALES
or QUOTA has a NULL value. Similarly, the IS test:

((SALES - QUOTA) > 10000.00) IS FALSE

will select rows where SALES are not significantly above QUOTA. As this example
shows, the IS test doesn’t really add to the expressive power of SQL, since the test
could just as easily have been written:

NOT ((SALES - QUOTA) > 10000.00)

For maximum portability, it’s a good idea to avoid the tests and write the
expressions using only AND, OR, and NOT. It’s not always possible to avoid the IS
UNKNOWN form of the test.

NOT TRUE FALSE NULL

FALSE TRUE NULL

Table 6-3. The Not Truth Table

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Table 6-2. The OR Truth Table



Sorting Query Results (ORDER BY Clause)
Like the rows of a table in the database, the rows of query results are not arranged in any
particular order. You can ask SQL to sort the results of a query by including the ORDER
BY clause in the SELECT statement. The ORDER BY clause, shown in Figure 6-14, consists
of the keywords ORDER BY, followed by a list of sort specifications separated by commas.
For example, the results of this query are sorted on two columns, REGION and CITY:

Show the sales for each office, sorted in alphabetical order by region, and within each
region by city.

SELECT CITY, REGION, SALES

FROM OFFICES

ORDER BY REGION, CITY

CITY         REGION          SALES

------------ -------- ------------

Atlanta      Eastern   $367,911.00

Chicago      Eastern   $735,042.00

New York     Eastern   $692,637.00

Denver       Western   $186,042.00

Los Angeles  Western   $835,915.00

128 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 6-13. The IS test syntax diagram
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The first sort specification (REGION) is the major sort key; those that follow (CITY,
in this case) are progressively more minor sort keys, used as “tie breakers” when two
rows of query results have the same values for the more major keys. Using the ORDER
BY clause, you can request sorting in an ascending or descending sequence, and you
can sort on any item in the select list of the query.

By default, SQL sorts data in ascending sequence. To request sorting in descending
sequence, the keyword DESC is included in the sort specification, as in the next example:

List the offices, sorted in descending order by sales, so that the offices with the largest sales
appear first.

SELECT CITY, REGION, SALES

FROM OFFICES

ORDER BY SALES DESC

CITY         REGION          SALES

------------ -------- ------------

Los Angeles  Western   $835,915.00

Chicago      Eastern   $735,042.00

New York     Eastern   $692,637.00

Atlanta      Eastern   $367,911.00

Denver       Western   $186,042.00

As indicated in Figure 6-14, you can also use the keyword ASC to specify an ascending
sort, but because that’s the default sorting sequence, the keyword is usually omitted.

If the column of query results to be used for sorting is a calculated column, it has no
column name to be used in a sort specification. In this case, you must specify a column
number instead of a column name, as in this example:

List the offices, sorted in descending order by sales performance, so that the offices with the
best performance appear first.

SELECT CITY, REGION, (SALES - TARGET)

FROM OFFICES

ORDER BY 3 DESC

CITY         REGION    (SALES-TARGET)

------------ -------- ---------------

New York     Eastern      $117,637.00

Los Angeles  Western      $110,915.00

Atlanta      Eastern       $17,911.00

Chicago      Eastern      –$64,958.00

Denver       Western     –$113,958.00



These query results are sorted on the third column, which is the calculated
difference between the SALES and TARGET for each office. By combining column
numbers, column names, ascending sorts, and descending sorts, you can specify quite
complex sorting of the query results, as in the following final example:

List the offices, sorted in alphabetical order by region, and within each region in descending
order by sales performance.

SELECT CITY, REGION, (SALES - TARGET)

FROM OFFICES

ORDER BY REGION ASC, 3 DESC

CITY         REGION    (SALES-TARGET)

------------ -------- ---------------

New York     Eastern      $117,637.00

Atlanta      Eastern       $17,911.00

Chicago      Eastern      –$64,958.00

Los Angeles  Western      $110,915.00

Denver       Western     –$113,958.00

The SQL2 standard allows you to control the sorting order used by the DBMS for each
sort key. This can be important when working with international character sets or to insure
portability between ASCII and EBCDIC character set systems. However, this area of the
SQL2 specification is quite complex, and in practice, many SQL implementations either
ignore sorting sequence issues or use their own proprietary scheme for user control of the
sorting sequence.

Rules for Single-Table Query Processing
Single-table queries are generally simple, and it’s usually easy to understand the
meaning of a query just by reading the SELECT statement. As queries become more
complex, however, it’s important to have a more precise “definition” of the query
results that will be produced by a given SELECT statement. The following steps
describe the procedure for generating the results of a SQL query that includes the
clauses described in this chapter.

As these steps show, the query results produced by a SELECT statement are specified
by applying each of its clauses, one by one. The FROM clause is applied first (selecting the
table containing data to be retrieved). The WHERE clause is applied next (selecting specific
rows from the table). The SELECT clause is applied next (generating the specific columns
of query results and eliminating duplicate rows, if requested). Finally, the ORDER BY
clause is applied to sort the query results.
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To generate the query results for a SELECT statement, follow these steps:

1. Start with the table named in the FROM clause.

2. If there is a WHERE clause, apply its search condition to each row of the table,
retaining those rows for which the search condition is TRUE, and discarding
those rows for which it is FALSE or NULL.

3. For each remaining row, calculate the value of each item in the select list to
produce a single row of query results. For each column reference, use the value
of the column in the current row.

4. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

5. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
These “rules” for SQL query processing will be expanded several times in the next

three chapters to include the remaining clauses of the SELECT statement.

Combining Query Results (UNION) *
Occasionally, it’s convenient to combine the results of two or more queries into a single
table of query results. SQL supports this capability through the UNION feature of the
SELECT statement. Figure 6-15 illustrates how to use the UNION operation to satisfy the
following request:

List all the products where the price of the product exceeds $2,000 or where more than
$30,000 of the product has been ordered in a single order.

The first part of the request can be satisfied with the top query in the figure:

List all the products whose price exceeds $2,000.

SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE > 2000.00

MFR_ID  PRODUCT_ID

------- -----------

ACI     4100Y

REI     2A44L

ACI     4100Z

REI     2A44R
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Similarly, the second part of the request can be satisfied with the bottom query in
the figure:

List all the products where more than $30,000 of the product has been ordered in a
single order.

SELECT DISTINCT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00

MFR  PRODUCT

---- --------

IMM  775C

REI  2A44L

REI  2A44R

As shown in Figure 6-15, the UNION operation produces a single table of query
results that combines the rows of the top query results with the rows of the bottom
query results. The SELECT statement that specifies the UNION operation looks like this:

List all the products where the price of the product exceeds $2,000 or where more than
$30,000 of the product has been ordered in a single order.

SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE > 2000.00

UNION

SELECT DISTINCT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00

ACI    4100Y

ACI    4100Z

IMM    775C

REI    2A44L

REI    2A44R

There are severe restrictions on the tables that can be combined by a UNION operation:

� The two tables must contain the same number of columns.

� The data type of each column in the first table must be the same as the data type
of the corresponding column in the second table.

� Neither of the two tables can be sorted with the ORDER BY clause. However, the
combined query results can be sorted, as described in the following section.
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Note that the column names of the two queries combined by UNION do not have to be
identical. In the preceding example, the first table of query results has columns named
MFR_ID and PRODUCT_ID, while the second table of query results has columns named
MFR and PRODUCT. Because the columns in the two tables can have different names, the
columns of query results produced by the UNION operation are unnamed.

The ANSI/ISO SQL standard specifies a further restriction on a SELECT statement
that participates in a UNION operation. It permits only column names or an all-columns
specification (SELECT *) in the select list and prohibits expressions in the select list. Most
commercial SQL implementations relax this restriction and permit simple expressions in
the select list. However, many SQL implementations do not allow the SELECT statements
to include the GROUP BY or HAVING clauses, and some do not allow column functions in
the select list (prohibiting summary queries as described in Chapter 8). In fact, some SQL
implementations do not support the UNION operation at all.

Unions and Duplicate Rows *
Because the UNION operation combines the rows from two sets of query results, it
would tend to produce query results containing duplicate rows. For example, in the
query of Figure 6-15, product REI-2A44L sells for $4500.00, so it appears in the top
set of query results. There is also an order for $31,500.00 worth of this product in the
ORDERS table, so it also appears in the bottom set of query results. By default, the UNION

Figure 6-15. Using UNION to combine query results
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operation eliminates duplicate rows as part of its processing. Thus, the combined set of
query results contains only one row for product REI-2A44L.

If you want to retain duplicate rows in a UNION operation, you can specify the ALL
keyword immediately following the word UNION. This form of the query produces two
duplicate rows for product REI-2A44L:

List all the products where the price of the product exceeds $2,000 or where more than
$30,000 of the product has been ordered in a single order.

SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE > 2000.00

UNION ALL

SELECT DISTINCT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00

ACI    4100Y

REI    2A44L

ACI    4100Z

REI    2A44R

IMM    775C

REI    2A44L

REI    2A44R

Note that the default duplicate row handling for the UNION operation and for the
simple SELECT statement is exactly opposite. For the SELECT statement, SELECT ALL
(duplicates retained) is the default. To eliminate duplicate rows, you must explicitly
specify SELECT DISTINCT. For the UNION operation, UNION (duplicates eliminated) is
the default. To retain duplicate rows, you must explicitly specify UNION ALL.

Database experts have criticized the handling of duplicate rows in SQL and point to
this inconsistency as an example of the problems. The reason for the inconsistency is
that the SQL defaults were chosen to produce the correct behavior most of the time:

� In practice, most simple SELECT statements do not produce duplicate rows, so
the default is no duplicate elimination.

� In practice, most UNION operations would produce unwanted duplicate rows,
so the default is duplicate elimination.

Eliminating duplicate rows from query results is a very time-consuming process,
especially if the query results contain a large number of rows. If you know, based on
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the individual queries involved, that a UNION operation cannot produce duplicate
rows, you should specifically use the UNION ALL operation because the query will
execute much more quickly.

Unions and Sorting *
The ORDER BY clause cannot appear in either of the two SELECT statements combined
by a UNION operation. It wouldn’t make much sense to sort the two sets of query results
anyway, because they are fed directly into the UNION operation and are never visible to
the user. However, the combined set of query results produced by the UNION operation
can be sorted by specifying an ORDER BY clause after the second SELECT statement. Since
the columns produced by the UNION operation are not named, the ORDER BY clause must
specify the columns by column number.

Here is the same products query as that shown in Figure 6-15, with the query results
sorted by manufacturer and product number:

List all the products where the price of the product exceeds $2,000 or where more than
$30,000 of the product has been ordered in a single order, sorted by manufacturer and
product number.

SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE > 2000.00

UNION

SELECT DISTINCT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00

ORDER BY 1, 2

ACI    4100Y

ACI    4100Z

IMM    775C

REI    2A44L

REI    2A44R
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Multiple UNIONs*
You can use the UNION operation repeatedly to combine three or more sets of query
results, as shown in Figure 6-16. The union of Table B and Table C in the figure produces
a single, combined table. This table is then combined with Table A in another UNION
operation. The query in the figure is written this way:

SELECT *

FROM A

UNION (SELECT *

FROM B

UNION

SELECT *

FROM C)

Bill

Mary

George

Fred

Sue

Julia

Harry

Figure 6-16. Nested UNION operations
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The parentheses in the query indicate which UNION operation should be performed
first. In fact, if all of the UNIONs in the statement eliminate duplicate rows, or if all of
them retain duplicate rows, the order in which they are performed is unimportant.
These three expressions are completely equivalent:

A UNION (B UNION C)

(A UNION B) UNION C

(A UNION C) UNION B

and produce seven rows of query results. Similarly, the following three expressions are
completely equivalent and produce twelve rows of query results, because the duplicates
are retained:

A UNION ALL (B UNION ALL C)

(A UNION ALL B) UNION ALL C

(A UNION ALL C) UNION ALL B

However, if the unions involve a mixture of UNION and UNION ALL, the order of
evaluation matters. If this expression:

A UNION ALL B UNION C

is interpreted as:

A UNION ALL (B UNION C)

then it produces ten rows of query results (six from the inner UNION, plus four rows
from Table A). However, if it is interpreted as:

(A UNION ALL B) UNION C

then it produces only four rows, because the outer UNION eliminates all duplicate rows.
For this reason, it’s always a good idea to use parentheses in UNIONs of three or more
tables to specify the order of evaluation intended.



Summary
This chapter is the first of four chapters about SQL queries. It described the following
query features:

� The SELECT statement is used to express a SQL query. Every SELECT statement
produces a table of query results containing one or more columns and zero or
more rows.

� The FROM clause specifies the table(s) containing the data to be retrieved
by a query.

� The SELECT clause specifies the column(s) of data to be included in the query
results, which can be columns of data from the database, or calculated columns.

� The WHERE clause selects the rows to be included in the query results by applying
a search condition to rows of the database.

� A search condition can select rows by comparing values, by checking a value
against a range or set of values, by matching a string pattern, and by checking
for NULL values.

� Simple search conditions can be combined with AND, OR, and NOT to form more
complex search conditions.

� The ORDER BY clause specifies that the query results should be sorted in ascending
or descending order, based on the values of one or more columns.

� The UNION operation can be used within a SELECT statement to combine two
or more sets of query results into a single set.
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M
any useful queries request data from two or more tables in a database. For
example, these requests for data in the sample database draw data from two,
three, or four tables:

� List the salespeople and the offices where they work (SALESREPS and
OFFICES tables).

� List each order placed last week, showing the order amount, the name of
the customer who placed it, and the name of the product ordered (ORDERS,
CUSTOMERS, and SALESREPS tables).

� Show all orders taken by salespeople in the Eastern region, showing the
product description and salesperson (ORDERS, SALESREPS, OFFICES,
and PRODUCTS tables).

SQL allows you to retrieve data that answers these requests through multitable
queries that join data from two or more tables. These queries and the SQL join facility
are described in this chapter.

A Two-Table Query Example
The best way to understand the facilities that SQL provides for multitable queries is to
start with a simple request that combines data from two different tables:

“List all orders, showing the order number and amount, and the name and credit limit of
the customer who placed it.”

The four specific data items requested are clearly stored in two different tables, as
shown in Figure 7-1.

� The ORDERS table contains the order number and amount of each order, but
doesn’t have customer names or credit limits.

� The CUSTOMERS table contains the customer names and balances, but it lacks
any information about orders.

There is a link between these two tables, however. In each row of the ORDERS table,
the CUST column contains the customer number of the customer who placed the order,
which matches the value in the CUST_NUM column in one of the rows in the CUSTOMERS
table. Clearly, the SELECT statement that handles the request must somehow use this
link between the tables to generate its query results.

Before examining the SELECT statement for the query, it’s instructive to think about
how you would manually handle the request, using paper and pencil. Figure 7-2 shows
what you would probably do:
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1. Start by writing down the four column names for the query results. Then move
to the ORDERS table, and start with the first order.

2. Look across the row to find the order number (112961) and the order amount
($31,500.00) and copy both values to the first row of query results.

3. Look across the row to find the number of the customer who placed the order
(2117), and move to the CUSTOMERS table to find customer number 2117 by
searching the CUST_NUM column.

4. Move across the row of the CUSTOMERS table to find the customer’s name (“J.P.
Sinclair”) and credit limit ($35,000.00), and copy them to the query results table.

5. You’ve generated a row of query results! Move back to the ORDERS table, and
go to the next row. Repeat the process, starting with Step 2, until you run out
of orders.

Of course this isn’t the only way to generate the query results, but regardless of
how you do it, two things will be true:

� Each row of query results draws its data from a specific pair of rows, one from
the ORDERS table and one from the CUSTOMERS table.

� The pair of rows are found by matching the contents of corresponding columns
from the tables.

Figure 7-1. A request that spans two tables



Simple Joins (Equi-Joins)
The process of forming pairs of rows by matching the contents of related columns is
called joining the tables. The resulting table (containing data from both of the original
tables) is called a join between the two tables. (A join based on an exact match between
two columns is more precisely called an equi-join. Joins can also be based on other
kinds of column comparisons, as described later in this chapter.)

Joins are the foundation of multitable query processing in SQL. All of the data
in a relational database is stored in its columns as explicit data values, so all possible
relationships between tables can be formed by matching the contents of related
columns. Joins thus provide a powerful facility for exercising the data relationships
in a database. In fact, because relational databases do not contain pointers or other
mechanisms for relating rows to one another, joins are the only mechanism for exercising
cross-table data relationships.

Because SQL handles multitable queries by matching columns, it should come as
no surprise that the SELECT statement for a multitable query must contain a search
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condition that specifies the column match. Here is the SELECT statement for the query
that was performed manually in Figure 7-2:

List all orders showing order number, amount, customer name, and the customer’s credit limit.

SELECT ORDER_NUM, AMOUNT, COMPANY, CREDIT_LIMIT

FROM ORDERS, CUSTOMERS

WHERE CUST = CUST_NUM

ORDER_NUM      AMOUNT COMPANY             CREDIT_LIMIT

---------- ----------- ------------------ -------------

112989   $1,458.00 Jones Mfg.            $65,000.00

112968   $3,978.00 First Corp.           $65,000.00

112963   $3,276.00 Acme Mfg.             $50,000.00

112987  $27,500.00 Acme Mfg.             $50,000.00

112983     $702.00 Acme Mfg.             $50,000.00

113027   $4,104.00 Acme Mfg.             $50,000.00

112993   $1,896.00 Fred Lewis Corp.      $65,000.00

113065   $2,130.00 Fred Lewis Corp.      $65,000.00

113036  $22,500.00 Ace International     $35,000.00

113034     $632.00 Ace International     $35,000.00

113058   $1,480.00 Holm & Landis         $55,000.00

113055     $150.00 Holm & Landis         $55,000.00

113003   $5,625.00 Holm & Landis         $55,000.00

.

.

.

This looks just like the queries from the previous chapter, with two new features.
First, the FROM clause lists two tables instead of just one. Second, the search condition:

CUST = CUST_NUM

compares columns from two different tables. We call these two columns the matching
columns for the two tables. Like all search conditions, this one restricts the rows that
appear in the query results. Because this is a two-table query, the search condition
restricts the pairs of rows that generate the query results. In fact, the search condition
specifies the same matching columns you used in the paper-and-pencil query processing.
It actually captures the spirit of the manual column matching very well, saying:

“Generate query results only for pairs of rows where the customer number (CUST) in
the ORDERS table matches the customer number (CUST_NUM) in the CUSTOMERS table.”

Notice that the SELECT statement doesn’t say anything about how SQL should
execute the query. There is no mention of “starting with orders” or “starting with

C h a p t e r 7 : M u l t i t a b l e Q u e r i e s ( J o i n s ) 143



customers.” Instead, the query tells SQL what the query results should look like and
leaves it up to SQL to decide how to generate them.

Parent/Child Queries
The most common multitable queries involve two tables that have a natural parent/
child relationship. The query about orders and customers in the preceding section is an
example of such a query. Each order (child) has an associated customer (parent), and
each customer (parent) can have many associated orders (children). The pairs of rows
that generate the query results are parent/child row combinations.

You may recall from Chapter 4 that foreign keys and primary keys create the
parent/child relationship in a SQL database. The table containing the foreign key is the
child in the relationship; the table with the primary key is the parent. To exercise the
parent/child relationship in a query, you must specify a search condition that compares
the foreign key and the primary key. Here is another example of a query that exercises a
parent/child relationship, shown in Figure 7-3:

List each salesperson and the city and region where they work.

SELECT NAME, CITY, REGION

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

NAME           CITY         REGION

-------------- ------------ --------

Mary Jones     New York     Eastern

Sam Clark      New York     Eastern

Bob Smith      Chicago      Eastern

Paul Cruz      Chicago      Eastern

Dan Roberts    Chicago      Eastern

Bill Adams     Atlanta      Eastern

Sue Smith      Los Angeles  Western

Larry Fitch    Los Angeles  Western

Nancy Angelli  Denver       Western

The SALESREPS (child) table contains REP_OFFICE, a foreign key for the OFFICES
(parent) table. This relationship is used to find the correct OFFICES row for each
salesperson, so that the correct city and region can be included in the query results.
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Here’s another query involving the same two tables, but with the parent and child
roles reversed, as shown in Figure 7-4.

List the offices and the names and titles of their managers.

SELECT CITY, NAME, TITLE

FROM OFFICES, SALESREPS

WHERE MGR = EMPL_NUM

CITY         NAME         TITLE

------------ ------------ ----------

Chicago      Bob Smith    Sales Mgr

Atlanta      Bill Adams   Sales Rep

New York     Sam Clark    VP Sales

Denver       Larry Fitch  Sales Mgr

Los Angeles  Larry Fitch  Sales Mgr
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Figure 7-3. A parent/child query with OFFICES and SALESREPS



The OFFICES (child) table contains MGR, a foreign key for the SALESREPS (parent)
table. This relationship is used to find the correct SALESREPS row for each salesperson,
so that the correct name and title of the manager can be included in the query results.

SQL does not require that the matching columns be included in the results of a
multitable query. They are often omitted in practice, as in the two preceding examples.
That’s because primary keys and foreign keys are often ID numbers (such as the office
numbers and employee numbers in the examples), which humans find hard to
remember, while the associated names (cities, regions, names, titles) are easier to
understand. It’s quite common for ID numbers to be used in the WHERE clause to join
two tables, and for more descriptive names to be specified in the SELECT clause to
generate columns of query results.

Joins with Row Selection Criteria
The search condition that specifies the matching columns in a multitable query can
be combined with other search conditions to further restrict the contents of the query
results. Suppose you want to rerun the preceding query, showing only offices with
large sales targets:
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List the offices with a target over $600,000.

SELECT CITY, NAME, TITLE

FROM OFFICES, SALESREPS

WHERE MGR = EMPL_NUM

AND TARGET > 600000.00

CITY         NAME         TITLE

------------ ------------ ----------

Chicago      Bob Smith    Sales Mgr

Los Angeles  Larry Fitch  Sales Mgr

With the additional search condition, the rows that appear in the query results are
further restricted. The first test (MGR=EMPL_NUM) selects only pairs of OFFICES and
SALESREPS rows that have the proper parent/child relationship; the second test further
selects only those pairs of rows where the office is above target.

Multiple Matching Columns
The ORDERS table and the PRODUCTS table in the sample database are related by a
composite foreign key/primary key pair. The MFR and PRODUCT columns of the
ORDERS table together form a foreign key for the PRODUCTS table, matching its
MFR_ID and PRODUCT_ID columns, respectively. To join the tables based on this
parent/child relationship, you must specify both pairs of matching columns, as shown
in this example:

List all the orders, showing amounts and product descriptions.

SELECT ORDER_NUM, AMOUNT, DESCRIPTION

FROM ORDERS, PRODUCTS

WHERE MFR = MFR_ID

AND PRODUCT = PRODUCT_ID

ORDER_NUM     AMOUNT DESCRIPTION

---------- ---------- ----------------

113027  $4,104.00 Size 2 Widget

112992    $760.00 Size 2 Widget

113012  $3,745.00 Size 3 Widget

112968  $3,978.00 Size 4 Widget

112963  $3,276.00 Size 4 Widget

112983    $702.00 Size 4 Widget

113055    $150.00 Widget Adjuster

113057    $600.00 Widget Adjuster
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The search condition in the query tells SQL that the related pairs of rows from the
ORDERS and PRODUCTS tables are those where both pairs of matching columns contain
the same values. Multicolumn joins involving two tables are less common than single-
column joins and are usually found in queries involving compound foreign keys such
as this one. There is no SQL restriction on the number of columns that are involved in
the matching condition, but joins normally mirror the real-world relationships between
entities represented in the database tables, and those relationships are usually
embodied in one or just a few columns of the tables.

Queries with Three or More Tables
SQL can combine data from three or more tables using the same basic techniques used
for two-table queries. Here is a simple example of a three-table join:

List orders over $25,000, including the name of the salesperson who took the order and the
name of the customer who placed it.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM

AND REP = EMPL_NUM

AND AMOUNT > 25000.00

ORDER_NUM      AMOUNT COMPANY          NAME

---------- ----------- ---------------- --------------

112987  $27,500.00 Acme Mfg.        Bill Adams

113069  $31,350.00 Chen Associates  Nancy Angelli

113045  $45,000.00 Zetacorp         Larry Fitch

112961  $31,500.00 J.P. Sinclair    Sam Clark

This query uses two foreign keys in the ORDERS table, as shown in Figure 7-5. The
CUST column is a foreign key for the CUSTOMERS table, linking each order to the
customer who placed it. The REP column is a foreign key for the SALESREPS table,
linking each order to the salesperson who took it. Informally speaking, the query links
each order to its associated customer and salesperson.

Here is another three-table query that uses a different arrangement of parent/child
relationships:
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List the orders over $25,000, showing the name of the customer who placed the order and
the name of the salesperson assigned to that customer.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM

AND CUST_REP = EMPL_NUM

AND AMOUNT > 25000.00

ORDER_NUM      AMOUNT COMPANY          NAME

---------- ----------- ---------------- ------------

112987  $27,500.00 Acme Mfg.        Bill Adams

113069  $31,350.00 Chen Associates  Paul Cruz

113045  $45,000.00 Zetacorp         Larry Fitch

112961  $31,500.00 J.P. Sinclair    Sam Clark

Figure 7-6 shows the relationships exercised by this query. The first relationship
again uses the CUST column from the ORDERS table as a foreign key to the CUSTOMERS
table. The second uses the CUST_REP column from the CUSTOMERS table as a foreign
key to the SALESREPS table. Informally speaking, this query links each order to its
customer, and each customer to their salesperson.
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It’s not uncommon to find three-table or even four-table queries used in production
SQL applications. Even within the confines of the small, five-table sample database, it’s
not too hard to find a four-table query that makes sense:

List the orders over $25,000, showing the name of the customer who placed the order, the
customer’s salesperson, and the office where the salesperson works.

SELECT ORDER_NUM, AMOUNT, COMPANY, NAME, CITY

FROM ORDERS, CUSTOMERS, SALESREPS, OFFICES

WHERE CUST = CUST_NUM

AND CUST_REP = EMPL_NUM

AND REP_OFFICE = OFFICE

AND AMOUNT > 25000.00
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ORDER_NUM      AMOUNT COMPANY          NAME        CITY

---------- ----------- ---------------- ----------- ------------

112987  $27,500.00 Acme Mfg.        Bill Adams  Atlanta

113069  $31,350.00 Chen Associates  Paul Cruz   Chicago

113045  $45,000.00 Zetacorp         Larry Fitch Los Angeles

112961  $31,500.00 J.P. Sinclair    Sam Clark   New York

Figure 7-7 shows the parent/child relationships in this query. Logically, it extends
the join sequence of the previous example one more step, linking an order to its
customer, the customer to their salesperson, and the salesperson to their office.
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Other Equi-Joins
The vast majority of multitable queries are based on parent/child relationships, but
SQL does not require that the matching columns be related as a foreign key and
primary key. Any pair of columns from two tables can serve as matching columns,
provided they have comparable data types. The next example demonstrates a query
that uses a pair of dates as matching columns.

Find all orders received on days when a new salesperson was hired.

SELECT ORDER_NUM, AMOUNT, ORDER_DATE, NAME

FROM ORDERS, SALESREPS

WHERE ORDER_DATE = HIRE_DATE

ORDER_NUM      AMOUNT ORDER_DATE  NAME

---------- ----------- ----------- ------------

112968   $3,978.00 12-OCT-89   Mary Jones

112979  $15,000.00 12-OCT-89   Mary Jones

112975   $2,100.00 12-OCT-89   Mary Jones

112968   $3,978.00 12-OCT-89   Larry Fitch

112979  $15,000.00 12-OCT-89   Larry Fitch

112975   $2,100.00 12-OCT-89   Larry Fitch

The results of this query come from pairs of rows in the ORDERS and SALESREPS
tables where the ORDER_DATE happens to match the HIRE_DATE for the salesperson,
as shown in Figure 7-8. Neither of these columns is a foreign key or a primary key,
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and the relationship between the pairs of rows is admittedly a strange one—the only
thing the matched orders and salespeople have in common is that they happen to have
the same dates. However, SQL happily joins the tables anyway.

Matching columns like the ones in this example generate a many-to-many relationship
between the two tables. Many orders can share a single salesperson’s hire date, and more
than one salesperson may have been hired on a given order’s order date. For example, note
that three different orders (112968, 112975, and 112979) were received on October 12, 1989,
and two different salespeople (Larry Fitch and Mary Jones) were hired that same day. The
three orders and two salespeople produce six rows of query results.

This many-to-many relationship is different from the one-to-many relationship
created by primary key/foreign key matching columns. The situation can be summarized
as follows:

� Joins that match primary keys to foreign keys always create one-to-many,
parent/child relationships.

� Other joins may also generate one-to-many relationships, if the matching
column in at least one of the tables has unique values for all rows of the table.

� In general, joins on arbitrary matching columns generate many-to-many
relationships.

Note that these three different situations have nothing to do with how you write
the SELECT statement that expresses the join. All three types of joins are written the
same way—by including a comparison test for the matching column pairs in the WHERE
clause. Nonetheless, it’s useful to think about joins in this way to understand how to
turn an English-language request into the correct SELECT statement.

Non-Equi-Joins
The term join applies to any query that combines data from two tables by comparing
the values in a pair of columns from the tables. Although joins based on equality
between matching columns (equi-joins) are by far the most common joins, SQL also
allows you to join tables based on other comparison operators. Here’s an example
where a greater than (>) comparison test is used as the basis for a join:

List all combinations of salespeople and offices where the salesperson’s quota is more than
the office’s target.

SELECT NAME, QUOTA, CITY, TARGET

FROM SALESREPS, OFFICES

WHERE QUOTA > TARGET
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NAME                QUOTA CITY          TARGET

------------ ------------ ------- ------------

Bill Adams    $350,000.00 Denver   $300,000.00

Sue Smith     $350,000.00 Denver   $300,000.00

Larry Fitch   $350,000.00 Denver   $300,000.00

As in all two-table queries, each row of the query results comes from a pair of rows,
in this case from the SALESREPS and OFFICES tables. The search condition:

QUOTA > TARGET

selects pairs of rows where the QUOTA column from the SALESREPS row exceeds
the TARGET column from the OFFICES row. Note that the pairs of SALESREPS and
OFFICES rows selected are related only in this way; it is specifically not required that
the SALESREPS row represent someone who works in the office represented by the
OFFICES row. Admittedly, the example is a bit farfetched, and it illustrates why joins
based on inequalities are not very common. However, they can be useful in decision-
support applications and other applications that explore more complex
interrelationships in the database.

SQL Considerations for Multitable Queries
The multitable queries described thus far have not required any special SQL syntax
or language features beyond those described for single-table queries. However, some
multitable queries cannot be expressed without the additional SQL language features
described in the following sections. Specifically:

� Qualified column names are sometimes needed in multitable queries to eliminate
ambiguous column references.

� All-column selections (SELECT *) have a special meaning for multitable queries.

� Self-joins can be used to create a multitable query that relates a table to itself.

� Table aliases can be used in the FROM clause to simplify qualified column names
and allow unambiguous column references in self-joins.

Qualified Column Names
The sample database includes several instances where two tables contain columns with
the same name. The OFFICES table and the SALESREPS table, for example, both have a
column named SALES. The column in the OFFICES table contains year-to-date sales
for each office; the one in the SALESREPS table contains year-to-date sales for each
salesperson. Normally, there is no confusion between the two columns, because the FROM
clause determines which of them is appropriate in any given query, as in these examples:
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Show the cities where sales exceed target.

SELECT CITY, SALES

FROM OFFICES

WHERE SALES > TARGET

Show all salespeople with sales over $350,000.

SELECT NAME, SALES

FROM SALESREPS

WHERE SALES > 350000.00

However, here is a query where the duplicate names cause a problem:

Show the name, sales, and office for each salesperson.

SELECT NAME, SALES, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

Error: Ambiguous column name "SALES"

Although the English description of the query implies that you want the SALES
column in the SALESREPS table, the SQL query is ambiguous. The DBMS has no way
of knowing whether you want the SALES column from the SALESREPS table or the
one from the OFFICES table, since both are contributing data to the query results. To
eliminate the ambiguity, you must use a qualified column name to identify the column.
Recall from Chapter 5 that a qualified column name specifies the name of a column and
the table containing the column. The qualified names of the two SALES columns in the
sample database are:

OFFICES.SALES and SALESREPS.SALES

A qualified column name can be used in a SELECT statement anywhere that a
column name is permitted. The table specified in the qualified column name must, of
course, match one of the tables specified in the FROM list. Here is a corrected version
of the previous query that uses a qualified column name:

Show the name, sales, and office for each salesperson.

SELECT NAME, SALESREPS.SALES, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE
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NAME            SALESREPS.SALES CITY

-------------- ---------------- ------------

Mary Jones          $392,725.00 New York

Sam Clark           $299,912.00 New York

Bob Smith           $142,594.00 Chicago

Paul Cruz           $286,775.00 Chicago

Dan Roberts         $305,673.00 Chicago

Bill Adams          $367,911.00 Atlanta

Sue Smith           $474,050.00 Los Angeles

Larry Fitch         $361,865.00 Los Angeles

Nancy Angelli       $186,042.00 Denver

Using qualified column names in a multitable query is always a good idea. The
disadvantage, of course, is that they make the query text longer. When using interactive
SQL, you may want to first try a query with unqualified column names and let SQL
find any ambiguous columns. If SQL reports an error, you can edit your query to
qualify the ambiguous columns.

All-Column Selections
As discussed in Chapter 6, SELECT * can be used to select all columns of the table
named in the FROM clause. In a multitable query, the asterisk selects all columns of all
tables in the FROM clause. The following query, for example, would produce fifteen
columns of query results—the nine columns from the SALESREPS table followed by
the six columns from the OFFICES table:

Tell me all about salespeople and the offices where they work.

SELECT *

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

Obviously, the SELECT * form of a query becomes much less practical when there
are two, three, or more tables in the FROM clause.

Many SQL dialects treat the asterisk as a special kind of wildcard column name that
is expanded into a list of columns. In these dialects, the asterisk can be qualified with a
table name, just like a qualified column reference. In the following query, the select
item SALESREPS.* is expanded into a list containing only the columns found in the
SALESREPS table:

Tell me all about salespeople and the places where they work.
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SELECT SALESREPS.*, CITY, REGION

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

The query would produce eleven columns of query results—the nine columns of
the SALESREPS table, followed by the two other columns explicitly requested from the
OFFICES table. This type of “qualified all-columns” select item is supported in many,
but not all brands of SQL-based DBMS. It was not allowed by the SQL1 standard but is
part of the ANSI/ISO SQL2 specification.

Self-Joins
Some multitable queries involve a relationship that a table has with itself. For example,
suppose you want to list the names of all salespeople and their managers. Each
salesperson appears as a row in the SALESREPS table, and the MANAGER column
contains the employee number of the salesperson’s manager. It would appear that the
MANAGER column should be a foreign key for the table that holds data about managers.
In fact it is—it’s a foreign key for the SALESREPS table itself!

If you tried to express this query like any other two-table query involving a foreign
key/primary key match, it would look like this:

SELECT NAME, NAME

FROM SALESREPS, SALESREPS

WHERE MANAGER = EMPL_NUM

This SELECT statement is illegal because of the duplicate reference to the SALESREPS
table in the FROM clause. You might also try eliminating the second reference to the
SALESREPS table:

SELECT NAME, NAME

FROM SALESREPS

WHERE MANAGER = EMPL_NUM

This query is legal, but it won’t do what you want it to do! It’s a single-table query,
so SQL goes through the SALESREPS table one row at a time, applying the search
condition:

MANAGER = EMPL_NUM

The rows that satisfy this condition are those where the two columns have the same
value—that is, rows where a salesperson is their own manager. There are no such rows,
so the query would produce no results—not exactly the data that the English-language
statement of the query requested.
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To understand how SQL solves this problem, imagine there were two identical copies
of the SALESREPS table, one named EMPS, containing employees, and one named MGRS,
containing managers, as shown in Figure 7-9. The MANAGER column of the EMPS table
would then be a foreign key for the MGRS table, and the following query would work:

List the names of salespeople and their managers.

SELECT EMPS.NAME, MGRS.NAME

FROM EMPS, MGRS

WHERE EMPS.MANAGER = MGRS.EMPL_NUM

Because the columns in the two tables have identical names, all of the column
references are qualified. Otherwise, this looks like an ordinary two-table query.

SQL uses exactly this “imaginary duplicate table” approach to join a table to itself.
Instead of actually duplicating the contents of the table, SQL lets you simply refer to it
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by a different name, called a table alias. Here’s the same query, written using the aliases
EMPS and MGRS for the SALESREPS table:

List the names of salespeople and their managers.

SELECT EMPS.NAME, MGRS.NAME

FROM SALESREPS EMPS, SALESREPS MGRS

WHERE EMPS.MANAGER = MGRS.EMPL_NUM

EMPS.NAME      MGRS.NAME

-------------- ------------

Tom Snyder     Dan Roberts

Bill Adams     Bob Smith

Dan Roberts    Bob Smith

Paul Cruz      Bob Smith

Mary Jones     Sam Clark

Bob Smith      Sam Clark

Larry Fitch    Sam Clark

Sue Smith      Larry Fitch

Nancy Angelli  Larry Fitch

The FROM clause assigns a different alias to each of the two “copies” of the
SALESREPS table that are involved in the query by specifying the alias name
immediately after the actual table name. As the example shows, when a FROM clause
contains a table alias, the alias must be used to identify the table in qualified column
references. Of course, it’s really only necessary to use an alias for one of the two table
occurrences in this query. It could just as easily have been written:

SELECT SALESREPS.NAME, MGRS.NAME

FROM SALESREPS, SALESREPS MGRS

WHERE SALESREPS.MANAGER = MGRS.EMPL_NUM

Here the alias MGRS is assigned to one “copy” of the table, while the table’s own
name is used for the other copy.

Here are some additional examples of self-joins:

List salespeople with a higher quota than their manager.

SELECT SALESREPS.NAME, SALESREPS.QUOTA, MGRS.QUOTA

FROM SALESREPS, SALESREPS MGRS

WHERE SALESREPS.MANAGER = MGRS.EMPL_NUM

AND SALESREPS.QUOTA > MGRS.QUOTA
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SALESREPS.NAME   SALESREPS.QUOTA   MGRS.QUOTA

--------------- ---------------- ------------

Bill Adams           $350,000.00  $200,000.00

Dan Roberts          $300,000.00  $200,000.00

Paul Cruz            $275,000.00  $200,000.00

Mary Jones           $300,000.00  $275,000.00

Larry Fitch          $350,000.00  $275,000.00

List salespeople who work in different offices than their manager, showing the name and
office where each works.

SELECT EMPS.NAME, EMP_OFFICE.CITY, MGRS.NAME, MGR_OFFICE.CITY

FROM SALESREPS EMPS, SALESREPS MGRS,

OFFICES EMP_OFFICE, OFFICES MGR_OFFICE

WHERE EMPS.REP_OFFICE = EMP_OFFICE.OFFICE

AND MGRS.REP_OFFICE = MGR_OFFICE.OFFICE

AND EMPS.MANAGER = MGRS.EMPL_NUM

AND EMPS.REP_OFFICE <> MGRS.REP_OFFICE

EMPS.NAME      EMP_OFFICE.CITY  MGRS.NAME    MGR_OFFICE.CITY

-------------- ---------------- ------------ ----------------

Bob Smith      Chicago          Sam Clark    New York

Bill Adams     Atlanta          Bob Smith    Chicago

Larry Fitch    Los Angeles      Sam Clark    New York

Nancy Angelli  Denver           Larry Fitch  Los Angeles

Table Aliases
As described in the previous section, table aliases are required in queries involving
self-joins. However, you can use an alias in any query. For example, if a query refers
to another user’s table, or if the name of a table is very long, the table name can become
tedious to type as a column qualifier. This query, which references the BIRTHDAYS table
owned by the user named SAM:

List names, quotas, and birthdays of salespeople.

SELECT SALESREPS.NAME, QUOTA, SAM.BIRTHDAYS.BIRTH_DATE

FROM SALESREPS, BIRTHDAYS

WHERE SALESREPS.NAME = SAM.BIRTHDAYS.NAME
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becomes easier to read and type when the aliases S and B are used for the two tables:

List names, quotas, and birthdays of salespeople.

SELECT S.NAME, S.QUOTA, B.BIRTH_DATE

FROM SALESREPS S, SAM.BIRTHDAYS B

WHERE S.NAME = B.NAME

Figure 7-10 shows the basic form of the FROM clause for a multitable SELECT
statement, complete with table aliases. The clause has two important functions:

� The FROM clause identifies all of the tables that contribute data to the query
results. Any columns referenced in the SELECT statement must come from one
of the tables named in the FROM clause. (There is an exception for outer references
contained in a subquery, as described in Chapter 9.)

� The FROM clause specifies the tag that is used to identify the table in qualified
column references within the SELECT statement. If a table alias is specified, it
becomes the table tag; otherwise, the table’s name, exactly as it appears in the
FROM clause, becomes the tag.

The only requirement for table tags in the FROM clause is that all of the table
tags in a given FROM clause must be distinct from each other. The SQL2 specification
optionally allows the keyword AS to appear between a table name and table alias.
While this makes the FROM clause easier to read, it may not yet be supported in your
specific SQL implementation. (Note that the SQL2 specification uses the term correlation
name to refer to what we have called a table alias. The function and meaning of a correlation
name are exactly as described here; many SQL products use the term alias, and it is
more descriptive of the function that a table alias performs. The SQL2 standard specifies
a similar technique for designating alternate column names, and in that situation the
column alias name is actually called an alias in the standard.)
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Multitable Query Performance
As the number of tables in a query grows, the amount of effort required to carry it out
increases rapidly. The SQL language itself places no limit on the number of tables
joined by a query. Some SQL products do limit the number of tables, with a limit of
about eight tables being fairly common. The high processing cost of queries that join
many tables imposes an even lower practical limit in many applications.

In online transaction processing (OLTP) applications, it’s common for a query to
involve only one or two tables. In these applications, response time is critical—the user
typically enters one or two items of data and needs a response from the database within a
second or two. Here are some typical OLTP queries for the sample database:

� The user enters a customer number into a form, and the DBMS retrieves the
customer’s credit limit, account balance, and other data (a single-table query).

� A cash register scans a product number from a package and retrieves the product’s
name and price from the database (a single-table query).

� The user enters a salesperson’s name, and the program lists the current orders
for that salesperson (a two-table inquiry).

In decision-support applications, by contrast, it’s common for a query to involve
many different tables and exercise complex relationships in the database. In these
applications, the query results are often used to help make expensive decisions, so a
query that requires several minutes or even several hours to complete is perfectly
acceptable. Here are some typical decision-support queries for the sample database:

� The user enters an office name, and the program lists the 25 largest orders taken
by salespeople in that office (a three-table query).

� A report summarizes sales by product type for each salesperson, showing which
salespeople are selling which products (a three-table query).

� A manager considers opening a new Seattle sales office and runs a query analyzing
the impact on orders, products, customers, and the salespeople who call on them
(a four-table query).

The Structure of a Join
For simple joins, it’s fairly easy to write the correct SELECT statement based on an
English-language request or to look at a SELECT statement and figure out what it does.
When many tables are joined or when the search conditions become complex, however,
it becomes very difficult just to look at a SELECT statement and figure out what it
means. For this reason, it’s important to define more carefully and just a bit more
formally what a join is, what query results are produced by a given SELECT statement,
and just a little bit of the theory of relational database operation that underlies joins.
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Table Multiplication
A join is a special case of a more general combination of data from two tables, known
as the Cartesian product (or just the product) of two tables. The product of two tables is
another table (the product table), which consists of all possible pairs of rows from the
two tables. The columns of the product table are all the columns of the first table,
followed by all the columns of the second table. Figure 7-11 shows two small sample
tables and their product.

If you specify a two-table query without a WHERE clause, SQL produces the product
of the two tables as the query result. For example, this query:

Show all possible combinations of salespeople and cities.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

would produce the product of the SALESREPS and OFFICES tables, showing all
possible salesperson/city pairs. There would be 50 rows of query results (5 offices * 10
salespeople = 50 combinations). Notice that the SELECT statement is exactly the same
one you would use to join the two tables, without the WHERE clause that compares the
matching columns, as follows:

Show all salespeople and the cities where they work.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

Figure 7-11. The product of two tables
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These two queries point out an important relationship between joins and products:
A join between two tables is just the product of the two tables with some of the

rows removed. The removed rows are precisely those that do not meet the matching
column condition for the join.

Products are important because they are part of the formal definition of how SQL
processes a multitable query, described in the next section.

Rules for Multitable Query Processing
The steps following the code below restate the rules for SQL query processing originally
introduced in Figure 6-14 and expands them to include multitable queries. The rules
define the meaning of any multitable SELECT statement by specifying a procedure that
always generates the correct set of query results. To see how the procedure works,
consider this query:

List the company name and all orders for customer number 2103.

SELECT COMPANY, ORDER_NUM, AMOUNT

FROM CUSTOMERS, ORDERS

WHERE CUST_NUM = CUST

AND CUST_NUM = 2103

ORDER BY ORDER_NUM

COMPANY     ORDER_NUM      AMOUNT

---------- ---------- -----------

Acme Mfg.      112963   $3,276.00

Acme Mfg.      112983     $702.00

Acme Mfg.      112987  $27,500.00

Acme Mfg.      113027   $4,104.00

To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 5 to
each of the statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause
names a single table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

4. For each remaining row, calculate the value of each item in the select list to
produce a single row of query results. For each column reference, use the value
of the column in the current row.

5. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.
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6. If the statement is a UNION of SELECT statements, merge the query results for
the individual statements into a single table of query results. Eliminate duplicate
rows unless UNION ALL is specified.

7. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
Following the previous steps:

1. The FROM clause generates all possible combinations of rows from the
CUSTOMERS table (21 rows) and the ORDERS table (30 rows), producing a
product table of 630 rows.

2. The WHERE clause selects only those rows of the product table where the customer
numbers match (CUST_NUM = CUST) and the customer number is the one
specified (CUST_NUM = 2103). Only four rows are selected; the other 626 rows
are eliminated.

3. The SELECT clause extracts the three requested columns (COMPANY, ORDER_
NUM, and ORD_AMOUNT) from each remaining row of the product table to generate
four rows of detailed query results.

4. The ORDER BY clause sorts the four rows on the ORDER_NUM column to generate
the final query results.

Obviously no SQL-based DBMS would actually carry out the query this way, but
the purpose of the previous definition is not to describe how the query is carried out by
a DBMS. Instead, it constitutes a definition of how to figure out exactly what a particular
multitable query “means”—that is, the set of query results that it should produce.

Outer Joins *
The SQL join operation combines information from two tables by forming pairs of
related rows from the two tables. The row pairs that make up the joined table are those
where the matching columns in each of the two tables have the same value. If one of
the rows of a table is unmatched in this process, the join can produce unexpected results,
as illustrated by these queries:

List the salespeople and the offices where they work.

SELECT NAME, REP_OFFICE

FROM SALESREPS

NAME            REP_OFFICE

-------------- -----------

Bill Adams              13

Mary Jones              11

Sue Smith               21
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Sam Clark               11

Bob Smith               12

Dan Roberts             12

Tom Snyder            NULL

Larry Fitch             21

Paul Cruz               12

Nancy Angelli           22

List the salespeople and the cities where they work.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

NAME           CITY

-------------- ------------

Mary Jones     New York

Sam Clark      New York

Bob Smith      Chicago

Paul Cruz      Chicago

Dan Roberts    Chicago

Bill Adams     Atlanta

Sue Smith      Los Angeles

Larry Fitch    Los Angeles

Nancy Angelli  Denver

Based on the English-language descriptions of these two queries, you would probably
expect them to produce the same number of rows. But the first query includes a row for
each of the ten salespeople, while the second query produces only nine. Why? Because
Tom Snyder is currently unassigned and has a NULL value in the REP_OFFICE column
(which is the matching column for the join). This NULL value doesn’t match any of the
office numbers in the OFFICES table, so Tom’s row in the SALESREPS table is unmatched.
As a result, it “vanishes” in the join. The standard SQL join thus has the potential to lose
information if the tables being joined contain unmatched rows.

Based on the English-language version of the request, you would probably expect
the second query to produce results like these:

List the salespeople and the cities where they work.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE *= OFFICE
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NAME           CITY

-------------- ------------

Tom Snyder     NULL

Mary Jones     New York

Sam Clark      New York

Bob Smith      Chicago

Paul Cruz      Chicago

Dan Roberts    Chicago

Bill Adams     Atlanta

Sue Smith      Los Angeles

Larry Fitch    Los Angeles

Nancy Angelli  Denver

These query results are generated by using a different type of join operation, called
an outer join (indicated by the “*=” notation in the WHERE clause). The outer join is an
extension of the standard join described earlier in this chapter, which is sometimes
called an inner join. The SQL1 standard specifies only the inner join; it does not include
the outer join. The earlier IBM SQL products also support only the inner join. However,
the outer join is a well-understood and useful part of the relational database model,
and it has been implemented in many non-IBM SQL products, including the flagship
database products from Microsoft, Sybase, Oracle, and IBM’s Informix. The outer join
is also the most natural way to express a certain type of query request, as shown in the
remainder of this section.

To understand the outer join well, it’s useful to move away from the sample
database and consider the two simple tables in Figure 7-12. The GIRLS table lists five
girls and the cities where they live; the BOYS table lists five boys and the cities where
they live. To find the girl/boy pairs who live in the same city, you could use this query,
which forms the inner join of the two tables:

List the girls and boys who live in the same city.

SELECT *

FROM GIRLS, BOYS

WHERE GIRLS.CITY = BOYS.CITY

GIRLS.NAME  GIRLS.CITY  BOYS.NAME  BOYS.CITY

----------- ----------- ---------- ----------

Mary        Boston      John       Boston

Mary        Boston      Henry      Boston

Susan       Chicago     Sam        Chicago

Betty       Chicago     Sam        Chicago
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The inner join produces four rows of query results. Notice that two of the girls
(Anne and Nancy) and two of the boys (James and George) are not represented in the
query results. These rows cannot be paired with any row from the other table, and so
they are missing from the inner join results. Two of the unmatched rows (Anne and
James) have valid values in their CITY columns, but they don’t match any cities in the
opposite table. The other two unmatched rows (Nancy and George) have NULL values
in their CITY columns, and by the rules of SQL NULL handling, the NULL value doesn’t
match any other value (even another NULL value).

Suppose you wanted to list the girl/boy pairs who share the same cities and include
the unmatched girls and boys in the list. The outer join of the GIRLS and BOYS tables
produces exactly this result. The following list shows the procedure for constructing the
outer join, and the outer join is shown graphically in Figure 7-12.

1. Begin with the inner join of the two tables, using matching columns in the
normal way.

2. For each row of the first table that is not matched by any row in the second
table, add one row to the query results, using the values of the columns in the
first table, and assuming a NULL value for all columns of the second table.
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3. For each row of the second table that is not matched by any row in the first
table, add one row to the query results, using the values of the columns in the
second table, and assuming a NULL value for all columns of the first table.

4. The resulting table is the outer join of the two tables.

Here is the SQL statement that produces the outer join:

List girls and boys in the same city, including any unmatched girls or boys.

SELECT *

FROM GIRLS, BOYS

WHERE GIRLS.CITY *=* BOYS.CITY

GIRLS.NAME  GIRLS.CITY  BOYS.NAME  BOYS.CITY

----------- ----------- ---------- ----------

Mary        Boston      John       Boston

Mary        Boston      Henry      Boston

Susan       Chicago     Sam        Chicago

Betty       Chicago     Sam        Chicago

Anne        Denver      NULL       NULL

Nancy       NULL        NULL       NULL

NULL        NULL        James      Dallas

NULL        NULL        George     NULL

The outer join of the two tables contains eight rows. Four of the rows are identical
to those of the inner join between the two tables. Two other rows, for Anne and Nancy,
come from the unmatched rows of the GIRLS table. These rows have been NULL-
extended by matching them to an imaginary row of all NULLs in the BOYS table, and
adding them to the query results. The final two rows, for James and George, come from
the unmatched rows of the BOYS table. These rows have also been NULL-extended by
matching them to an imaginary row of all NULLs in the GIRLS table and then adding
them to the query results.

As this example shows, the outer join is an “information-preserving” join. Every
row of the BOYS table is represented in the query results (some more than once).
Similarly, every row of the GIRLS table is represented in the query results (again, some
more than once).

Left and Right Outer Joins *
Technically, the outer join produced by the previous query is called the full outer join
of the two tables. Both tables are treated symmetrically in the full outer join. Two other
well-defined outer joins do not treat the two tables symmetrically.

The left outer join between two tables is produced by following Step 1 and Step 2
in the previous numbered list but omitting Step 3. The left outer join thus includes
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NULL-extended copies of the unmatched rows from the first (left) table but does not
include any unmatched rows from the second (right) table. Here is a left outer join
between the GIRLS and BOYS tables:

List girls and boys in the same city and any unmatched girls.

SELECT *

FROM GIRLS, BOYS

WHERE GIRLS.CITY *= BOYS.CITY

GIRLS.NAME  GIRLS.CITY  BOYS.NAME  BOYS.CITY

----------- ----------- ---------- ----------

Mary        Boston      John       Boston

Mary        Boston      Henry      Boston

Susan       Chicago     Sam        Chicago

Betty       Chicago     Sam        Chicago

Anne        Denver      NULL       NULL

Nancy       NULL        NULL       NULL

The query produces six rows of query results, showing the matched girl/boy pairs
and the unmatched girls. The unmatched boys are missing from the results.

Similarly, the right outer join between two tables is produced by following Step 1
and Step 3 in the previous numbered list but omitting Step 2. The right outer join thus
includes NULL-extended copies of the unmatched rows from the second (right) table
but does not include the unmatched rows of the first (left) table. Here is a right outer
join between the GIRLS and BOYS tables:

List girls and boys in the same city and any unmatched boys.

SELECT *

FROM GIRLS, BOYS

WHERE GIRLS.CITY =* BOYS.CITY

GIRLS.NAME  GIRLS.CITY  BOYS.NAME  BOYS.CITY

----------- ----------- ---------- ----------

Mary        Boston      John       Boston

Mary        Boston      Henry      Boston

Susan       Chicago     Sam        Chicago

Betty       Chicago     Sam        Chicago

NULL        NULL        James      Dallas

NULL        NULL        George     NULL
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This query also produces six rows of query results, showing the matched girl/
boy pairs and the unmatched boys. This time the unmatched girls are missing from
the results.

As noted before, the left and right outer joins do not treat the two joined tables
symmetrically. It is often useful to think about one of the tables being the “major” table
(the one whose rows are all represented in the query results) and the other table being
the “minor” table (the one whose columns contain NULL values in the joined query
results). In a left outer join, the left (first-mentioned) table is the major table, and the
right (later-named) table is the minor table. The roles are reversed in a right outer join
(right table is major, left table is minor).

In practice, the left and right outer joins are more useful than the full outer join,
especially when joining data from two tables using a parent/child (primary key/
foreign key) relationship. To illustrate, consider once again the sample database. We
have already seen one example involving the SALESREPS and OFFICES table. The
REP_OFFICE column in the SALESREPS table is a foreign key to the OFFICES table; it
tells the office where each salesperson works, and it is allowed to have a NULL value
for a new salesperson who has not yet been assigned to an office. Tom Snyder is such a
salesperson in the sample database. Any join that exercises this SALESREPS-to-OFFICES
relationship and expects to include data for Tom Snyder must be an outer join, with the
SALESREPS table as the major table. Here is the example used earlier:

List the salespeople and the cities where they work.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

WHERE REP_OFFICE *= OFFICE

NAME           CITY

-------------- ------------

Tom Snyder     NULL

Mary Jones     New York

Sam Clark      New York

Bob Smith      Chicago

Paul Cruz      Chicago

Dan Roberts    Chicago

Bill Adams     Atlanta

Sue Smith      Los Angeles

Larry Fitch    Los Angeles

Nancy Angelli  Denver

Note in this case (a left outer join), the “child” table (SALESREPS, the table with
the foreign key) is the major table in the outer join, and the “parent” table (OFFICES) is
the minor table. The objective is to retain rows containing NULL foreign key values (like
Tom Snyder’s) from the child table in the query results, so the child table becomes the
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major table in the outer join. It doesn’t matter whether the query is actually expressed
as a left outer join (as it was previously) or as a right outer join like this:

List the salespeople and the cities where they work.

SELECT NAME, CITY

FROM SALESREPS, OFFICES

WHERE OFFICE =* REP_OFFICE

NAME           CITY

-------------- ------------

Tom Snyder     NULL

Mary Jones     New York

Sam Clark      New York

Bob Smith      Chicago

Paul Cruz      Chicago

Dan Roberts    Chicago

Bill Adams     Atlanta

Sue Smith      Los Angeles

Larry Fitch    Los Angeles

Nancy Angelli  Denver

What matters is that the child table is the major table in the outer join.
There are also useful joined queries where the parent is the major table and the child

table is the minor table. For example, suppose the company in the sample database opens
a new sales office in Dallas, but initially the office has no salespeople assigned to it. If you
want to generate a report listing all of the offices and the names of the salespeople who
work there, you might want to include a row representing the Dallas office. Here is the
outer join query that produces those results:

List the offices and the salespeople who work in each one.

SELECT CITY, NAME

FROM OFFICES, SALESREPS

WHERE OFFICE *= REP_OFFICE

CITY         NAME

------------ --------------

New York     Mary Jones

New York     Sam Clark

Chicago      Bob Smith

Chicago      Paul Cruz

Chicago      Dan Roberts

Atlanta      Bill Adams
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Los Angeles  Sue Smith

Los Angeles  Larry Fitch

Denver       Nancy Angelli

Dallas       NULL

In this case, the parent table (OFFICES) is the major table in the outer join, and the
child table (SALESREPS) is the minor table. The objective is to insure that all rows from
the OFFICES table are represented in the query results, so it plays the role of major
table. The roles of the two tables are precisely reversed from the previous example. Of
course, the row for Tom Snyder, which was included in the query results for the earlier
example (when SALESREPS was the major table), is missing from this set of query
results because SALESREPS is now the minor table.

Outer Join Notation *
Because the outer join was not part of the SQL1 standard and was not implemented in
early IBM SQL products, the DBMS vendors who support the outer join have used
various notations in their SQL dialects. The “*=*” notation used in the earlier examples
of this section is used by SQL Server. This notation indicates an outer join by appending
an asterisk (*) to the comparison test in the WHERE clause that defines the join condition.
To indicate the full outer join between two tables, TBL1 and TBL2, on columns COL1
and COL2, an asterisk (*) is placed before and after the standard join operator. The
resulting full outer join comparison test looks like this:

WHERE COL1 *=* COL2

To indicate a left outer join of TBL1 to TBL2, only the leading asterisk is specified,
giving a comparison test like this:

WHERE COL1 *= COL2

To indicate a right outer join of TBL1 to TBL2, only the trailing asterisk is specified,
giving a comparison test like this:

WHERE COL1 =* COL2

An outer join can be used with any of the comparison operators using the same
notation. For example, a left outer join of TBL1 to TBL2 using a greater than or equal
(>=) comparison would produce a comparison test like this:

WHERE COL1 *>= COL2
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Oracle also supports the outer join operation but uses a different notation. This
notation indicates the outer join in the WHERE clause by including a parenthesized plus
sign following the column whose table is to have the imaginary NULL row added (that is, the
minor table in the outer join). The left outer join of TBL1 to TBL2 produces a search
condition that looks like this:

WHERE COL1 = COL2 (+)

and the right outer join of TBL1 to TBL2 produces a search condition that looks like this:

WHERE COL1 (+) = COL2

Note that the plus sign appears on the opposite side of the comparison from where
the asterisk appears in the SQL Server notation. Oracle does not support a full outer
join, but as indicated earlier, this does not diminish the practical usefulness of the
Oracle outer join capability.

Although both of these outer join notations are relatively convenient, they’re also
somewhat deceiving. Recall that the rules for multitable SQL query processing begin
by examining the FROM clause of a query and conceptually building the product of the
two (or more) tables. Only after the product table is constructed does the DBMS start
eliminating rows that do not meet the WHERE clause search condition. But with the SQL
Server or Oracle notation, the FROM clause doesn’t tell the DBMS whether to build a
product table that is only the inner join or one that includes the NULL-extended rows of
an outer join. To determine this, the DBMS must “look ahead” to the WHERE clause. A
more serious problem is that a join between two tables may involve more than one pair
of matching columns, and it’s not clear how the notation should be used when there
are two or three matching column pairs.

Other problems with the outer join notation arise when it is extended to three or
more tables. It’s easy to extend the notion of an outer join to three tables:

TBL1 OUTER-JOIN TBL2 OUTER-JOIN TBL3

This is a perfectly legitimate set of database operations according to the theory of
relational databases. But the result depends upon the order in which the outer join
operations are performed. The results of:

(TBL1 OUTER-JOIN TBL2) OUTER-JOIN TBL3

will in general be different from the results of:

TBL1 OUTER-JOIN (TBL2 OUTER-JOIN TBL3)
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Using either the SQL Server or Oracle notations, it’s impossible to specify the
evaluation order of the outer joins. Because of this, the results produced by the outer
join of three or more tables depend upon the specifics of the DBMS implementation.

Joins and the SQL2 Standard
Outer joins posed a problem for the writers of the SQL2 standard. Because outer joins
are the only way to represent some extremely useful queries, it was important that the
SQL2 standard include support for outer joins. In addition, outer joins were supported
in many commercial SQL products and were becoming a more important part of the
SQL language. However, the methods used to represent outer joins varied widely
among the different SQL products, as shown in the preceding sections. Furthermore,
the methods used to denote outer joins in commercial products all had deficiencies and
had been chosen more because of their minor impact on the SQL language than because
of their clarity or correctness.

Against this background, the SQL2 standard specified a brand new method for
supporting outer joins, which was not based on the established notation of a popular
SQL product. The SQL2 specification puts the support for outer joins into the FROM
clause, with an elaborate syntax that allows the user to specify exactly how the source
tables for a query are to be joined together. The outer join support in the SQL2 standard
has two distinct advantages. First, the SQL2 standard can express even the most complex
of joins. Second, existing database products can support the SQL2 extensions to SQL1
and retain support for their own proprietary outer join syntax without conflict. IBM’s
DB2 relational database, for example, has added support for most, but not all, of the new
SQL2 join syntax at this writing. It’s reasonable to expect that most of the major DBMS
brands will follow, and that the SQL2-style join features will become a part of the SQL
mainstream over the next several years.

The advantages of the SQL2 expanded join support come at the expense of some
significant added complexity for what had previously been one of the simpler parts of
the SQL language. In fact, the expanded join support is part of a much larger expansion
of query capabilities in SQL2 which add even more capability and complexity. The
other expanded features include set operations on query results (union, intersection,
and differences of tables) and much richer query expressions that manipulate rows and
tables and allow them to be used in subqueries. The expanded join-related capabilities
are described in this section. The other expanded capabilities are described in the next
chapter, after the discussion of basic subqueries.

Inner Joins in SQL2 *
Figure 7-13 shows a simplified form of the extended SQL2 syntax for the FROM clause.
It’s easiest to understand all of the options provided by considering each type of join,



one by one, starting with the basic inner join and then moving to the various forms of
outer join. The standard inner join of the GIRLS and BOYS tables can be expressed in
SQL1 language:

176 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 7-13. Extended FROM clause in the SQL2 standard
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SELECT *

FROM GIRLS, BOYS

WHERE GIRLS.CITY = BOYS.CITY

This is still an acceptable statement in SQL2. The writers of the SQL2 standard
really couldn’t have made it illegal without “breaking” all of the millions of multitable
SQL queries that had already been written by the early 1990s. But the SQL2 standard
specifies an alternative way of expressing the same query:

SELECT *

FROM GIRLS INNER JOIN BOYS

ON GIRLS.CITY = BOYS.CITY

Note that the two tables to be joined are explicitly connected by a JOIN operation,
and the search condition that describes the join is now specified in an ON clause within
the FROM clause. The search condition following the keyword ON can be any search
condition that specifies the criteria used to match rows of the two joined tables. The
columns referenced in the search condition must come only from the two joined tables.
For example, assume that the BOYS table and the GIRLS table were each extended by
adding an AGE column. Here is a join that matches girl/boy pairs in the same city and
also requires that the boy and girl in each pair be the same age:

SELECT *

FROM GIRLS INNER JOIN BOYS

ON (GIRLS.CITY = BOYS.CITY)

AND (GIRLS.AGE = BOYS.AGE)

In these simple two-table joins, the entire contents of the WHERE clause simply
moved into the ON clause, and the ON clause doesn’t add any functionality to the SQL
language. However, recall from earlier in this chapter that in an outer join involving
three tables or more, the order in which the joins occur affect the query results. The
ON clause provides detailed control over how these multitable joins are processed, as
described later in this chapter.

The SQL2 standard permits another variation on the simple inner join query between
the GIRLS and BOYS tables. Because the matching columns in the two tables have the
same names and are being compared for equality (which is often the case), an alternative
form of the ON clause, specifying a list of matching column names, can be used:

SELECT *

FROM GIRLS INNER JOIN BOYS

USING (CITY, AGE)
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The USING clause specifies a comma-separated list of the matching column names,
which must be identical in both tables. It is completely equivalent to the ON clause that
specifies each matching column pair explicitly, but it’s a lot more compact and
therefore easier to understand. Of course, if the matching columns have different
names in the BOYS table and GIRLS table, then an ON clause or a WHERE clause with an
equals test must be used. The ON clause must also be used if the join does not involve
equality of the matching columns. For example, if you wanted to select girl/boy pairs
where the girl was required to be older than the boy, you must use an ON clause to
specify the join:

SELECT *

FROM GIRLS INNER JOIN BOYS

ON (GIRLS.CITY = BOYS.CITY

AND GIRLS.AGE > BOYS.AGE)

There is one final variation on this simple query that illustrates another feature of
the SQL2 FROM clause. A join between two tables where the matching columns are
exactly those specific columns from the two tables that have identical names is called a
natural join, because usually this is precisely the most “natural” way to join the two
tables. The query selecting girl/boy pairs who live in the same city and have the same
age can be expressed as a natural join using this SQL2 query:

SELECT *

FROM GIRLS NATURAL INNER JOIN BOYS

If the NATURAL keyword is specified, the ON and USING clauses may not be used in
the join specification, because the natural join specifically defines the search condition
to be used to join the tables—all of the columns with identical column names in both
tables are to be matched.

The SQL2 standard assumes that the “default” join between two tables is an inner
join. You can omit the keyword INNER from any of the preceding examples, and the
resulting query remains a legal SQL2 statement with the same meaning.

Outer Joins in SQL2 *
The SQL2 standard provides complete support for outer joins using the same clauses
described in the preceding section for inner joins and additional keywords. For example,
the full outer join of the GIRLS and BOYS tables (without the AGE columns) is generated
by this query:

SELECT *

FROM GIRLS FULL OUTER JOIN BOYS

ON GIRLS.CITY = BOYS.CITY

178 S Q L : T h e C o m p l e t e R e f e r e n c e



R
E
T
R

IE
V
IN

G
D

A
T
A

As explained earlier in this chapter, the query results will contain a row for each
matched girl/boy pair, as well as one row for each unmatched boy, extended with
NULL values in the columns from the other, unmatched table. SQL2 allows the same
variations for outer joins as for inner joins; the query could also have been written:

SELECT *

FROM GIRLS NATURAL FULL OUTER JOIN BOYS

or

SELECT *

FROM GIRLS FULL OUTER JOIN BOYS

USING (CITY)

Just as the keyword INNER is optional in the SQL2 language, the SQL2 standard
also allows you to omit the keyword OUTER. The preceding query could also have
been written:

SELECT *

FROM GIRLS FULL JOIN BOYS

USING (CITY)

The DBMS can infer from the word FULL that an outer join is required.
By specifying LEFT or RIGHT instead of FULL, the SQL2 language extends quite

naturally to left or right outer joins. Here is the left outer join version of the same query:

SELECT *

FROM GIRLS LEFT OUTER JOIN BOYS

USING (CITY)

As described earlier in the chapter, the query results will include matched girl/boy
pairs and NULL-extended rows for each unmatched row in the GIRLS table (the “left”
table in the join), but the results do not include unmatched rows from the BOYS table.
Conversely, the right outer join version of the same query, specified like this:

SELECT *

FROM GIRLS RIGHT OUTER JOIN BOYS

USING (CITY)

includes boy/girl pairs and unmatched rows in the BOYS table (the “right” table in the
join) but does not include unmatched rows from the GIRLS table.
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Cross Joins and Union Joins in SQL2 *
The SQL2 support for extended joins includes two other methods for combining data
from two tables. A cross join is another name for the Cartesian product of two tables, as
described earlier in this chapter. A union join is closely related to the full outer join; its
query results are a subset of those generated by the full outer join.

Here is a SQL2 query that generates the complete product of the GIRLS and
BOYS tables:

SELECT *

FROM GIRLS CROSS JOIN BOYS

By definition, the Cartesian product (also sometimes called the cross product, hence
the name “CROSS JOIN”) contains every possible pair of rows from the two tables. It
“multiplies” the two tables, turning tables of, for example, three girls and two boys into
a table of six (3×2 = 6) boy/girl pairs. No “matching columns” or “selection criteria”
are associated with the cross products, so the ON clause and the USING clause are not
allowed. Note that the cross join really doesn’t add any new capabilities to the SQL
language. Exactly the same query results can be generated with an inner join that
specifies no matching columns. So the preceding query could just as well have been
written as:

SELECT *

FROM GIRLS, BOYS

The use of the keywords CROSS JOIN in the FROM clause simply makes the cross
join more explicit. In most databases, the cross join of two tables by itself is of very little
practical use. Its usefulness really comes as a building block for more complex query
expressions that start with the cross product of two tables and then use SQL2 summary
query capabilities (described in the next chapter) or SQL2 set operations to further
manipulate the results.

The union join in SQL2 combines some of the features of the UNION operation
(described in the previous chapter) with some of the features of the join operations
described in this chapter. Recall that the UNION operation effectively combines the rows
of two tables, which must have the same number of columns and the same data types for
each corresponding column. This query, which uses a simple UNION operation:

SELECT *

FROM GIRLS

UNION ALL

SELECT *

FROM BOYS
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when applied to a three-row table of girls and a two-row table of boys yields a five-row
table of query results. Each row of query results corresponds precisely to either a row
of the GIRLS table or a row of the BOYS table from which it was derived. The query
results have two columns, NAME and CITY, because the GIRLS and BOYS tables each
have these two columns.

The union join of the GIRLS and BOYS tables is specified by this SQL2 query:

SELECT *

FROM GIRLS

UNION JOIN BOYS

The query results again have five rows, and again each row of results is contributed
by exactly one of the rows in the GIRLS table or the BOYS table. But unlike the simple
union, these query results have four columns—all of the columns of the first table plus all
of the columns of the second table. In this aspect, the union join is like all of the other
joins. For each row of query results contributed by the GIRLS table, the columns that
come from the GIRLS table receive the corresponding data values; the other columns
(those that come from the BOYS table) have NULL values. Similarly, for each row of query
results contributed by the BOYS table, the columns that come from the BOYS table receive
the corresponding data values; the other columns (this time, those that come from the
GIRLS table) have NULL values.

Another way of looking at the results of the union join is to compare them to the
results of a full outer join of the GIRLS and BOYS tables. The union join results include
the NULL-extended rows of data from the GIRLS table and the NULL-extended rows of
data from the BOYS table, but they do not include any of the rows generated by matching
columns. Referring back to the definition of an outer join in Figure 7-14, the union join is
produced by omitting Step 1 and following Step 2 and Step 3.

Finally, it’s useful to examine the relationships between the sets of rows produced by
the cross join, the various types of outer joins, and the inner join shown in Figure 7-14.
When joining two tables, TBL1with m rows and TBL2 with n rows, the figure shows that:

� The cross join will contain m × n rows, consisting of all possible row pairs from
the two tables.

� TBL1 INNER JOIN TBL2 will contain some number of rows, r, which is less
than m × n. The inner join is strictly a subset of the cross join. It is formed by
eliminating those rows from the cross join that do not satisfy the matching
condition for the inner join.

� The left outer join contains all of the rows from the inner join, plus each unmatched
row from TBL1, NULL-extended.

� The right outer join also contains all of the rows from the inner join, plus each
unmatched row from TBL2, NULL-extended.
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� The full outer join contains all of the rows from the inner join, plus each unmatched
row from TBL1, NULL-extended, plus each unmatched row from TBL2,
NULL-extended. Roughly speaking, its query results are equal to the left outer
join “plus” the right outer join.

� The union join contains all of the rows of TBL1, NULL-extended, plus all of the
rows of TBL2, NULL-extended. Roughly speaking, its query results are the full
outer join “minus” the inner join.×

Multitable Joins in SQL2
An important advantage of the SQL2 notation is that it allows very clear specification
of three-table or four-table joins. To build these more complex joins, any of the join
expressions shown in Figure 7-13 and described in the preceding sections can be
enclosed in parentheses. The resulting join expression can itself be used in another join
expression, as if it were a simple table. Just as SQL allows you to combine mathematical

Figure 7-14. Relationships among SQL2 join types
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operations (+, −, *, and /) with parentheses and build more complex expressions, the
SQL2 standard allows you to build more complex join expressions in the same way.

To illustrate multitable joins, assume that a new PARENTS table has been added to
the database containing the GIRLS and BOYS example we have been using. The PARENTS
table has three columns:

CHILD Matches the NAME column in the GIRLS or BOYS table

TYPE Specifies FATHER or MOTHER

PNAME First name of the parent

A row in the GIRLS or BOYS table can have two matching rows in the PARENTS table,
one specifying a MOTHER and one a FATHER, or it can have only one of these rows, or
it can have no matching rows if no data on the child’s parents is available. The GIRLS,
BOYS, and PARENTS tables together provide a rich set of data for some multitable
join examples.

For example, suppose you wanted to make a list of all of the girls, along with the
names of their mothers and the names of the boys who live in the same city. Here is
one query that produces the list:

SELECT GIRLS.NAME, PNAME, BOYS.NAME

FROM ((GIRLS JOIN PARENTS

ON PARENT.CHILD = NAME)

JOIN BOYS

ON (GIRLS.CITY = BOYS.CITY))

WHERE TYPE = "MOTHER"

Because both of these joins are inner joins, any girl who does not have a boy living
in the same city or any girl who does not have a mother in the database will not show
up in the query results. This may or may not be the desired result. To include those
girls without a matching mother in the database, you would change the join between
the GIRLS and the PARENTS table to a left outer join, like this:

SELECT GIRLS.NAME, PNAME, BOYS.NAME

FROM ((GIRLS LEFT JOIN PARENTS

ON PARENT.CHILD = NAME)

JOIN BOYS

ON (GIRLS.CITY = BOYS.CITY))

WHERE (TYPE = "MOTHER") OR (TYPE IS NULL)

This query will include all of the girl/boy pairs, regardless of whether the girls
have a mother in the database, but it will still omit girls who do not live in a city with
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any of the boys. To include these girls as well, the second join must also be converted
to a left outer join:

SELECT GIRLS.NAME, PNAME, BOYS.NAME

FROM ((GIRLS LEFT JOIN PARENTS

ON PARENT.CHILD = NAME)

LEFT JOIN BOYS

ON (GIRLS.CITY = BOYS.CITY))

WHERE (TYPE = "MOTHER") OR (TYPE IS NULL)

Note that the NULL-extension of the GIRLS rows by the outer join with their mothers
also creates some additional complication in the WHERE clause. The girls without matching
mothers will generate rows with not only a NULLmother’s name (PNAME) column but also
a NULL value in the TYPE column. The simple selection criterion:

WHERE (TYPE = "MOTHER")

would generate an “unknown” result for these rows, and they will not be included in
the query results. But the entire reason for using the left outer join was to make certain
they were included! To solve this problem, the WHERE clause is expanded to also test
for, and allow, rows where the parent type is NULL.

As one final example, suppose you want to generate a girl/boy listing again, but
this time you want to include the name of the boy’s father and the girl’s mother in the
query results. This query requires a four-table join (BOYS, GIRLS, and two copies of the
PARENTS table, one for joining to the boys information to get father names and one for
joining to the girls information to obtain mother names). Again the potential for
unmatched rows in the joins means there are several possible “right” answers to the
query. Suppose, as before, that you want to include all girls and boys in the boy/girl
pairing, even if the boy or girl does not have a matching row in the PARENTS table.
You need to use outer joins for the (BOYS join PARENTS) and (GIRLS join PARENTS)
parts of the query, but an inner join for the (BOYS join GIRLS) part of the query. This
SQL2 query yields the desired results:

SELECT GIRLS.NAME, MOTHERS.PNAME, BOYS.NAME, FATHERS.PNAME

FROM ((GIRLS LEFT JOIN PARENTS AS MOTHERS

ON ((CHILD = GIRLS.NAME) AND (TYPE = "MOTHER")))

JOIN (BOYS LEFT JOIN PARENTS AS FATHERS

ON ((CHILD = BOYS.NAME) AND (TYPE = "FATHER"))))

USING (CITY)

This query solves the WHERE-clause test problem in a different way—by moving the
test for the TYPE of parent into the ON clause of the join specification. In this position,
the test for appropriate TYPE of parent will be performed when the DBMS finds matching
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columns to construct the join, before the NULL-extended rows are added to the outer
join results. Because the PARENTS table is being used twice in the FROM clause, in two
different roles, it’s necessary to give it two different table aliases so that the correct
names can be specified in the select list.

As this example shows, even a four-join query like this one can become quite
complex with the SQL2 syntax. However, despite the complexity, the SQL2 query does
specify precisely the query that the DBMS is to carry out. There is no ambiguity about
the order in which the tables are joined, or about which joins are inner or outer joins.
Overall, the added capability is well worth the added complexity introduced by the
extended SQL2 FROM clause.

Although none of the query examples included in this section had WHERE or ORDER
BY clauses, they can be freely used with the extended FROM clause in SQL2. The
relationship among the clauses is simple and remains as described earlier in this
chapter. The processing specified in the FROM clauses occurs first, including any joins
or unions. The join criteria specified in a USING or ON clause are applied as a part of the
particular join specification where they appear. When processing of the FROM class is
complete, the resulting table is used to apply the selection criteria in the WHERE clause.
Thus, the ON clause specifies search criteria that apply to specific joins; the WHERE
clause specifies search criteria that apply to the entire table resulting from these joins.

Summary
This chapter described how SQL handles queries that combine data from two or
more tables:

� In a multitable query (a join), the tables containing the data are named in the
FROM clause.

� Each row of query results is a combination of data from a single row in each of the
tables, and it is the only row that draws its data from that particular combination.

� The most common multitable queries use the parent/child relationships created
by primary keys and foreign keys.

� In general, joins can be built by comparing any pair(s) of columns from the two
joined tables, using either a test for equality or any other comparison test.

� A join can be thought of as the product of two tables from which some of the
rows have been removed.

� A table can be joined to itself; self-joins require the use of a table alias.

� Outer joins extend the standard (inner) join by retaining unmatched rows of
one or both of the joined tables in the query results, and using NULL values for
data from the other table.

� The SQL2 standard provides comprehensive support for inner and outer joins,
and for combining the results of joins with other multitable operations such as
unions, intersections, and differences.
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M
any requests for information don’t require the level of detail provided by the
SQL queries described in the last two chapters. For example, each of the
following requests asks for a single value or a small number of values that

summarize the contents of the database:

� What is the total quota for all salespeople?

� What are the smallest and largest assigned quotas?

� How many salespeople have exceeded their quota?

� What is the size of the average order?

� What is the size of the average order for each sales office?

� How many salespeople are assigned to each sales office?

SQL supports these requests for summary data through column functions and
the GROUP BY and HAVING clauses of the SELECT statement, which are described
in this chapter.

Column Functions
SQL lets you summarize data from the database through a set of column functions. A SQL
column function takes an entire column of data as its argument and produces a single
data item that summarizes the column. For example, the AVG() column function takes
a column of data and computes its average. Here is a query that uses the AVG() column
function to compute the average value of two columns from the SALESREPS table:

What are the average quota and average sales of our salespeople?

SELECT AVG(QUOTA), AVG(SALES)

FROM SALESREPS

AVG(QUOTA)   AVG(SALES)

------------ ------------

$300,000.00  $289,353.20

Figure 8-1 graphically shows how the query results are produced. The first column
function in the query takes values in the QUOTA column and computes their average;
the second one averages the values in the SALES column. The query produces a single
row of query results summarizing the data in the SALESREPS table.

SQL offers six different column functions, as shown in Figure 8-2. The column
functions offer different kinds of summary data:

� SUM() computes the total of a column.

� AVG() computes the average value in a column.
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� MIN() finds the smallest value in a column.

� MAX() finds the largest value in a column.

� COUNT() counts the number of values in a column.

� COUNT(*) counts rows of query results.

The argument to a column function can be a simple column name, as in the previous
example, or it can be a SQL expression, as shown here:

What is the average quota performance of our salespeople?

SELECT AVG(100 * (SALES/QUOTA))

FROM SALESREPS

AVG(100*(SALES/QUOTA))

-----------------------

102.60

To process this query, SQL constructs a temporary column containing the value of
the expression (100 * (SALES/QUOTA)) for each row of the SALESREPS table and then
computes the averages of the temporary column.

Figure 8-1. A summary query in operation



Computing a Column Total (SUM)
The SUM() column function computes the sum of a column of data values. The data in
the column must have a numeric type (integer, decimal, floating point, or money). The
result of the SUM() function has the same basic data type as the data in the column, but
the result may have a higher precision. For example, if you apply the SUM() function to
a column of 16-bit integers, it may produce a 32-bit integer as its result.

Here are some examples that use the SUM() column function:

What are the total quotas and sales for all salespeople?

SELECT SUM(QUOTA), SUM(SALES)

FROM SALESREPS

SUM(QUOTA)     SUM(SALES)

-------------- --------------

$2,700,000.00  $2,893,532.00

What is the total of the orders taken by Bill Adams?
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SELECT SUM(AMOUNT)

FROM ORDERS, SALESREPS

WHERE NAME = 'Bill Adams'

AND REP = EMPL_NUM

SUM(AMOUNT)

------------

$39,327.00

Computing a Column Average (AVG)
The AVG() column function computes the average of a column of data values. As
with the SUM() function, the data in the column must have a numeric type. Because the
AVG() function adds the values in the column and then divides by the number of values,
its result may have a different data type than that of the values in the column. For example,
if you apply the AVG() function to a column of integers, the result will be either a decimal
or a floating point number, depending on the brand of DBMS you are using.

Here are some examples of the AVG() column function:

Calculate the average price of products from manufacturer ACI.

SELECT AVG(PRICE)

FROM PRODUCTS

WHERE MFR_ID = 'ACI'

AVG(PRICE)

-----------

$804.29

Calculate the average size of an order placed by Acme Mfg. (customer number 2103).

SELECT AVG(AMOUNT)

FROM ORDERS

WHERE CUST = 2103

AVG(AMOUNT)

------------

$8,895.50

Finding Extreme Values (MIN and MAX)
The MIN() and MAX() column functions find the smallest and largest values in a column,
respectively. The data in the column can contain numeric, string, or date/time information.
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The result of the MIN() or MAX() function has exactly the same data type as the data in
the column.

Here are some examples that show the use of these column functions:

What are the smallest and largest assigned quotas?

SELECT MIN(QUOTA), MAX(QUOTA)

FROM SALESREPS

MIN(QUOTA)   MAX(QUOTA)

------------ ------------

$200,000.00  $350,000.00

What is the earliest order date in the database?

SELECT MIN(ORDER_DATE)

FROM ORDERS

MIN(ORDER_DATE)

----------------

04-JAN-89

What is the best sales performance of any salesperson?

SELECT MAX(100 * (SALES/QUOTA))

FROM SALESREPS

MAX(100*(SALES/QUOTA))

-----------------------

135.44

When the MIN() and MAX() column functions are applied to numeric data, SQL
compares the numbers in algebraic order (large negative numbers are less than small
negative numbers, which are less than zero, which is less than all positive numbers).
Dates are compared sequentially. (Earlier dates are smaller than later ones.) Durations
are compared based on their length. (Shorter durations are smaller than longer ones.)

When using MIN() and MAX() with string data, the comparison of two strings
depends on the character set being used. On a personal computer or minicomputer,
both of which use the ASCII character set, digits come before the letters in the sorting
sequence, and all of the uppercase characters come before all of the lowercase characters.
On IBM mainframes, which use the EBCDIC character set, the lowercase characters
precede the uppercase characters, and digits come after the letters. Here is a comparison
of the ASCII and EBCDIC collating sequences of a list of strings, from smallest to largest:
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ASCII EBCDIC

1234ABC acme mfg.

5678ABC zeta corp.

ACME MFG. Acme Mfg.

Acme Mfg. ACME MFG.

ZETA CORP. Zeta Corp.

Zeta Corp. ZETA CORP.

acme mfg. 1234ABC

zeta corp. 5678ABC

The difference in the collating sequences means that a query with an ORDER BY
clause can produce different results on two different systems.

International characters pose additional problems (for example, accented characters
in French, German, Spanish, or Italian, or the Cyrillic alphabet letters used in Greek or
Russian, or the Kanji symbols used in Japanese). Some brands of DBMS use special
international sorting algorithms to sort these characters into their correct position for
each language. Others simply sort them according to the numeric value of the code
assigned to the character. To address these issues, the SQL2 standard includes elaborate
support for national character sets, user-defined character sets, and alternate collating
sequences. Unfortunately, support for these SQL2 features varies widely among
popular DBMS products. If your application involves international text, you will want
to experiment with your particular DBMS to find out how it handles these characters.

Counting Data Values (COUNT)
The COUNT() column function counts the number of data values in a column. The data
in the column can be of any type. The COUNT() function always returns an integer,
regardless of the data type of the column. Here are some examples of queries that use
the COUNT() column function:

How many customers are there?

SELECT COUNT(CUST_NUM)

FROM CUSTOMERS

COUNT(CUST_NUM)

----------------

21
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How many salespeople are over quota?

SELECT COUNT(NAME)

FROM SALESREPS

WHERE SALES > QUOTA

COUNT(NAME)

------------

7

How many orders for more than $25,000 are on the books?

SELECT COUNT(AMOUNT)

FROM ORDERS

WHERE AMOUNT > 25000.00

COUNT(AMOUNT)

--------------

4

Note that the COUNT() function ignores the values of the data items in the column;
it simply counts how many data items there are. As a result, it doesn’t really matter
which column you specify as the argument of the COUNT() function. The last example
could just as well have been written this way:

SELECT COUNT(ORDER_NUM)

FROM ORDERS

WHERE AMOUNT > 25000.00

COUNT(ORDER_NUM)

-----------------

4

In fact, it’s awkward to think of the query as “counting how many order amounts”
or “counting how many order numbers”; it’s much easier to think about “counting how
many orders.” For this reason, SQL supports a special COUNT(*) column function,
which counts rows rather than data values. Here is the same query, rewritten once
again to use the COUNT(*) function:

SELECT COUNT(*)

FROM ORDERS



WHERE AMOUNT > 25000.00

COUNT(*)

---------

4

If you think of the COUNT(*) function as a “rowcount” function, it makes the query
easier to read. In practice, the COUNT(*) function is almost always used instead of the
COUNT() function to count rows.

Column Functions in the Select List
Simple queries with a column function in their select list are fairly easy to understand.
However, when the select list includes several column functions, or when the argument
to a column function is a complex expression, the query can be harder to read and
understand. The following steps show the rules for SQL query processing expanded
once more to describe how column functions are handled. As before, the rules are
intended to provide a precise definition of what a query means, not a description of
how the DBMS actually goes about producing the query results.

To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 5 to
each of the statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause
names a single table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

4. For each remaining row, calculate the value of each item in the select list to
produce a single row of query results. For a simple column reference, use the
value of the column in the current row. For a column function, use the entire set
of rows as its argument.

5. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

6. If the statement is a UNION of SELECT statements, merge the query results for
the individual statements into a single table of query results. Eliminate duplicate
rows unless UNION ALL is specified.

7. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
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One of the best ways to think about summary queries and column functions is to
imagine the query processing broken down into two steps. First, you should imagine
how the query would work without the column functions, producing many rows of
detailed query results. Then you should imagine SQL applying the column functions to
the detailed query results, producing a single summary row. For example, consider the
following complex query:

Find the average order amount, total order amount, average order amount as a
percentage of the customer’s credit limit, and average order amount as a percentage
of the salesperson’s quota.

SELECT AVG(AMOUNT), SUM(AMOUNT), (100 * AVG(AMOUNT/CREDIT_LIMIT)),

(100 * AVG(AMOUNT/QUOTA))

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM

AND REP = EMPL_NUM

AVG(AMOUNT)  SUM(AMOUNT)  (100*AVG(AMOUNT/CREDIT_LIMIT))  (100*AVG(AMOUNT/QUOTA))

------------ ------------ ------------------------------- ------------------------

$8,256.37  $247,691.00                           24.45                     2.51

Without the column functions, it would look like this:

SELECT AMOUNT, AMOUNT, AMOUNT/CREDIT_LIMIT,AMOUNT/QUOTA

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM AND

AND REP = EMPL_NUM

and would produce one row of detailed query results for each order. The column functions
use the columns of this detailed query results table to generate a single-row table of
summary query results.

A column function can appear in the select list anywhere that a column name can
appear. It can, for example, be part of an expression that adds or subtracts the values of
two column functions. However, the argument of a column function cannot contain
another column function, because the resulting expression doesn’t make sense. This
rule is sometimes summarized as “it’s illegal to nest column functions.”

It’s also illegal to mix column functions and ordinary column names in a select list,
again because the resulting query doesn’t make sense. For example, consider this query:

SELECT NAME, SUM(SALES)

FROM SALESREPS
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The first select item asks SQL to generate a ten-row table of detailed query results—one
row for each salesperson. The second select item asks SQL to generate a one-row column of
summary query results containing the total of the SALES column. The two SELECT items
contradict one another, producing an error. For this reason, either all column references in
the select list must appear within the argument of a column function (producing a
summary query), or the select list must not contain any column functions (producing a
detailed query). Actually, the rule is slightly more complex when grouped queries and
subqueries are considered. The necessary refinements are described later in the “Group
Search Conditions” section.

NULL Values and Column Functions
The SUM(), AVG(), MIN(), MAX(), and COUNT() column functions each take a
column of data values as their argument and produce a single data value as a result.
What happens if one or more of the data values in the column is a NULL value? The
ANSI/ISO SQL standard specifies that NULL values in the column are ignored by the
column functions.

This query shows how the COUNT() column function ignores any NULL values in
a column:

SELECT COUNT(*), COUNT(SALES), COUNT(QUOTA)

FROM SALESREPS

COUNT(*)  COUNT(SALES)  COUNT(QUOTA)

--------- ------------- -------------

10            10             9

The SALESREPS table contains ten rows, so COUNT(*) returns a count of ten. The
SALES column contains ten non-NULL values, so the function COUNT(SALES) also
returns a count of ten. The QUOTA column is NULL for the newest salesperson. The
COUNT(QUOTA) function ignores this NULL value and returns a count of nine. Because
of these anomalies, the COUNT(*) function is almost always used instead of the COUNT()
function, unless you specifically want to exclude NULL values in a particular column
from the total.

Ignoring NULL values has little impact on the MIN() and MAX() column functions.
However, it can cause subtle problems for the SUM() and AVG() column functions, as
illustrated by this query:

SELECT SUM(SALES), SUM(QUOTA), (SUM(SALES) – SUM(QUOTA)), SUM(SALES-QUOTA)

FROM SALESREPS

SUM(SALES)     SUM(QUOTA)  (SUM(SALES)-SUM(QUOTA))  SUM(SALES-QUOTA)

-------------- -------------- ------------------------ -----------------

$2,893,532.00  $2,700,000.00              $193,532.00       $117,547.00
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You would expect the two expressions:

(SUM(SALES) – SUM(QUOTA))   and   SUM(SALES-QUOTA)

in the select list to produce identical results, but the example shows that they do not. The
salesperson with a NULL value in the QUOTA column is again the reason. The expression:

SUM(SALES)

totals the sales for all ten salespeople, while the expression:

SUM(QUOTA)

totals only the nine non-NULL quota values. The expression:

SUM(SALES) – SUM(QUOTA)

computes the difference of these two amounts. However, the column function:

SUM(SALES–QUOTA)

has a non-NULL argument value for only nine of the ten salespeople. In the row with a
NULL quota value, the subtraction produces a NULL, which is ignored by the SUM()
function. Thus, the sales for the salesperson without a quota, which are included in the
previous calculation, are excluded from this calculation.

Which is the “correct” answer? Both are! The first expression calculates exactly
what it says: “the sum of SALES, less the sum of QUOTA.” The second expression also
calculates exactly what it says: “the sum of (SALES – QUOTA).” When NULL values
occur, however, the two calculations are not quite the same.

The ANSI/ISO standard specifies these precise rules for handling NULL values in
column functions:

� If any of the data values in a column are NULL, they are ignored for the purpose
of computing the column function’s value.

� If every data item in the column is NULL, then the SUM(), AVG(), MIN(), and
MAX() column functions return a NULL value; the COUNT() function returns a
value of zero.
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� If no data items are in the column (that is, the column is empty), then the SUM(),
AVG(), MIN(), and MAX() column functions return a NULL value; the COUNT()
function returns a value of zero.

� The COUNT(*) counts rows and does not depend on the presence or absence of
NULL values in a column. If there are no rows, it returns a value of zero.

Although the standard is very clear in this area, commercial SQL products may
produce results different from the standard, especially if all of the data values in a
column are NULL or when a column function is applied to an empty table. Before
assuming the behavior specified by the standard, you should test your particular DBMS.

Duplicate Row Elimination (DISTINCT)
Recall from Chapter 6 that you can specify the DISTINCT keyword at the beginning of
the select list to eliminate duplicate rows of query results. You can also ask SQL to
eliminate duplicate values from a column before applying a column function to it.
To eliminate duplicate values, the keyword DISTINCT is included before the column
function argument, immediately after the opening parenthesis.

Here are two queries that illustrate duplicate row elimination for column functions:

How many different titles are held by salespeople?

SELECT COUNT(DISTINCT TITLE)

FROM SALESREPS

COUNT(DISTINCT TITLE)

----------------------

3

How many sales offices have salespeople who are over quota?

SELECT COUNT(DISTINCT REP_OFFICE)

FROM SALESREPS

WHERE SALES > QUOTA

COUNT(DISTINCT REP_OFFICE)

---------------------------

4

The SQL1 standard specified that when the DISTINCT keyword is used, the
argument to the column function must be a simple column name; it cannot be an
expression. The standard allows the DISTINCT keyword for the SUM() and AVG()
column functions. The standard does not permit use of the DISTINCT keyword with
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the MIN() and MAX() column functions because it has no impact on their results, but
many SQL implementations allow it anyway. The standard also requires the DISTINCT
keyword for the COUNT() column function, but many SQL implementations permit
the use of the COUNT() function without it. DISTINCT cannot be specified for the
COUNT(*) function, because it doesn’t deal with a column of data values at all—it
simply counts rows. The SQL2 standard relaxed these restrictions, allowing DISTINCT
to be applied for any of the column functions and permitting expressions as arguments
for any of the functions as well.

In addition, the DISTINCT keyword can be specified only once in a query. If it
appears in the argument of one column function, it can’t appear in any others. If it is
specified before the select list, it can’t appear in any column functions. The only exception
is that DISTINCT may be specified a second time inside a subquery (contained within
the query). Subqueries are described in Chapter 9.

Grouped Queries (GROUP BY Clause)
The summary queries described thus far are like the totals at the bottom of a report. They
condense all of the detailed data in the report into a single, summary row of data. Just
as subtotals are useful in printed reports, it’s often convenient to summarize query
results at a “subtotal” level. The GROUP BY clause of the SELECT statement provides
this capability.

The function of the GROUP BY clause is most easily understood by example. Consider
these two queries:

What is the average order size?

SELECT AVG(AMOUNT)

FROM ORDERS

AVG(AMOUNT)

------------

$8,256.37

What is the average order size for each salesperson?

SELECT REP, AVG(AMOUNT)

FROM ORDERS

GROUP BY REP

REP  AVG(AMOUNT)

---- ------------

101    $8,876.00

102    $5,694.00
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103    $1,350.00

105    $7,865.40

106   $16,479.00

107   $11,477.33

108    $8,376.14

109    $3,552.50

110   $11,566.00

The first query is a simple summary query like the previous examples in this chapter. The
second query produces several summary rows—one row for each group, summarizing the
orders taken by a single salesperson. Figure 8-3 shows how the second query works.
Conceptually, SQL carries out the query as follows:

1. SQL divides the orders into groups of orders, with one group for each salesperson.
Within each group, all of the orders have the same value in the REP column.

2. For each group, SQL computes the average value of the AMOUNT column for all
of the rows in the group and generates a single, summary row of query results.
The row contains the value of the REP column for the group and the calculated
average order size.

Figure 8-3. A grouped query in operation



A query that includes the GROUP BY clause is called a grouped query because it
groups the data from its source tables and produces a single summary row for each
row group. The columns named in the GROUP BY clause are called the grouping columns
of the query, because they determine how the rows are divided into groups. Here are
some additional examples of grouped queries:

What is the range of assigned quotas in each office?

SELECT REP_OFFICE, MIN(QUOTA), MAX(QUOTA)

FROM SALESREPS

GROUP BY REP_OFFICE

REP_OFFICE   MIN(QUOTA)   MAX(QUOTA)

----------- ------------ ------------

NULL         NULL         NULL

11  $275,000.00  $300,000.00

12  $200,000.00  $300,000.00

13  $350,000.00  $350,000.00

21  $350,000.00  $350,000.00

22  $300,000.00  $300,000.00

How many salespeople are assigned to each office?

SELECT REP_OFFICE, COUNT(*)

FROM SALESREPS

GROUP BY REP_OFFICE

REP_OFFICE  COUNT(*)

----------- ---------

NULL         1

11         2

12         3

13         1

21         2

22         1

How many different customers are served by each salesperson?

SELECT COUNT(DISTINCT CUST_NUM), 'customers for salesrep', CUST_REP

FROM CUSTOMERS
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GROUP BY CUST_REP

COUNT(DISTINCT CUST_NUM)  CUSTOMERS FOR SALESREP  CUST_REP

------------------------- ----------------------- ---------

3  customers for salesrep       101

4  customers for salesrep       102

3  customers for salesrep       103

1  customers for salesrep       104

2  customers for salesrep       105

2  customers for salesrep       106

.

.

.

There is an intimate link between the SQL column functions and the GROUP BY
clause. Remember that the column functions take a column of data values and produce
a single result. When the GROUP BY clause is present, it tells SQL to divide the detailed
query results into groups and to apply the column function separately to each group,
producing a single result for each group. The following steps show the rules for SQL
query processing, expanded once again for grouped queries.

To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7 to
each of the statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause
names a single table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

4. If there is a GROUP BY clause, arrange the remaining rows of the product table
into row groups, so that the rows in each group have identical values in all of
the grouping columns.

5. If there is a HAVING clause, apply its search condition to each row group,
retaining those groups for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

6. For each remaining row (or row group), calculate the value of each item in the
select list to produce a single row of query results. For a simple column reference,
use the value of the column in the current row (or row group). For a column
function, use the current row group as its argument if GROUP BY is specified;
otherwise, use the entire set of rows.
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7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

8. If the statement is a UNION of SELECT statements, merge the query results for
the individual statements into a single table of query results. Eliminate duplicate
rows unless UNION ALL is specified.

9. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.

Multiple Grouping Columns
SQL can group query results based on the contents of two or more columns. For example,
suppose you want to group the orders by salesperson and by customer. This query
groups the data based on both criteria:

Calculate the total orders for each customer of each salesperson.

SELECT REP, CUST, SUM(AMOUNT)

FROM ORDERS

GROUP BY REP, CUST

REP  CUST  SUM(AMOUNT)

---- ----- ------------

101  2102    $3,978.00

101  2108      $150.00

101  2113   $22,500.00

102  2106    $4,026.00

102  2114   $15,000.00

102  2120    $3,750.00

103  2111    $2,700.00

105  2103   $35,582.00

105  2111    $3,745.00

.

.

.

Even with multiple grouping columns, SQL provides only a single level of grouping.
The query produces a separate summary row for each salesperson/customer pair. It’s
impossible to create groups and subgroups with two levels of subtotals in SQL. The
best you can do is sort the data so that the rows of query results appear in the appropriate
order. In many SQL implementations, the GROUP BY clause will automatically have the
side effect of sorting the data, but you can override this sort with an ORDER BY clause,
as shown next:
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Calculate the total orders for each customer of each salesperson, sorted by customer, and
within each customer by salesperson.

SELECT CUST, REP, SUM(AMOUNT)

FROM ORDERS

GROUP BY CUST, REP

ORDER BY CUST, REP

CUST  REP  SUM(AMOUNT)

----- ---- ------------

2101  106    $1,458.00

2102  101    $3,978.00

2103  105   $35,582.00

2106  102    $4,026.00

2107  110   $23,132.00

2108  101      $150.00

2108  109    $7,105.00

2109  107   $31,350.00

2111  103    $2,700.00

2111  105    $3,745.00

.

.

.

Note that it’s also impossible to get both detailed and summary query results from
a single query. To get detailed query results with subtotals or to get multilevel subtotals,
you must write an application program using programmatic SQL and compute the
subtotals within the program logic. The original developers of SQL Server addressed
this limitation of standard SQL by adding an optional COMPUTE clause to the end of the
SELECT statement. The COMPUTE clause calculates subtotals and sub-subtotals, as
shown in this example:

Calculate the total orders for each customer of each salesperson, sorted by salesperson, and
within each salesperson by customer.

SELECT REP, CUST, AMOUNT

FROM ORDERS

ORDER BY REP, CUST

COMPUTE SUM(AMOUNT) BY REP, CUST

COMPUTE SUM(AMOUNT), AVG(AMOUNT) BY REP
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REP  CUST         AMOUNT

---- ----- --------------

101  2102      $3,978.00

sum

--------------

$3,978.00

REP  CUST         AMOUNT

---- ----- --------------

101  2108        $150.00

sum

--------------

$150.00

REP  CUST         AMOUNT

---- ----- --------------

101  2113     $22,500.00

sum

--------------

$22,500.00

sum

--------------

$26,628.00

avg

--------------

$8,876.00

REP  CUST         AMOUNT

---- ----- --------------

102  2106      $2,130.00

102  2106      $1,896.00

sum

--------------

$4,026.00

REP  CUST         AMOUNT

---- ----- --------------

102  2114     $15,000.00

sum

--------------

$15,000.00
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REP  CUST         AMOUNT

---- ----- --------------

102  2120      $3,750.00

sum

--------------

$3,750.00

sum

--------------

$22,776.00

avg

--------------

$5,694.00

.

.

.

The query produces one row of detailed query results for each row of the ORDERS
table, sorted by CUST within REP. In addition, it computes the sum of the orders for
each customer/salesperson pair (a low-level subtotal) and computes the sum of the
orders and average order size for each salesperson (a high-level subtotal). The query
results thus contain a mixture of detail rows and summary rows, which include both
subtotals and sub-subtotals.

The COMPUTE clause is very nonstandard, and in fact, it is unique to the Transact-
SQL dialect used by SQL Server. Furthermore, it violates the basic principles of relational
queries because the results of the SELECT statement are not a table, but a strange
combination of different types of rows. Nonetheless, as the example shows, it can be
very useful.

Restrictions on Grouped Queries
Grouped queries are subject to some rather strict limitations. The grouping columns
must be actual columns of the tables named in the FROM clause of the query. You cannot
group the rows based on the value of a calculated expression.

There are also restrictions on the items that can appear in the select list of a grouped
query. All of the items in the select list must have a single value for each group of rows.
Basically, this means that a select item in a grouped query can be:

� A constant

� A column function, which produces a single value summarizing the
rows in the group

� A grouping column, which by definition has the same value in every
row of the group

� An expression involving combinations of these
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In practice, a grouped query will always include both a grouping column and a
column function in its select list. If no column function appears, the query can be
expressed more simply using SELECT DISTINCT, without GROUP BY. Conversely, if
you don’t include a grouping column in the query results, you won’t be able to tell
which row of query results came from which group!

Another limitation of grouped queries is that SQL ignores information about
primary keys and foreign keys when analyzing the validity of a grouped query.
Consider this query:

Calculate the total orders for each salesperson.

SELECT EMPL_NUM, NAME, SUM(AMOUNT)

FROM ORDERS, SALESREPS

WHERE REP = EMPL_NUM

GROUP BY EMPL_NUM

Error: "NAME" not a GROUP BY expression

Given the nature of the data, the query makes perfectly good sense because
grouping on the salesperson’s employee number is in effect the same as grouping on
the salesperson’s name. More precisely, EMPL_NUM, the grouping column, is the primary
key of the SALESREPS table, so the NAME column must be single-valued for each group.
Nonetheless, SQL reports an error because the NAME column is not explicitly specified as
a grouping column. To correct the problem, you simply include the NAME column as a
second (redundant) grouping column:

Calculate the total orders for each salesperson.

SELECT EMPL_NUM, NAME, SUM(AMOUNT)

FROM ORDERS, SALESREPS

WHERE REP = EMPL_NUM

GROUP BY EMPL_NUM, NAME

EMPL_NUM NAME            SUM(AMOUNT)

--------- -------------- ------------

101 Dan Roberts      $26,628.00

102 Sue Smith        $22,776.00

103 Paul Cruz         $2,700.00

105 Bill Adams       $39,327.00

106 Sam Clark        $32,958.00
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107 Nancy Angelli    $34,432.00

108 Larry Fitch      $58,633.00

109 Mary Jones        $7,105.00

110 Tom Snyder       $23,132.00

Of course, if the salesperson’s employee number is not needed in the query results,
you can eliminate it entirely from the select list, giving:

Calculate the total orders for each salesperson.

SELECT NAME, SUM(AMOUNT)

FROM ORDERS, SALESREPS

WHERE REP = EMPL_NUM

GROUP BY NAME

NAME            SUM(AMOUNT)

-------------- ------------

Bill Adams       $39,327.00

Dan Roberts      $26,628.00

Larry Fitch      $58,633.00

Mary Jones        $7,105.00

Nancy Angelli    $34,432.00

Paul Cruz         $2,700.00

Sam Clark        $32,958.00

Sue Smith        $22,776.00

Tom Snyder       $23,132.00

NULL Values in Grouping Columns
A NULL value poses a special problem when it occurs in a grouping column. If the
value of the column is unknown, into which group should the row be placed? In the
WHERE clause, when two different NULL values are compared, the result is NULL (not
TRUE), that is, the two NULL values are not considered to be equal. Applying the same
convention to the GROUP BY clause would force SQL to place each row with a NULL
grouping column into a separate group by itself.

In practice, this rule proves too unwieldy. Instead, the ANSI/ISO SQL standard
considers two NULL values to be equal for purposes of the GROUP BY clause. If two
rows have NULLs in the same grouping columns and identical values in all of their
non-NULL grouping columns, they are grouped together into the same row group. The
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small sample table in Figure 8-4 illustrates the ANSI/ISO handling of NULL values by
the GROUP BY clause, as shown in this query:

SELECT HAIR, EYES, COUNT(*)

FROM PEOPLE

GROUP BY HAIR, EYES

HAIR   EYES    COUNT(*)

------ ------ ---------

Brown  Blue           1

NULL   Blue           2

NULL   NULL           2

Brown  NULL           3

Brown  Brown          2

Brown  Brown          2

Although this behavior of NULLs in grouping columns is clearly specified in the
ANSI/ISO standard, it is not implemented in all SQL dialects. It’s a good idea to build
a small test table and check the behavior of your DBMS brand before counting on a
specific behavior.

Figure 8-4. The PEOPLE table
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Group Search Conditions (HAVING Clause)
Just as the WHERE clause can be used to select and reject the individual rows that
participate in a query, the HAVING clause can be used to select and reject row groups.
The format of the HAVING clause parallels that of the WHERE clause, consisting of the
keyword HAVING followed by a search condition. The HAVING clause thus specifies a
search condition for groups.

An example provides the best way to understand the role of the HAVING clause.
Consider this query:

What is the average order size for each salesperson whose orders total more than $30,000?

SELECT REP, AVG(AMOUNT)

FROM ORDERS

GROUP BY REP

HAVING SUM(AMOUNT) > 30000.00

REP  AVG(AMOUNT)

---- ------------

105    $7,865.40

106   $16,479.00

107   $11,477.33

108    $8,376.14

Figure 8-5 shows graphically how SQL carries out the query. The GROUP BY clause
first arranges the orders into groups by salesperson. The HAVING clause then eliminates
any group where the total of the orders in the group does not exceed $30,000. Finally,
the SELECT clause calculates the average order size for each of the remaining groups
and generates the query results.

The search conditions you can specify in the HAVING clause are the same ones used
in the WHERE clause, as described in Chapters 6 and 9. Here is another example of the
use of a group search condition:

For each office with two or more people, compute the total quota and total sales for all
salespeople who work in the office.

SELECT CITY, SUM(QUOTA), SUM(SALESREPS.SALES)

FROM OFFICES, SALESREPS
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WHERE OFFICE = REP_OFFICE

GROUP BY CITY

HAVING COUNT(*) >= 2

CITY           SUM(QUOTA)  SUM(SALESREPS.SALES)

------------ ------------ ---------------------

Chicago       $775,000.00           $735,042.00

Los Angeles   $700,000.00           $835,915.00

New York      $575,000.00           $692,637.00

The following steps show the rules for SQL query processing, expanded once again
to include group search conditions.

Figure 8-5. A grouped search condition in operation
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To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7 to
each of the statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause
names a single table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the product
table, retaining those rows for which the search condition is TRUE (and discarding
those for which it is FALSE or NULL).

4. If there is a GROUP BY clause, arrange the remaining rows of the product table
into row groups, so that the rows in each group have identical values in all of
the grouping columns.

5. If there is a HAVING clause, apply its search condition to each row group, retaining
those groups for which the search condition is TRUE (and discarding those for
which it is FALSE or NULL).

6. For each remaining row (or row group), calculate the value of each item in the
select list to produce a single row of query results. For a simple column reference,
use the value of the column in the current row (or row group). For a column
function, use the current row group as its argument if GROUP BY is specified;
otherwise, use the entire set of rows.

7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query results
that were produced.

8. If the statement is a UNION of SELECT statements, merge the query results for
the individual statements into a single table of query results. Eliminate duplicate
rows unless UNION ALL is specified.

9. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.
Following this procedure, SQL handles the query in the previous example as follows:

1. Joins the OFFICES and SALESREPS tables to find the city where each
salesperson works.

2. Groups the resulting rows by office.

3. Eliminates groups with two or fewer rows—these represent offices that don’t
meet the HAVING clause criterion.

4. Calculates the total quota and total sales for each group.
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Here is one more example, which uses all of the SELECT statement clauses:

Show the price, quantity on hand, and total quantity on order for each product where the
total quantity on order is more than 75 percent of the quantity on hand.

SELECT DESCRIPTION, PRICE, QTY_ON_HAND, SUM(QTY)

FROM PRODUCTS, ORDERS

WHERE MFR = MFR_ID

AND PRODUCT = PRODUCT_ID

GROUP BY MFR_ID, PRODUCT_ID, DESCRIPTION, PRICE, QTY_ON_HAND

HAVING SUM(QTY) > (.75 * QTY_ON_HAND)

ORDER BY QTY_ON_HAND DESC

DESCRIPTION           PRICE  QTY_ON_HAND  SUM(QTY)

---------------- ---------- ------------ ---------

Reducer             $355.00           38        32

Widget Adjuster      $25.00           37        30

Motor Mount         $243.00           15        16

Right Hinge       $4,500.00           12        15

500-lb Brace      $1,425.00            5        22

To process this query, SQL conceptually performs the following steps:

1. Joins the ORDERS and PRODUCTS tables to find the description, price, and quantity
on hand for each product ordered.

2. Groups the resulting rows by manufacturer and product ID.

3. Eliminates groups where the quantity ordered (the total of the QTY column for
all orders in the group) is less than 75 percent of the quantity on hand.

4. Calculates the total quantity ordered for each group.

5. Generates one summary row of query results for each group.

6. Sorts the query results so that products with the largest quantity on hand
appear first.

As described previously, DESCRIPTION, PRICE, and QTY_ON_HAND must be
specified as grouping columns in this query solely because they appear in the select
list. They actually contribute nothing to the grouping process, because the MFR_ID and
PRODUCT_ID completely specify a single row of the PRODUCTS table, automatically
making the other three columns single-valued per group.

Restrictions on Group Search Conditions
The HAVING clause is used to include or exclude row groups from the query results, so
the search condition it specifies must be one that applies to the group as a whole rather
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than to individual rows. This means that an item appearing within the search condition
in a HAVING clause can be:

� A constant

� A column function, which produces a single value summarizing the rows in
the group

� A grouping column, which by definition has the same value in every row of
the group

� An expression involving combinations of these

In practice, the search condition in the HAVING clause will always include at least
one column function. If it did not, the search condition could be moved to the WHERE
clause and applied to individual rows. The easiest way to figure out whether a search
condition belongs in the WHERE clause or in the HAVING clause is to remember how the
two clauses are applied:

� The WHERE clause is applied to individual rows, so the expressions it contains
must be computable for individual rows.

� The HAVING clause is applied to row groups, so the expressions it contains must
be computable for a group of rows.

NULL Values and Group Search Conditions
Like the search condition in the WHERE clause, the HAVING clause search condition can
produce one of three results:

� If the search condition is TRUE, the row group is retained, and it contributes
a summary row to the query results.

� If the search condition is FALSE, the row group is discarded, and it does not
contribute a summary row to the query results.

� If the search condition is NULL, the row group is discarded, and it does not
contribute a summary row to the query results.

The anomalies that can occur with NULL values in the search condition are the same
as those for the WHERE clause and have been described in Chapter 6.

HAVING Without GROUP BY
The HAVING clause is almost always used in conjunction with the GROUP BY clause,
but the syntax of the SELECT statement does not require it. If a HAVING clause appears
without a GROUP BY clause, SQL considers the entire set of detailed query results to be
a single group. In other words, the column functions in the HAVING clause are applied
to one, and only one, group to determine whether the group is included or excluded
from the query results, and that group consists of all the rows. The use of a HAVING
clause without a corresponding GROUP BY clause is seldom seen in practice.



Summary
This chapter described summary queries, which summarize data from the database:

� Summary queries use SQL column functions to collapse a column of data values
into a single value that summarizes the column.

� Column functions can compute the average, sum, minimum, and maximum
values of a column, count the number of data values in a column, or count the
number of rows of query results.

� A summary query without a GROUP BY clause generates a single row of query
results, summarizing all the rows of a table or a joined set of tables.

� A summary query with a GROUP BY clause generates multiple rows of query
results, each summarizing the rows in a particular group.

� The HAVING clause acts as a WHERE clause for groups, selecting the row groups
that contribute to the summary query results.
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T
he SQL subquery feature lets you use the results of one query as part of another
query. The ability to use a query within a query was the original reason for the
word “structured” in the name Structured Query Language. The subquery

feature is less well known than SQL’s join feature, but it plays an important role in SQL
for three reasons:

� A SQL statement with a subquery is often the most natural way to express a query,
because it most closely parallels the English-language description of the query.

� Subqueries make it easier to write SELECT statements, because they let you break
a query down into pieces (the query and its subqueries) and then put the pieces
back together.

� Some queries cannot be expressed in the SQL language without using a subquery.

The first several sections of this chapter describe subqueries and show how they are
used in the WHERE and HAVING clauses of a SQL statement. The later sections of this
chapter describe the advanced query expression capabilities that have been added to
the SQL2 standard, which substantially expands the power of SQL to perform even the
most complex of database operations.

Using Subqueries
A subquery is a query within a query. The results of the subquery are used by the
DBMS to determine the results of the higher-level query that contains the subquery. In
the simplest forms of a subquery, the subquery appears within the WHERE or HAVING
clause of another SQL statement. Subqueries provide an efficient, natural way to
handle query requests that are themselves expressed in terms of the results of other
queries. Here is an example of such a request:

List the offices where the sales target for the office exceeds the sum of the individual
salespeople’s quotas.

The request asks for a list of offices from the OFFICES table, where the value of the
TARGET column meets some condition. It seems reasonable that the SELECT statement
that expresses the query should look something like this:

SELECT CITY   FROM OFFICES  WHERE TARGET > ???

The value “???” needs to be filled in and should be equal to the sum of the quotas
of the salespeople assigned to the office in question. How can you specify that value in
the query? From Chapter 8, you know that the sum of the quotas for a specific office
(say, office number 21) can be obtained with this query:
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SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = 21

But it would be inefficient to have to type in this query, write down the results, and
then type in the previous query with the correct amount. How can you put the results of
this query into the earlier query in place of the question marks? It would seem reasonable
to start with the first query and replace the “???” with the second query, as follows:

SELECT CITY

FROM OFFICES

WHERE TARGET > (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

In fact, this is a correctly formed SQL query. For each office, the inner query (the
subquery) calculates the sum of the quotas for the salespeople working in that office.
The outer query (the main query) compares the office’s target to the calculated total and
decides whether to add the office to the main query results. Working together, the
main query and the subquery express the original request and retrieve the requested
data from the database.

SQL subqueries typically appear as part of the WHERE clause or the HAVING clause.
In the WHERE clause, they help to select the individual rows that appear in the query
results. In the HAVING clause, they help to select the row groups that appear in the
query results.

What Is a Subquery?
Figure 9-1 shows the form of a SQL subquery. The subquery is enclosed in parentheses,
but otherwise it has the familiar form of a SELECT statement, with a FROM clause and
optional WHERE, GROUP BY, and HAVING clauses. The form of these clauses in a subquery
is identical to that in a SELECT statement, and they perform their normal functions
when used within a subquery. There are, however, a few differences between a subquery
and an actual SELECT statement:

� In the most common uses, a subquery must produce a single column of data as
its query results. This means that a subquery almost always has a single select
item in its SELECT clause.

� The ORDER BY clause cannot be specified in a subquery. The subquery results
are used internally by the main query and are never visible to the user, so it
makes little sense to sort them anyway.
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� Column names appearing in a subquery may refer to columns of tables in the
main query. These outer references are described in detail later in the “Outer
References” section.

� In most implementations, a subquery cannot be the UNION of several different
SELECT statements; only a single SELECT is allowed. (The SQL2 standard
allows much more powerful query expressions and relaxes this restriction, as
described later in the section “Advanced Queries in SQL2.”)

Subqueries in the WHERE Clause
Subqueries are most frequently used in the WHERE clause of a SQL statement. When
a subquery appears in the WHERE clause, it works as part of the row selection process.
The very simplest subqueries appear within a search condition and produce a value
that is used to test the search condition. Here is an example of a simple subquery:

List the salespeople whose quota is less than 10 percent of the companywide sales target.
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Figure 9-1. Basic subquery syntax diagram



SELECT NAME

FROM SALESREPS

WHERE QUOTA < (.1 * (SELECT SUM(TARGET) FROM OFFICES))

NAME

----------

Bob Smith

In this case, the subquery calculates the sum of the sales targets for all of the offices
to determine the companywide target, which is multiplied by 10 percent to determine
the cutoff sales quota for the query. That value is then used in the search condition to
check each row of the SALESREPS table and find the requested names. In this simple
case, the subquery produces the same value for every row of the SALESREPS table; the
QUOTA value for each salesperson is compared to the same companywide number. In
fact, you could carry out this query by first performing the subquery, to calculate the
cutoff quota amount ($275,000 in the sample database), and then carry out the main
query using this number in a simple WHERE clause:

WHERE QUOTA < 275000

It’s more convenient to use the subquery, but it’s not essential. Usually, subqueries are
not this simple. For example, consider once again the query from the previous section:

List the offices where the sales target for the office exceeds the sum of the individual
salespeople’s quotas.

SELECT CITY

FROM OFFICES

WHERE TARGET > (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

CITY

------------

Chicago

Los Angeles

In this (more typical) case, the subquery cannot be calculated once for the entire
query. The subquery produces a different value for each office, based on the quotas of
the salespeople in that particular office. Figure 9-2 shows conceptually how SQL carries
out the query. The main query draws its data from the OFFICES table, and the WHERE
clause selects which offices will be included in the query results. SQL goes through the
rows of the OFFICES table one by one, applying the test stated in the WHERE clause.
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The WHERE clause compares the value of the TARGET column in the current row to the
value produced by the subquery. To test the TARGET value, SQL carries out the subquery,
finding the sum of the quotas for salespeople in the current office. The subquery
produces a single number, and the WHERE clause compares the number to the TARGET
value, selecting or rejecting the current office based on the comparison. As the figure
shows, SQL carries out the subquery repeatedly, once for each row tested by the WHERE
clause of the main query.

Outer References
Within the body of a subquery, it’s often necessary to refer to the value of a column in the
current row of the main query. Consider once again the query from the previous sections:

List the offices where the sales target for the office exceeds the sum of the individual
salespeople’s quotas.
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Figure 9-2. Subquery operation in the WHERE clause



SELECT CITY

FROM OFFICES

WHERE TARGET > (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

The role of the subquery in this SELECT statement is to calculate the total quota
for those salespeople who work in a particular office—specifically, the office currently
being tested by the WHERE clause of the main query. The subquery does this by scanning
the SALESREPS table. But notice that the OFFICE column in the WHERE clause of the
subquery doesn’t refer to a column of the SALESREPS table; it refers to a column of the
OFFICES table, which is a part of the main query. As SQL moves through each row of
the OFFICES table, it uses the OFFICE value from the current row when it carries out
the subquery.

The OFFICE column in this subquery is an example of an outer reference, which is a
column name that does not refer to any of the tables named in the FROM clause of the
subquery in which the column name appears. Instead, the column name refers to a
column of a table specified in the FROM clause of the main query. As the previous
example shows, when the DBMS examines the search condition in the subquery, the
value of the column in an outer reference is taken from the row currently being tested
by the main query.

Subquery Search Conditions
A subquery usually appears as part of a search condition in the WHERE or HAVING clause.
Chapter 6 described the simple search conditions that can be used in these clauses. In
addition, most SQL products offer these subquery search conditions:

� Subquery comparison test. Compares the value of an expression to a single
value produced by a subquery. This test resembles the simple comparison test.

� Subquery set membership test. Checks whether the value of an expression
matches one of the set of values produced by a subquery. This test resembles
the simple set membership test.

� Existence test. Tests whether a subquery produces any rows of query results.

� Quantified comparison test. Compares the value of an expression to each of
the set of values produced by a subquery.

The Subquery Comparison Test (=, <>, <, <=, >, >=)
The subquery comparison test is a modified form of the simple comparison test, as
shown in Figure 9-3. It compares the value of an expression to the value produced by
a subquery and returns a TRUE result if the comparison is true. You use this test to
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compare a value from the row being tested to a single value produced by a subquery,
as in this example:

List the salespeople whose quotas are equal to or higher than the target of the Atlanta sales office.

SELECT NAME

FROM SALESREPS

WHERE QUOTA >= (SELECT TARGET

FROM OFFICES

WHERE CITY = 'Atlanta')

NAME

------------

Bill Adams

Sue Smith

Larry Fitch

The subquery in the example retrieves the sales target of the Atlanta office. The value
is then used to select the salespeople whose quotas are higher than the retrieved target.

The subquery comparison test offers the same six comparison operators (=, <>, <, <=,
>, >=) available with the simple comparison test. The subquery specified in this test must
produce a single value of the appropriate data type—that is, it must produce a single row
of query results containing exactly one column. If the subquery produces multiple rows
or multiple columns, the comparison does not make sense, and SQL reports an error
condition. If the subquery produces no rows or produces a NULL value, the comparison
test returns NULL (unknown).

Here are some additional examples of subquery comparison tests:
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List all customers served by Bill Adams.

SELECT COMPANY

FROM CUSTOMERS

WHERE CUST_REP = (SELECT EMPL_NUM

FROM SALESREPS

WHERE NAME = 'Bill Adams')

COMPANY

----------------

Acme Mfg.

Three-Way Lines

List all products from manufacturer ACI where the quantity on hand is above the quantity
on hand of product ACI-41004.

SELECT DESCRIPTION, QTY_ON_HAND

FROM PRODUCTS

WHERE MFR_ID = 'ACI'

AND QTY_ON_HAND > (SELECT QTY_ON_HAND

FROM PRODUCTS

WHERE MFR_ID = 'ACI'

AND PRODUCT_ID = '41004')

DESCRIPTION     QTY_ON_HAND

-------------- ------------

Size 3 Widget           207

Size 1 Widget           277

Size 2 Widget           167

The subquery comparison test specified by the SQL1 standard and supported by all
of the leading DBMS products allows a subquery only on the right side of the comparison
operator. This comparison:

A < (subquery)

is allowed, but this comparison:

(subquery) > A

is not permitted. This doesn’t limit the power of the comparison test, because the operator
in any unequal comparison can always be turned around so that the subquery is put on
the right side of the inequality. However, it does mean that you must sometimes turn
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around the logic of an English-language request to get a form of the request that
corresponds to a legal SQL statement.

The SQL2 standard eliminated this restriction and allows the subquery to appear on
either side of the comparison operator. In fact, the SQL2 standard goes considerably further
and allows a comparison test to be applied to an entire row of values instead of a single
value. This and other more advanced query expression features of the SQL2 standard are
described in the latter sections of this chapter. However, they are not uniformly supported
by the current versions of the major SQL products. For portability, it’s best to write
subqueries that conform to the SQL1 restrictions, as described previously.

The Set Membership Test (IN)
The subquery set membership test (IN) is a modified form of the simple set
membership test, as shown in Figure 9-4. It compares a single data value to a column of
data values produced by a subquery and returns a TRUE result if the data value matches
one of the values in the column. You use this test when you need to compare a value from
the row being tested to a set of values produced by a subquery. Here is a simple example:

List the salespeople who work in offices that are over target.

SELECT NAME

FROM SALESREPS

WHERE REP_OFFICE IN (SELECT OFFICE

FROM OFFICES

WHERE SALES > TARGET)

NAME

------------

Mary Jones

Sam Clark

Bill Adams

Sue Smith

Larry Fitch

The subquery produces a set of office numbers where the sales are above target. (In
the sample database, there are three such offices, numbered 11, 13, and 21.) The main
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query then checks each row of the SALESREPS table to determine whether that particular
salesperson works in an office with one of these numbers. Here are some other examples
of subqueries that test set membership:

List the salespeople who do not work in offices managed by Larry Fitch (employee 108).

SELECT NAME

FROM SALESREPS

WHERE REP_OFFICE NOT IN (SELECT OFFICE

FROM OFFICES

WHERE MGR = 108)

NAME

------------

Bill Adams

Mary Jones

Sam Clark

Bob Smith

Dan Roberts

Paul Cruz

List all of the customers who have placed orders for ACI Widgets (manufacturer ACI,
product numbers starting with 4100) between January and June 1990.

SELECT COMPANY

FROM CUSTOMERS

WHERE CUST_NUM IN (SELECT DISTINCT CUST

FROM ORDERS

WHERE MFR = 'ACI'

AND PRODUCT LIKE '4100%'

AND ORDER_DATE BETWEEN '01-JAN-90'

AND '30-JUN-90')

COMPANY

------------------

Acme Mfg.

Ace International

Holm & Landis

JCP Inc.

In each of these examples, the subquery produces a column of data values, and the
WHERE clause of the main query checks to see whether a value from a row of the main
query matches one of the values in the column. The subquery form of the IN test thus
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works exactly like the simple IN test, except that the set of values is produced by a
subquery instead of being explicitly listed in the statement.

The Existence Test (EXISTS)
The existence test (EXISTS) checks whether a subquery produces any rows of query
results, as shown in Figure 9-5. There is no simple comparison test that resembles the
existence test; it is used only with subqueries.

Here is an example of a request that can be expressed naturally using an existence test:

List the products for which an order of $25,000 or more has been received.

The request could easily be rephrased as:

List the products for which there exists at least one order in the ORDERS table (a) that is
for the product in question and (b) that has an amount of at least $25,000.

The SELECT statement used to retrieve the requested list of products closely resembles
the rephrased request:

SELECT DISTINCT DESCRIPTION

FROM PRODUCTS

WHERE EXISTS (SELECT ORDER_NUM

FROM ORDERS

WHERE PRODUCT = PRODUCT_ID

AND MFR = MFR_ID

AND AMOUNT >= 25000.00)

DESCRIPTION

---------------

500-lb Brace

Left Hinge

Right Hinge

Widget Remover

Conceptually, SQL processes this query by going through the PRODUCTS table and
performing the subquery for each product. The subquery produces a column containing
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the order numbers of any orders for the “current” product that are over $25,000. If
there are any such orders (that is, if the column is not empty), the EXISTS test is TRUE.
If the subquery produces no rows, the EXISTS test is FALSE. The EXISTS test cannot
produce a NULL value.

You can reverse the logic of the EXISTS test using the NOT EXISTS form. In this case,
the test is TRUE if the subquery produces no rows, and FALSE otherwise.

Notice that the EXISTS search condition doesn’t really use the results of the subquery
at all. It merely tests to see whether the subquery produces any results. For this reason,
SQL relaxes the rule that “subqueries must return a single column of data” and allows
you to use the SELECT * form in the subquery of an EXISTS test. The previous
subquery could thus have been written:

List the products for which an order of $25,000 or more has been received.

SELECT DESCRIPTION

FROM PRODUCTS

WHERE EXISTS (SELECT *

FROM ORDERS

WHERE PRODUCT = PRODUCT_ID

AND MFR = MFR_ID

AND AMOUNT >= 25000.00)

In practice, the subquery in an EXISTS test is always written using the SELECT *
notation.

Here are some additional examples of queries that use EXISTS:

List any customers assigned to Sue Smith who have not placed an order for over $3000.

SELECT COMPANY

FROM CUSTOMERS

WHERE CUST_REP = (SELECT EMPL_NUM

FROM SALESREPS

WHERE NAME = 'Sue Smith')

AND NOT EXISTS (SELECT *

FROM ORDERS

WHERE CUST = CUST_NUM

AND AMOUNT > 3000.00)

COMPANY

-----------------

Carter & Sons

Fred Lewis Corp.
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List the offices where there is a salesperson whose quota represents more than 55 percent of
the office’s target.

SELECT CITY

FROM OFFICES

WHERE EXISTS (SELECT *

FROM SALESREPS

WHERE REP_OFFICE = OFFICE

AND QUOTA > (.55 * TARGET))

CITY

--------

Denver

Atlanta

Note that in each of these examples, the subquery includes an outer reference to a
column of the table in the main query. In practice, the subquery in an EXISTS test will
always contain an outer reference that links the subquery to the row currently being
tested by the main query.

Quantified Tests (ANY and ALL) *
The subquery version of the IN test checks whether a data value is equal to some value
in a column of subquery results. SQL provides two quantified tests, ANY and ALL, that
extend this notion to other comparison operators, such as greater than (>) and less than
(<). Both of these tests compare a data value to the column of data values produced by
a subquery, as shown in Figure 9-6.
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The ANY Test *
The ANY test is used in conjunction with one of the six SQL comparison operators
(=, <>, <, <=, >, >=) to compare a single test value to a column of data values produced
by a subquery. To perform the test, SQL uses the specified comparison operator to
compare the test value to each data value in the column, one at a time. If any of the
individual comparisons yield a TRUE result, the ANY test returns a TRUE result.

Here is an example of a request that can be handled with the ANY test:

List the salespeople who have taken an order that represents more than 10 percent of their quota.

SELECT NAME

FROM SALESREPS

WHERE (.1 * QUOTA) < ANY (SELECT AMOUNT

FROM ORDERS

WHERE REP = EMPL_NUM)

NAME

--------------

Sam Clark

Larry Fitch

Nancy Angelli

Conceptually, the main query tests each row of the SALESREPS table, one by one.
The subquery finds all of the orders taken by the current salesperson and returns a
column containing the order amounts for those orders. The WHERE clause of the main
query then computes 10 percent of the current salesperson’s quota and uses it as a test
value, comparing it to every order amount produced by the subquery. If any order
amount exceeds the calculated test value, the ANY test returns TRUE, and the
salesperson is included in the query results. If not, the salesperson is not included in
the query results. The keyword SOME is an alternative for ANY specified by the
ANSI/ISO SQL standard. Either keyword can generally be used, but some DBMS
brands do not support SOME.

The ANY test can sometimes be difficult to understand because it involves an entire
set of comparisons, not just one. It helps if you read the test in a slightly different way
than it appears in the statement. If this ANY test appears:

WHERE X < ANY (SELECT Y …)

instead of reading the test like this:

"where X is less than any select Y…"
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try reading it like this:

"where, for some Y, X is less than Y"

When you use this trick, the preceding query becomes:

Select the salespeople where, for some order taken by the salesperson, 10 percent of the
salesperson’s quota is less than the order amount.

If the subquery in an ANY test produces no rows of query results, or if the query
results include NULL values, the operation of the ANY test may vary from one DBMS to
another. The ANSI/ISO SQL standard specifies these detailed rules describing the results
of the ANY test when the test value is compared to the column of subquery results:

� If the subquery produces an empty column of query results, the ANY test
returns FALSE—there is no value produced by the subquery for which the
comparison test holds.

� If the comparison test is TRUE for at least one of the data values in the column,
then the ANY search condition returns TRUE—there is indeed some value produced
by the subquery for which the comparison test holds.

� If the comparison test is FALSE for every data value in the column, then the ANY
search condition returns FALSE. In this case, you can conclusively state that there
is no value produced by the subquery for which the comparison test holds.

� If the comparison test is not TRUE for any data value in the column, but it
is NULL (unknown) for one or more of the data values, then the ANY search
condition returns NULL. In this situation, you cannot conclusively state whether
there is a value produced by the subquery for which the comparison test
holds; there may or may not be, depending on the “actual” (but currently
unknown) values for the NULL data.

The ANY comparison operator can be very tricky to use in practice, especially in
conjunction with the inequality (<>) comparison operator. Here is an example that
shows the problem:

List the names and ages of all the people in the sales force who do not manage an office.

It’s tempting to express this query as shown in this example:

SELECT NAME, AGE

FROM SALESREPS

WHERE EMPL_NUM <> ANY (SELECT MGR

FROM OFFICES)
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The subquery:

SELECT MGR

FROM OFFICES

obviously produces the employee numbers of the managers, and therefore the query
seems to be saying:

Find each salesperson who is not the manager of any office.

But that’s not what the query says! What it does say is this:

Find each salesperson who, for some office, is not the manager of that office.

Of course for any given salesperson, it’s possible to find some office where that
salesperson is not the manager. The query results would include all the salespeople and
therefore fail to answer the question that was posed! The correct query is:

SELECT NAME, AGE

FROM SALESREPS

WHERE NOT (EMPL_NUM = ANY (SELECT MGR

FROM OFFICES))

NAME            AGE

-------------- ----

Mary Jones       31

Sue Smith        48

Dan Roberts      45

Tom Snyder       41

Paul Cruz        29

Nancy Angelli    49

You can always turn a query with an ANY test into a query with an EXISTS test by
moving the comparison inside the search condition of the subquery. This is usually a
very good idea because it eliminates errors like the one just described. Here is an
alternative form of the query, using the EXISTS test:

SELECT NAME, AGE

FROM SALESREPS

WHERE NOT EXISTS (SELECT *

FROM OFFICES

WHERE EMPL_NUM = MGR)



NAME            AGE

-------------- ----

Mary Jones       31

Sue Smith        48

Dan Roberts      45

Tom Snyder       41

Paul Cruz        29

Nancy Angelli    49

The ALL Test *
Like the ANY test, the ALL test is used in conjunction with one of the six SQL comparison
operators (=, <>, <, <=, >, >=) to compare a single test value to a column of data values
produced by a subquery. To perform the test, SQL uses the specified comparison
operator to compare the test value to each data value in the column, one at a time. If all
of the individual comparisons yield a TRUE result, the ALL test returns a TRUE result.

Here is an example of a request that can be handled with the ALL test:

List the offices and their targets where all of the salespeople have sales that exceed 50 percent
of the office’s target.

SELECT CITY, TARGET

FROM OFFICES

WHERE (.50 * TARGET) < ALL (SELECT SALES

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

CITY               TARGET

------------ ------------

Denver        $300,000.00

New York      $575,000.00

Atlanta       $350,000.00

Conceptually, the main query tests each row of the OFFICES table, one by one.
The subquery finds all of the salespeople who work in the current office and returns a
column containing the sales for each salesperson. The WHERE clause of the main query
then computes 50 percent of the office’s target and uses it as a test value, comparing it
to every sales value produced by the subquery. If all of the sales values exceed the
calculated test value, the ALL test returns TRUE, and the office is included in the query
results. If not, the office is not included in the query results.

Like the ANY test, the ALL test can be difficult to understand because it involves an
entire set of comparisons, not just one. Again, it helps if you read the test in a slightly
different way than it appears in the statement. If this ALL test appears:
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WHERE X < ALL (SELECT Y …)

instead of reading it like this:

"where X is less than all select Y…"

try reading the test like this:

"where, for all Y, X is less than Y"

When you use this trick, the preceding query becomes:

Select the offices where, for all salespeople who work in the office, 50 percent of the office’s
target is less than the salesperson’s sales.

If the subquery in an ALL test produces no rows of query results, or if the query
results include NULL values, the operation of the ALL test may vary from one DBMS to
another. The ANSI/ISO SQL standard specifies these detailed rules describing the results
of the ALL test when the test value is compared to the column of subquery results:

� If the subquery produces an empty column of query results, the ALL test returns
TRUE. The comparison test does hold for every value produced by the subquery;
there just aren’t any values.

� If the comparison test is TRUE for every data value in the column, then the ALL
search condition returns TRUE. Again, the comparison test holds true for every
value produced by the subquery.

� If the comparison test is FALSE for any data value in the column, then the ALL
search condition returns FALSE. In this case, you can conclusively state that the
comparison test does not hold true for every data value produced by the query.

� If the comparison test is not FALSE for any data value in the column, but it is NULL
for one or more of the data values, then the ALL search condition returns
NULL. In this situation, you cannot conclusively state whether there is a value
produced by the subquery for which the comparison test does not hold true;
there may or may not be, depending on the “actual” (but currently unknown)
values for the NULL data.

The subtle errors that can occur when the ANY test is combined with the inequality
(<>) comparison operator also occur with the ALL test. As with the ANY test, the ALL
test can always be converted into an equivalent EXISTS test by moving the comparison
inside the subquery.
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Subqueries and Joins
You may have noticed as you read through this chapter that many of the queries that
were written using subqueries could also have been written as multitable queries, or
joins. This is often the case, and SQL allows you to write the query either way. This
example illustrates the point:

List the names and ages of salespeople who work in offices in the Western region.

SELECT NAME, AGE

FROM SALESREPS

WHERE REP_OFFICE IN (SELECT OFFICE

FROM OFFICES

WHERE REGION = 'Western')

NAME            AGE

-------------- ----

Sue Smith        48

Larry Fitch      62

Nancy Angelli    49

This form of the query closely parallels the stated request. The subquery yields a
list of offices in the Western region, and the main query finds the salespeople who
work in one of the offices in the list. Here is an alternative form of the query, using a
two-table join:

List the names and ages of salespeople who work in offices in the Western region.

SELECT NAME, AGE

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

AND REGION = 'Western'

NAME            AGE

-------------- ----

Sue Smith        48

Larry Fitch      62

Nancy Angelli    49

This form of the query joins the SALESREPS table to the OFFICES table to find the
region where each salesperson works, and then eliminates those who do not work in
the Western region.
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Either of the two queries will find the correct salespeople, and neither one is right
or wrong. Many people will find the first form (with the subquery) more natural, because
the English request doesn’t ask for any information about offices, and because it seems
a little strange to join the SALESREPS and OFFICES tables to answer the request. Of
course if the request is changed to ask for some information from the OFFICES table:

List the names and ages of the salespeople who work in offices in the Western region and the
cities where they work.

the subquery form will no longer work, and the two-table query must be used. Conversely,
many queries with subqueries cannot be translated into an equivalent join. Here is a
simple example:

List the names and ages of salespeople who have above average quotas.

SELECT NAME, AGE

FROM SALESREPS

WHERE QUOTA > (SELECT AVG(QUOTA)

FROM SALESREPS)

NAME            AGE

-------------  ----

Bill Adams       37

Sue Smith        48

Larry Fitch      62

In this case, the inner query is a summary query and the outer query is not, so there
is no way the two queries can be combined into a single join.

Nested Subqueries
All of the queries described thus far in this chapter have been two-level queries, involving
a main query and a subquery. Just as you can use a subquery inside a main query, you
can use a subquery inside another subquery. Here is an example of a request that is
naturally represented as a three-level query, with a main query, a subquery, and a
sub-subquery:

List the customers whose salespeople are assigned to offices in the Eastern sales region.

SELECT COMPANY

FROM CUSTOMERS

WHERE CUST_REP IN (SELECT EMPL_NUM
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FROM SALESREPS

WHERE REP_OFFICE IN (SELECT OFFICE

FROM OFFICES

WHERE REGION = 'Eastern'))

COMPANY

----------------

First Corp.

Smithson Corp.

AAA Investments

JCP Inc.

Chen Associates

QMA Assoc.

Ian & Schmidt

Acme Mfg.

.

.

.

In this example, the innermost subquery:

SELECT OFFICE

FROM OFFICES

WHERE REGION = 'Eastern'

produces a column containing the office numbers of the offices in the Eastern region.
The next subquery:

SELECT EMPL_NUM

FROM SALESREPS

WHERE REP_OFFICE IN (subquery)

produces a column containing the employee numbers of the salespeople who work in
one of the selected offices. Finally, the outermost query:

SELECT COMPANY

FROM CUSTOMERS

WHERE CUST_REP IN (subquery)

finds the customers whose salespeople have one of the selected employee numbers.
The same technique used in this three-level query can be used to build queries with

four or more levels. The ANSI/ISO SQL standard does not specify a maximum number
of nesting levels, but in practice, a query becomes much more time-consuming as the
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number of levels increases. The query also becomes more difficult to read, understand,
and maintain when it involves more than one or two levels of subqueries. Many SQL
implementations restrict the number of subquery levels to a relatively small number.

Correlated Subqueries *
In concept, SQL performs a subquery over and over again—once for each row of the
main query. For many subqueries, however, the subquery produces the same results for
every row or row group. Here is an example:

List the sales offices whose sales are below the average target.

SELECT CITY

FROM OFFICES

WHERE SALES < (SELECT AVG(TARGET)

FROM OFFICES)

CITY

--------

Denver

Atlanta

In this query, it would be silly to perform the subquery five times (once for each
office). The average target doesn’t change with each office; it’s completely independent
of the office currently being tested. As a result, SQL can handle the query by first
performing the subquery, yielding the average target ($550,000), and then converting
the main query into:

SELECT CITY

FROM OFFICES

WHERE SALES < 550000.00

Commercial SQL implementations automatically detect this situation and use this
shortcut whenever possible to reduce the amount of processing required by a subquery.
However, the shortcut cannot be used if the subquery contains an outer reference, as in
this example:

List all of the offices whose targets exceed the sum of the quotas of the salespeople who
work in them:

SELECT CITY

FROM OFFICES
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WHERE TARGET > (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

CITY

------------

Chicago

Los Angeles

For each row of the OFFICES table to be tested by the WHERE clause of the main
query, the OFFICE column (which appears in the subquery as an outer reference)
has a different value. Thus, SQL has no choice but to carry out this subquery five
times—once for each row in the OFFICES table. A subquery containing an outer
reference is called a correlated subquery because its results are correlated with each
individual row of the main query. For the same reason, an outer reference is sometimes
called a correlated reference.

A subquery can contain an outer reference to a table in the FROM clause of any
query that contains the subquery, no matter how deeply the subqueries are nested. A
column name in a fourth-level subquery, for example, may refer to one of the tables
named in the FROM clause of the main query, or to a table named in the FROM clause of
the second-level subquery or the third-level subquery that contains it. Regardless of the
level of nesting, an outer reference always takes on the value of the column in the
current row of the table being tested.

Because a subquery can contain outer references, there is even more potential for
ambiguous column names in a subquery than in a main query. When an unqualified
column name appears within a subquery, SQL must determine whether it refers to a
table in the subquery’s own FROM clause, or to a FROM clause in a query containing the
subquery. To minimize the possibility of confusion, SQL always interprets a column
reference in a subquery using the nearest FROM clause possible. To illustrate this point,
in this example, the same table is used in the query and in the subquery:

List the salespeople who are over 40 and who manage a salesperson over quota.

SELECT NAME

FROM SALESREPS

WHERE AGE > 40

AND EMPL_NUM IN (SELECT MANAGER

FROM SALESREPS

WHERE SALES > QUOTA)



NAME

------------

Sam Clark

Larry Fitch

The MANAGER, QUOTA, and SALES columns in the subquery are references to the
SALESREPS table in the subquery’s own FROM clause; SQL does not interpret them as
outer references, and the subquery is not a correlated subquery. SQL can perform the
subquery first in this case, finding the salespeople who are over quota and generating a
list of the employee numbers of their managers. SQL can then turn its attention to the
main query, selecting managers whose employee numbers appear in the generated list.

If you want to use an outer reference within a subquery like the one in the previous
example, you must use a table alias to force the outer reference. This request, which adds
one more qualifying condition to the previous one, shows how:

List the managers who are over 40 and who manage a salesperson who is over quota and
who does not work in the same sales office as the manager.

SELECT NAME

FROM SALESREPS MGRS

WHERE AGE > 40

AND MGRS.EMPL_NUM IN (SELECT MANAGER

FROM SALESREPS EMPS

WHERE EMPS.QUOTA > EMPS.SALES

AND EMPS.REP_OFFICE <> MGRS.REP_OFFICE)

NAME

------------

Sam Clark

Larry Fitch

The copy of the SALESREPS table used in the main query now has the tag MGRS,
and the copy in the subquery has the tag EMPS. The subquery contains one additional
search condition, requiring that the employee’s office number does not match that of
the manager. The qualified column name MGRS.OFFICE in the subquery is an outer
reference, and this subquery is a correlated subquery.

Subqueries in the HAVING Clause *
Although subqueries are most often found in the WHERE clause, they can also be used
in the HAVING clause of a query. When a subquery appears in the HAVING clause, it
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works as part of the row group selection performed by the HAVING clause. Consider
this query with a subquery:

List the salespeople whose average order size for products manufactured by ACI is higher
than overall average order size.

SELECT NAME, AVG(AMOUNT)

FROM SALESREPS, ORDERS

WHERE EMPL_NUM = REP

AND MFR = 'ACI'

GROUP BY NAME

HAVING AVG(AMOUNT) > (SELECT AVG(AMOUNT)

FROM ORDERS)

NAME         AVG(AMOUNT)

----------- ------------

Sue Smith     $15,000.00

Tom Snyder    $22,500.00

Figure 9-7 shows conceptually how this query works. The subquery calculates the
overall average order size. It is a simple subquery and contains no outer references, so
SQL can calculate the average once and then use it repeatedly in the HAVING clause.
The main query goes through the ORDERS table, finding all orders for ACI products,
and groups them by salesperson. The HAVING clause then checks each row group to
see whether the average order size in that group is bigger than the average for all
orders, calculated earlier. If so, the row group is retained; if not, the row group is
discarded. Finally, the SELECT clause produces one summary row for each group,
showing the name of the salesperson and the average order size for each.

You can also use a correlated subquery in the HAVING clause. Because the subquery
is evaluated once for each row group, however, all outer references in the correlated
subquery must be single-valued for each row group. Effectively, this means that the
outer reference must either be a reference to a grouping column of the outer query or be
contained within a column function. In the latter case, the value of the column function
for the row group being tested is calculated as part of the subquery processing.

If the previous request is changed slightly, the subquery in the HAVING clause
becomes a correlated subquery:

List the salespeople whose average order size for products manufactured by ACI is at least as
big as that salesperson’s overall average order size.

SELECT NAME, AVG(AMOUNT)

FROM SALESREPS, ORDERS
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WHERE EMPL_NUM = REP

AND MFR = 'ACI'

GROUP BY NAME, EMPL_NUM

HAVING AVG(AMOUNT) >= (SELECT AVG(AMOUNT)

FROM ORDERS

WHERE REP = EMPL_NUM)

NAME         AVG(AMOUNT)

----------- ------------

Bill Adams     $7,865.40

Sue Smith     $15,000.00

Tom Snyder    $22,500.00

In this new example, the subquery must produce the overall average order size for
the salesperson whose row group is currently being tested by the HAVING clause. The
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Figure 9-7. Subquery operation in the HAVING clause
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subquery selects orders for that particular salesperson, using the outer reference
EMPL_NUM. The outer reference is legal because EMPL_NUM has the same value in all
rows of a group produced by the main query.

Subquery Summary
This chapter has described subqueries, which allow you to use the results of one query
to help define another query. Before moving on to the advanced query facilities of the
SQL2 specification, let’s summarize subqueries:

� A subquery is a “query within a query.” Subqueries appear within one of the
subquery search conditions in the WHERE or HAVING clause.

� When a subquery appears in the WHERE clause, the results of the subquery are
used to select the individual rows that contribute data to the query results.

� When a subquery appears in the HAVING clause, the results of the subquery
are used to select the row groups that contribute data to the query results.

� Subqueries can be nested within other subqueries.

� The subquery form of the comparison test uses one of the simple comparison
operators to compare a test value to the single value returned by a subquery.

� The subquery form of the set membership test (IN) matches a test value to the
set of values returned by a subquery.

� The existence test (EXISTS) checks whether a subquery returns any values.

� The quantified tests (ANY and ALL) use one of the simple comparison operators
to compare a test value to all of the values returned by a subquery, checking to
see whether the comparison holds for some or all of the values.

� A subquery may include an outer reference to a table in any of the queries that
contain it, linking the subquery to the current row of that query.

Figure 9-8 shows the final version of the rules for SQL query processing, extended
to include subqueries. It provides a complete definition of the query results produced
by a SELECT statement.

Advanced Queries in SQL2 *
The SQL queries described thus far in Chapters 6–9 are the mainstream capabilities
provided by most SQL implementations. The combination of features they represent—
column selection in the SELECT clause, row selection criteria in the WHERE clause,
multitable joins in the FROM clause, summary queries in the GROUP BY and HAVING
clauses, and subqueries for more complex requests—give the user a powerful set of
data retrieval and data analysis capabilities. However, database experts have pointed
out many limitations of these mainstream query capabilities, including these:
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� No decision making within queries. Suppose you wanted to generate a
two-column report from the sample database showing the name of each sales
office and either its annual sales target or its year-to-date sales, whichever is
larger. With standard SQL query features, this is hard to do. Or suppose you
had a database that kept track of sales by quarter (four columns of data for each
office) and wanted to write a program that displayed offices and their sales for

To generate the query results for a SELECT statement:

1. If the statement is a UNION of SELECT statements, apply Steps 2 through 7
to each of the statements to generate their individual query results.

2. Form the product of the tables named in the FROM clause. If the FROM clause
names a single table, the product is that table.

3. If there is a WHERE clause, apply its search condition to each row of the
product table, retaining those rows for which the search condition is TRUE
(and discarding those for which it is FALSE or NULL). If the HAVING clause
contains a subquery, the subquery is performed for each row as it is tested.

4. If there is a GROUP BY clause, arrange the remaining rows of the product
table into row groups, so that the rows in each group have identical values
in all of the grouping columns.

5. If there is a HAVING clause, apply its search condition to each row group,
retaining those groups for which the search condition is TRUE (and
discarding those for which it is FALSE or NULL). If the HAVING clause
contains a subquery, the subquery is performed for each row group as it is
tested.

6. For each remaining row (or row group), calculate the value of each item in
the select list to produce a single row of query results. For a simple column
reference, use the value of the column in the current row (or row group).
For a column function, use the current row group as its argument if GROUP
BY is specified; otherwise, use the entire set of rows.

7. If SELECT DISTINCT is specified, eliminate any duplicate rows of query
results that were produced.

8. If the statement is a UNION of SELECT statements, merge the query results
for the individual statements into a single table of query results. Eliminate
duplicate rows unless UNION ALL is specified.

9. If there is an ORDER BY clause, sort the query results as specified.

The rows generated by this procedure comprise the query results.

Figure 9-8. SQL query processing rules (final version)



a specific (user-supplied) quarter. Again, this program is more difficult to write
using standard SQL queries. You must include four separate SQL queries (one
for each quarter), and the program logic must select which query to run, based
on user input. This simple case isn’t too difficult, but in a more general case, the
program could become much more complex.

� Limited use of subqueries. The simplest example of this limitation is the SQL1
restriction that a subquery can appear only on the right side of a comparison
test in a WHERE clause. The database request “list the offices where the sum of
the salesperson’s quotas is greater than the office target” is most directly expressed
as this query:

SELECT OFFICE

FROM OFFICES

WHERE (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE) > TARGET

But this isn’t a legal SQL1 statement. Instead, you must turn the inequality around:

SELECT OFFICE

FROM OFFICES

WHERE TARGET > (SELECT SUM(QUOTA)

FROM SALESREPS

WHERE REP_OFFICE = OFFICE)

In this simple example, it isn’t hard to turn the logic around, but the restriction is a
nuisance at best, and it does prevent you from comparing the results of two subqueries,
for example.

� Limited-row expressions. Suppose you wanted to list the suppliers, item
numbers, and prices for a set of products that are substitutes for one another.
Conceptually, these are a set of products whose identification (a manufacturer-
ID/product-ID pair) matches one of a set of values, and it would be natural to
write the query using a set membership test as:

SELECT MFR_ID, PRODUCT_ID, PRICE

FROM PRODUCTS

WHERE (MFR_ID, PRODUCT_ID) IN (('ACI',41003),('BIC',41089), …)

The SQL1 standard doesn’t permit this kind of set membership test. Instead,
you must construct the query as a long set of individual comparisons,
connected by ANDs and ORs.

246 S Q L : T h e C o m p l e t e R e f e r e n c e



C h a p t e r 9 : S u b q u e r i e s a n d Q u e r y E x p r e s s i o n s 247
R

E
T
R

IE
V
IN

G
D

A
T
A

� Limited-table expressions. SQL allows you to define a view like this one for
large orders:

SELECT *

FROM PRODUCTS

WHERE AMOUNT > 10000

and then use the view as if it were a real table in the FROM clause of a query to find out
which products, in which quantities, were ordered in these large orders:

SELECT MFR, PRODUCT, SUM(QTY)

FROM BIGORDERS

GROUP BY MFR, PRODUCT

Conceptually, SQL should let you substitute the view definition right into the
query, like this:

SELECT MFR, PRODUCT, SUM(QTY)

FROM (SELECT * FROM ORDERS WHERE AMOUNT > 10000)

GROUP BY MFR, PRODUCT

But the SQL1 standard doesn’t allow a subquery in this position in the WHERE clause.
Yet clearly, the DBMS should be able to determine the meaning of this query, since it
must basically do the same processing to interpret the BIGORDERS view definition.

As these examples show, the SQL1 standard and mainstream DBMS products that
implement to this level of the standard are relatively restrictive in their permitted use of
expressions involving individual data items, sets of data items, rows, and tables. The
SQL2 standard includes a number of advanced query capabilities that are focused on
removing these restrictions and making the SQL language more general. The spirit of
these SQL2 capabilities tends to be that a user should be able to write a query expression
that makes sense and have the query expression be a legal SQL query. Because these
SQL2 capabilities constitute a major expansion of the language over the SQL1 standard,
most of them are required only at a full level of the standard.

Scalar-Valued Expressions (SQL2)
The simplest extended query capabilities in SQL2 are those that provide more data
manipulation and calculation power involving individual data values (called scalars in
the SQL2 standard). Within the SQL language, individual data values tend to have
three sources:

� The value of an individual column within an individual row of a table

� A literal value, such as 125.7 or ABC

� A user-supplied data value, entered into a program
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In this SQL query:

SELECT NAME, EMPL_NUM, HIRE_DATE, (QUOTA * .9)

FROM SALESREPS

WHERE (REP_OFFICE = 13) OR TITLE = 'VP SALES'

the column names NAME, EMPL_NUM, HIRE_DATE, and QUOTA generate individual data
values for each row of query results, as do the column names REP_OFFICE and TITLE
in the WHERE clause. The numbers .9 and 13 and the character string “VP SALES” similarly
generate individual data values. If this SQL statement appeared within an embedded
SQL program (described in Chapter 17), the program variable office_nummight contain
an individual data value, and the query might appear as:

SELECT NAME, EMPL_NUM, HIRE_DATE, (QUOTA * .9)

FROM SALESREPS

WHERE (REP_OFFICE = :office_num) OR TITLE = 'VP SALES'

As this query and many previous examples have shown, individual data values can
be combined in simple expressions, like the calculated value QUOTA * .9. To these basic
SQL1 expressions, SQL2 adds the CAST operator for explicit data type conversion, the
CASE operator for decision making, the NULLIF operation for conditionally creating a
NULL value, and the COALESCE operator for conditionally creating non-NULL values.

The CAST Expression (SQL2)
The SQL standard has fairly restrictive rules about combining data of different types
in expressions. It specifies that the DBMS shall automatically convert among very
similar data types, such as 2-byte and 4-byte integers. However, if you try to compare
numbers and character data, for example, the standard says that the DBMS should
generate an error. The standard considers this an error condition even if the character
string contains numeric data. You can, however, explicitly ask the DBMS to convert
among data types using the CAST expression, whose syntax is shown in Figure 9-9.

The CAST expression tends to be of little importance when you are typing SQL
statements directly into an interactive SQL interface. However, it can be critical when
using SQL from within a programming language whose data types don’t match the
data types supported by the SQL standard. For example, the CAST expression in
the SELECT clause of this query converts the values for REP_OFFICE (integers in

Figure 9-9. SQL2 CAST expression syntax diagram
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the sample database) and HIRE_DATE (a date in the sample database) into character
strings for the returned query results:

SELECT NAME, CAST REP_OFFICE AS VARCHAR, HIRE_DATE AS VARCHAR

FROM SALESREPS

The CAST expression can generally appear anywhere that a scalar-valued expression
can appear within a SQL statement. In this example, it’s used in the WHERE clause to
convert a character string customer number into an integer, so that it can be compared
with the data in the database:

SELECT PRODUCT, QTY, AMOUNT

FROM ORDERS

WHERE CUST = CAST '2107' AS INTEGER

Instead of specifying a data type in the CAST expression, you can specify a SQL2
domain. Domains are specific collections of legal data values that can be defined in the
database under the SQL2 standard. They are fully described in Chapter 11 because of
the role they play in SQL data integrity. Note that you can also generate a NULL value
of the appropriate data type for use in SQL expressions using the CAST expression.

The most common uses for the CAST expression are:

� To convert data from within a database table where the column is defined with
the wrong data type. For example, when a column is defined as a character
string, but you know it actually contains numbers (that is, strings of digits) or
dates (strings that can be interpreted as a month/day/year).

� To convert data from data types supported by the DBMS that are not supported by
a host programming language. For example, most host programming languages do
not have explicit date and time data types and require that date/time values be
converted into character strings for handling by a program.

� To eliminate differences between data types in two different tables. For example,
if an order date is stored in one table as DATE data, but a product availability
date is stored in a different table as a character string, you can still compare the
columns from the two tables by CASTing one of the columns into the data type of
the other. Similarly, if you want to combine data from two different tables with a
UNION operation, their columns must have identical data types. You can achieve
this by CASTing the columns of one of the tables.

The CASE Expression (SQL2)
The SQL2 CASE expression provides for limited decision making within SQL expressions.
Its basic structure, shown in Figure 9-10, is similar to the IF…THEN…ELSE statement
found in many programming languages. When the DBMS encounters a CASE expression, it
evaluates the first search condition, and if it is TRUE, then the value of the CASE expression



is the value of the first result expression. If the result of the first search condition is not
TRUE, the DBMS proceeds to the second search condition and checks whether it is TRUE. If
so, the value of the CASE expression is the value of the second result expression, and so on.

Here is a simple example of the use of the CASE expression. Suppose you want to
do an A/B/C analysis of the customers from the sample database according to their
credit limits. The A customers are the ones with credit limits over $60,000, the B customers
are those with limits over $30,000 and the C customers are the others. Using SQL1, you
would have to retrieve customer names and credit limits from the database and then
rely on an application program to look at the credit limit values and assign an A, B, or
C rating. Using a SQL2 CASE expression, you can have the DBMS do the work for you:

SELECT COMPANY, CASE WHEN CREDIT_LIMIT > 60000 THEN 'A'

WHEN CREDIT_LIMIT > 30000 THEN 'B'

ELSE 'C'

FROM CUSTOMERS

For each row of query results, the DBMS evaluates the CASE expression by first
comparing the credit limit to $60,000, and if the comparison is TRUE, returns an A in the
second column of query results. If that comparison fails, the comparison to $30,000 is
made and returns a B if this second comparison is TRUE. Otherwise, the third column
of query results will return a C.

This is a very simple example of a CASE expression. The results of the CASE
expression are all literals here, but in general, they can be any SQL expression. Similarly,
there is no requirement that the tests in each WHEN clause are similar, as they are here.
The CASE expression can also appear in other clauses of a query. Here is an example of a
query where it’s useful in the WHERE clause. Suppose you want to find the total of the
salesperson’s sales, by office. If a salesperson is not yet assigned to an office, that person
should be included in the total for his or her manager’s office. Here is a query that
generates the appropriate office groupings:

SELECT CITY, SUM(SALES)

FROM OFFICES, SALESREPS

WHERE OFFICE =
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Figure 9-10. SQL2 CASE expression syntax diagram



CASE WHEN (REP_OFFICE IS NOT NULL) THEN REP_OFFICE

ELSE (SELECT REP_OFFICE

FROM SALESREPS AS MGRS

WHERE MGRS.EMPL_NUM = MANAGER)

The SQL2 standard provides a shorthand version of the CASE expression for the
common situation where you want to compare a test value of some kind to a sequence
of data values (usually literals). This version of the CASE syntax is shown in Figure 9-11.
Instead of repeating a search condition of the form:

test_value = value1

in each WHEN clause, it lets you specify the test_value calculation once. For example,
suppose you wanted to generate a list of all of the offices, showing the names of their
managers and the cities and states where they are located. The sample database doesn’t
include state names, so the query must generate this information itself. Here is a query,
with a CASE expression in the SELECT list, that does the job:

SELECT NAME, CITY, CASE OFFICE WHEN 11 THEN 'New York'

WHEN 12 THEN 'Illinois'

WHEN 13 THEN 'Georgia'

WHEN 21 THEN 'California'

WHEN 22 THEN 'Colorado'

FROM OFFICES, SALESREPS

WHERE MGR = EMPL_NUM

The COALESCE Expression (SQL2)
One of the most common uses for the decision-making capability of the CASE expression
is for handling NULL values within the database. For example, it’s frequently desirable to
have a NULL value from the database represented by some literal value (such as the word
“missing”) or by some default value when using SQL to generate a report. Here is a
report that lists the salespeople and their quotas. If a salesperson has not yet been
assigned a quota, assume that the salesperson’s actual year-to-date sales should be listed
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Figure 9-11. SQL2 CASE expression alternative syntax



instead. If for some reason the actual year-to-date sales are also NULL (unknown), then a
zero amount should be listed. The CASE statement generates the desired IF…THEN…
ELSE logic:

SELECT NAME, CASE WHEN (QUOTA IS NOT NULL) THEN QUOTA

WHEN (SALES IS NOT NULL) THEN SALES

ELSE 0.00

FROM SALESREPS

This type of NULL-handling logic is needed frequently, so the SQL2 standard
includes a specialized form of the CASE expression, the COALESCE expression, to
handle it. The syntax for the COALESCE expression is shown in Figure 9-12. The
processing rules for the COALESCE expression are very straightforward. The DBMS
examines the first value in the list. If its value is not NULL, it becomes the value of the
COALESCE expression. If the first value is NULL, the DBMS moves to the second value
and checks to see whether it is NULL. If not, it becomes the value of the expression.
Otherwise, the DBMS moves to the third value, and so on. Here is the same example
just given, expressed with the COALESCE expression instead of a CASE expression:

SELECT NAME, COALESCE (QUOTA, SALES, 0.00)

FROM SALESREPS

As you can see by comparing the two queries, the simplicity of the COALESCE
syntax makes it easier to see, at a glance, the meaning of the query. However, the
operation of the two queries is identical. The COALESCE expression adds simplicity,
but no new capability, to the SQL2 language.

The NULLIF Expression (SQL2)
Just as the COALESCE expression is used to eliminate NULL values when they are not
desired for processing, sometimes you may need to create NULL values. In many data
processing applications (especially older ones that were developed before relational
databases were popular), missing data is not represented by NULL values. Instead, some
special code value that is otherwise invalid is used to indicate that the data is missing.

For example, suppose that in the sample database, the situation where a salesperson
had not yet been assigned a manager was indicated by a zero (0) value in the MANAGER
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Figure 9-12. SQL2 COALESCE expression syntax diagram



column instead of a NULL value. In some circumstances, you will want to detect this
situation within a SQL query and substitute the NULL value for the zero “code.” The
NULLIF expression, shown in Figure 9-13, is used for this purpose. When the DBMS
encounters a NULLIF expression, it examines the first value (usually a column name) and
compares it to the second value (usually the code value used to indicate missing data). If
the two values are equal, the expression generates a NULL value. Otherwise, the expression
generates the first value.

Here is a query that handles the case where missing office numbers are represented
by a zero:

SELECT CITY, SUM(SALES)

FROM OFFICES, SALESREPS

WHERE OFFICE = (NULLIF REP_OFFICE, 0)

GROUP BY CITY

Together, the CASE, COALESCE, and NULLIF expressions provide a solid
decision-making logic capability for use within SQL statements. They fall far short of the
complete logical flow constructs provided by most programming languages (looping,
branching, and so on) but do provide for much greater flexibility in query expressions. The
net result is that more processing work can be done by the DBMS and reflected in query
results, leaving less work to be done by the human user or the application program.

Row-Valued Expressions (SQL2)
Although columns and the scalar data values they contain are the atomic building blocks
of a relational database, the structuring of columns into rows that represent real-world
entities, such as individual offices or customers or orders, is one of the most important
features of the relational model. The SQL1 standard, and most mainstream commercial
database products, certainly reflect this row/column structure, but they provide very
limited capability to actually manipulate rows and groups of rows. Basically, SQL1
operations allow you to insert a row into a table, or to retrieve, update, or delete groups
of rows from a database (using the SELECT, UPDATE, or DELETE statements).

The SQL2 standard goes well beyond these capabilities, allowing you to generally use
rows in SQL expressions in much the same way that you can use scalar values. It provides
a syntax for constructing rows of data. It allows row-valued subqueries. And it defines
row-valued meanings for the SQL comparison operators and other SQL structures.
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Figure 9-13. SQL2 NULLIF expression syntax diagram



The Row-Value Constructor (SQL2)
SQL2 allows you to specify a row of data values by using a row-value constructor
expression, whose syntax is shown in Figure 9-14. In its most common form, the row
constructor is a comma-separated list of literal values, or expressions. For example, here
is a row-value constructor for a row of data whose structure matches the OFFICES table
in the sample database:

(23, 'San Diego', 'Western', NULL, DEFAULT, 0.00)

The result of this expression is a single row of data with six columns. The NULL
keyword in the fourth column position indicates that the fourth column in the constructed
row should contain a NULL (unknown) value. The DEFAULT keyword in the fifth column
position indicates that the fifth column in the constructed row should contain the default
value for the column. This keyword may appear in a row-value constructor only in certain
situations—for example, when the row-value constructor appears in an INSERT statement
to add a new row to a table.

When a row constructor is used in the WHERE clause of a SQL statement, column
names can also appear as individual data items within the row constructor, or as part
of an expression within the row constructor. For example, consider this query:

List the order number, quantity, and amount of all orders for ACI-41002 widgets.

SELECT ORDER_NUM, QTY, AMOUNT

FROM ORDERS

WHERE (MFR, PRODUCT) = ('ACI', '41002')

Under the normal rules of SQL query processing, the WHERE clause is applied
to each row of the ORDERS table, one by one. The first row-value constructor in the
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WHERE clause (to the left of the equal sign) generates a two-column row, containing
the manufacturer code and the product number for the current order being considered.
The second row-value constructor (to the right of the equal sign) generates a two-
column row, containing the (literal) manufacturer code ACI and product number
41002. The equal sign is now comparing two rows of values, not two scalar values.
The SQL2 standard defines this type of row-valued comparison for equality, which is
processed by comparing, pairwise, each of the columns in the two rows. The result of
the comparison is TRUE only if all of the pairwise column comparisons are TRUE. Of
course, it’s possible to write the query without the row-value constructors, like this:

List the order number, quantity, and amount of all orders for ACI-41002 widgets.

SELECT ORDER_NUM, QTY, AMOUNT

FROM ORDERS

WHERE (MFR = 'ACI') AND (PRODUCT = '41002')

and in this simple example, the meaning of the query is probably equally clear with either
form. However, row-value constructors can be very useful in simplifying the appearance
of more complex queries, and they become even more useful when combined with row-
valued subqueries.

Row-Valued Subqueries (SQL2)
As described throughout the earlier parts of this chapter, the SQL1 standard provides a
subquery capability for expressing more complex database queries. The subquery takes
the same form as a SQL query (that is, a SELECT statement), but a SQL1 subquery must
be scalar-valued—that is, it must produce a single data value as its query results. The
value generated by the subquery is then used as part of an expression within the main
SQL statement that contains the subquery. This use of subqueries is supported by the
major enterprise-class relational database systems today.

The SQL2 standard dramatically expands the subquery facility, including support
for row-valued subqueries. A row-valued subquery returns not just a single data item,
but a row of data items, which can be used in SQL2 expressions and compared to other
rows. For example, suppose you wanted to show the order numbers and dates for all of
the orders placed against the highest-priced product in the sample database. A logical
way to start building the appropriate SQL query is to find an expression that will give
you the identity (manufacturer ID and product ID) of the high-priced product in
question. Here is a query that finds the right product:

Find the manufacturer ID and product ID of the product with the highest unit price.

SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE = (SELECT MAX(PRICE)

FROM PRODUCTS)
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Ignoring the possibility of a tie for the most expensive product for a moment, this
query will generate a single row of query results, consisting of two columns. Using
SQL2’s row-valued subquery capability, you can embed this entire query as a subquery
within a SELECT statement to retrieve the order information:

List the order numbers and dates of all orders placed for the highest-priced product.

SELECT ORDER_NUM, ORDER_DATE

FROM ORDERS

WHERE (MFR, PRODUCT) = (SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE = (SELECT MAX(PRICE)

FROM PRODUCTS))

The top-level WHERE clause in this query contains a row-valued comparison. On the
left side of the equal sign is a row-value constructor consisting of two column names.
Each time the WHERE clause is examined to carry out the top-level query, the value of
this row-valued expression is a manufacturer-ID/product-ID pair from a row of the
ORDERS table. On the right side of the equal sign is the subquery that generates the
identity of the product with the highest dollar value. The result of this subquery is
again a row value, with two colu

mns, whose data types match those of the row-valued expression on the left side of
the equal sign.

It’s possible to express this query without the row-valued subquery, but the resulting
query will be much less straightforward:

List the order numbers and dates of all orders placed for the highest-priced product.

SELECT ORDER_NUM, ORDER_DATE

FROM ORDERS

WHERE (MFR = (SELECT MFR_ID

FROM PRODUCTS

WHERE PRICE = (SELECT MAX(PRICE)

FROM PRODUCTS)))

AND (PRODUCT = (SELECT PRODUCT_ID

FROM PRODUCTS

WHERE PRICE = (SELECT MAX(PRICE)

FROM PRODUCTS)))

Instead of a single row-valued comparison in the WHERE clause, the resulting query
has two separate scalar-valued comparisons, one for the manufacturer ID and one for the
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product ID. Because the comparison must be split, the lower-level subquery to find the
maximum price must be repeated twice as well. Overall, the form of the query using the
row-valued expression is a more direct translation of the English-language request, and
it’s easier to read and understand.

Row-Valued Comparisons (SQL2)
The most common use of row-valued expressions in the WHERE or HAVING clause is
within a test for equality, as illustrated by the last few examples. A constructed row
(often consisting of column values from a candidate row of query results) is compared
to another constructed row (perhaps a row of subquery results or a row of literal
values), and if the rows are equal, the candidate row is included in the query results.
The SQL2 standard also provides for row-valued forms of the inequality comparison
tests and the range test. When comparing two rows for inequality, SQL2 uses the same
rules that it would use if the columns were being used to sort the rows. It compares the
contents of the first column in the two rows, and if they are unequal, uses them to
order the rows. If they are equal, the comparison moves to the second column, and
then the third, and so on. Here are the resulting comparisons for some three-column
constructed rows derived from the ORDERS table:

(‘ACI’,’41002’,54) < (‘REI’,’2A44R’,5)—based on first column
(‘ACI’,’41002’,54) < (‘ACI’,’41003’,35)—based on second column
(‘ACI’,’41002’,10) < (‘ACI’,’41002’,54)—based on third column

Table-Valued Expressions (SQL2)
In addition to its extended capabilities for expressions involving simple scalar data
values and row values, the SQL2 standard dramatically extends the SQL capabilities
for table processing. It provides a mechanism for constructing a table of data values in
place within a SQL statement. It allows table-valued subqueries and extends the SQL1
subquery tests to handle them. It also allows subqueries to appear in many more places
within a SQL statement—for example, a subquery can appear in the FROM clause of a
SELECT statement as of its source tables. Finally, it provides expanded capabilities for
combining tables, including the UNION, INTERSECTION, and DIFFERENCE operations.

The Table-Value Constructor (SQL2)
SQL2 allows you to specify a table of data values within a SQL statement by using a
table-value constructor expression, whose syntax is shown in Figure 9-15. In its simplest
form, the table-value constructor is a comma-separated list of row-value constructors,
each of which contains a comma-separated set of literals that form individual column
values. For example, the SQL2 INSERT statement uses a table-value constructor as the
source of the data to be inserted into a database. While the SQL1 INSERT statement
(described in Chapter 10) allows you to insert only a single row of data, the next SQL2
INSERT statement inserts three rows into the OFFICES table.
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Add three offices to the OFFICES table.

INSERT INTO OFFICES (OFFICE,CITY,REGION,MGR,SALES)

VALUES (23, 'San Diego', 'Western', 108, 0.00),

(24, 'Seattle', 'Western', 104, 0.00),

(14, 'Boston', 'Eastern, NULL, 0.00)

Note that the individual rows in the table-value constructor are not restricted to
contain only literal values. The source of a data value can be a scalar-valued subquery,
or an entire row can be the result of a row-valued subquery. Although it doesn’t make
much sense in the sample database, this is a legal SQL2 INSERT statement that illustrates
these capabilities:

Add three offices to the OFFICES table.

INSERT INTO OFFICES (OFFICE,CITY,REGION,MGR,SALES)

VALUES (23, 'San Diego', 'Western', 108, 0.00),

(24, 'Seattle', 'Western', (SELECT MANAGER

FROM SALESREPS

WHERE EMPL_NUM = 105),

0.00),

(SELECT 'BOSTON', 'EASTERN', REGION, MGR, 0.00

FROM OFFICES

WHERE OFFICE = 12)

Like the preceding example, the VALUES clause in this INSERT statement generates a
three-row table to be inserted. The first row is specified with literal values. In the second
row, the fourth column is specified as a scalar-valued subquery that retrieves the manager
of employee number 105. In the third row, the entire row is generated by a row-valued
subquery. In this case, three of the column values in the subquery’s SELECT clause are
actually literal values, but the third and fourth columns are produced by the subquery,
which retrieves the manager and region for the New York office (number 12).

Table-Valued Subqueries (SQL2)
Just as SQL2 expands the use of scalar subqueries into row-valued subqueries, it also
extends the SQL subquery facility to support table-valued subqueries—that is, subqueries

Figure 9-15. SQL2 table-value constructor syntax diagram
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that return a full table of results. One useful role for table-valued subqueries is within the
WHERE or HAVING clause, where it is combined with extended forms of the subquery
tests. For example, suppose you wanted to list the descriptions and prices of all products
with orders exceeding $20,000 in the sample database. Perhaps the most straightforward
way to express this request is in this SQL2 statement that uses a table-valued subquery:

List the description and price of all products with individual orders over $20,000.

SELECT DESCRIPTION, PRICE

FROM PRODUCTS

WHERE (MFR_ID,PRODUCT_ID) IN (SELECT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 20000.00)

The top-level query is a straightforward statement of the English-language request—it
asks for the description and price of those products whose identification (as in previous
examples, a manufacturer-ID/product-ID pair) matches some set of products. This is
expressed as a subquery set membership test in the WHERE clause. The subquery generates
a two-column table of subquery results, which are the identifications of the products that
meet the stated order size criterion.

It’s certainly possible to express this query in other ways. From the discussion in
Chapter 7, you probably recognize that it can be stated as a join of the PRODUCTS and
ORDERS tables with a compound search condition:

List the description and price of all products with individual orders over $20,000.

SELECT DESCRIPTION, PRICE

FROM PRODUCTS, ORDERS

WHERE (MFR_ID = MFR)

AND (PRODUCT_ID = PRODUCT)

AND (AMOUNT > 20000.00)

This is an equally valid statement of the query, but it’s a lot further removed from
the English-language request, and therefore more difficult to understand for most
people. As queries become more complex, the ability to use table-valued subqueries
becomes even more useful to simplify and clarify SQL requests.

The SQL2 Query Specification
The SQL2 standard formalizes the definition of what we have loosely been calling a
SELECT statement or a query in the last three chapters into a basic building block
called a query specification. For a complete understanding of the SQL2 table expression
capabilities in the next section, it’s useful to understand this formal definition. The



form of a SQL2 query specification is shown in Figure 9-16. Its components should be
familiar from the earlier chapters:

� A select list specifies the columns of query results. Each column is specified by
an expression that tells the DBMS how to calculate its value. The column can
be assigned an optional alias with the AS clause.

� The keywords ALL or UNIQUE control duplicate row elimination in the
query results.

� The FROM clause specifies the tables that contribute to the query results.

� The WHERE clause describes how the DBMS should determine which rows are
included in the query results and which should be discarded.

� The GROUP BY and HAVING clauses together control the grouping of individual
query results rows in a grouped query, and the selection of row groups for
inclusion or exclusion in the final results.

The query specification is the basic query building block in the SQL2 standard.
Conceptually, it describes the process of combining data from the tables in the FROM
clause into a row/column table of query results. The value of the query specification is
a table of data. In the simplest case, a SQL2 query consists of a simple query specification.
In a slightly more complex case, a query specification is used to describe a subquery,
which appears within another (higher-level) query specification. Finally, query
specifications can be combined using table-valued operations to form general-purpose
query expressions, as described in the next section.
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Figure 9-16. SQL2 query specification: formal definition
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Query Expressions (SQL2)
The SQL2 standard defines a query expression as the full, general-purpose way that you can
specify a table of query results in the SQL2 language. The basic building blocks you can use
to create a query expression are the following:

� A query specification, as described in the preceding section (SELECT…FROM…).
Its value is a table of query results.

� A table-value constructor, as previously described (VALUES …). Its value is a
table of constructed values.

� An explicit table reference (TABLE tblname). Its value is the contents of the
named table.

Using these building blocks, SQL2 lets you combine their table values using the
following operations:

� JOIN. SQL2 provides explicit support for full cross-product joins (cross joins),
natural joins, inner joins, and all types of outer joins (left, right, and full), as
described in Chapter 7. A JOIN operation takes two tables as its input and
produces a table of combined query results according to the join specification.

� UNION. The SQL2 UNION operation provides explicit support for merging the
rows of two compatible tables (that is, two tables having the same number of
columns and with corresponding columns having the same data types). The
UNION operation takes two tables as its input and produces a single merged
table of query results.

� DIFFERENCE. The SQL2 EXCEPT operation takes two tables as its input and
produces as its output a table containing the rows that appear in the first table
but that do not appear in another table—that is, the rows that are missing from
the second table. Conceptually, the EXCEPT operation is like table subtraction.
The rows of the second table are taken away from the rows of the first table,
and the answer is the remaining rows of the first table.

� INTERSECT. The SQL2 INTERSECT operation takes two tables as its input and
produces as its output a table containing the rows that appear in both input tables.

SQL2 UNION, INTERSECT, and DIFFERENCE Operations
The SQL2 UNION, INTERSECT, and DIFFERENCE operations provide set operations for
combining two input tables to form an output table. All three of the operations require
that the two input tables be union-compatible—they must have the same number of
columns, and the corresponding columns of each table must have identical data types.
Here are some simple examples of SQL2 query expressions involving UNION, INTERSECT,
and DIFFERENCE operations based on the sample database:

Show all products for which there is an order over $30,000 or more than $30,000 worth of
inventory on hand.
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(SELECT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00)

UNION

(SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE (PRICE * QTY_ON_HAND) > 30000)

Show all products for which there is an order over $30,000 and more than $30,000 worth
of inventory on hand.

(SELECT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00)

INTERSECT

(SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE (PRICE * QTY_ON_HAND) > 30000)

Show all products for which there is an order over $30,000 except for those products that
sell for under $1000.

(SELECT MFR, PRODUCT

FROM ORDERS

WHERE AMOUNT > 30000.00)

EXCEPT

(SELECT MFR_ID, PRODUCT_ID

FROM PRODUCTS

WHERE PRICE < 100.00)

By default, the UNION, INTERSECT, and EXCEPT operations eliminate duplicate rows
during their processing. This is usually the desired result, as it is in these examples, but
occasionally, you may need to suppress the elimination of duplicate rows. You can do this
by specifying the UNION ALL, INTERSECT ALL, or EXCEPT ALL forms of the operations.

Note each of these examples produces a two-column table of query results. The
results come from two different source tables within the database—the ORDERS table
and the PRODUCTS table. However, the columns selected from these tables have the
same corresponding data types, so they can be combined using these operations. In the
sample database, the corresponding columns have different names in the two tables.
(The manufacturer-ID column is named MFR in the ORDERS table but named MFR_ID in
the PRODUCTS table.)

However, corresponding columns such as these will often have the same name in each
of the tables being combined. As a convenience, SQL2 lets you specify the corresponding
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columns in a CORRESPONDING clause attached to the UNION, INTERSECT, or EXCEPT
operation. Here is the preceding UNION example, changed for the situation where the
ORDERS and PRODUCTS tables have parallel column names for manufacturer ID and
product ID:

Show all products for which there is an order over $30,000 or more than $30,000 worth of
inventory on hand.

(SELECT *

FROM ORDERS

WHERE AMOUNT > 30000.00)

UNION CORRESPONDING BY (MFR, PRODUCT)

(SELECT *

FROM PRODUCTS

WHERE (PRICE * QTY_ON_HAND) > 30000)

In a case like this one where all of the corresponding (that is, identically named)
columns from the two tables participate in the UNION operation, SQL2 even allows you
to leave off the explicit list of column names:

Show all products for which there is an order over $30,000 or more than $30,000 worth of
inventory on hand.

(SELECT *

FROM ORDERS

WHERE AMOUNT > 30000.00)

UNION CORRESPONDING

(SELECT *

FROM PRODUCTS

WHERE (PRICE * QTY_ON_HAND) > 30000)

Finally, it’s worth noting that the column alias capability of the query specification can
be used to rename or assign names to the columns from the individual query results that
are being combined with the UNION operation. If we eliminate the assumption that the
PRODUCTS and ORDERS tables use the same column names, it’s still possible to use the
CORRESPONDING form of the UNION operation in this query simply by renaming the
columns in one of the tables:

Show all products for which there is an order over $30,000 or more than $30,000 worth of
inventory on hand.

(SELECT *

FROM ORDERS

WHERE AMOUNT > 30000.00)



UNION CORRESPONDING

(SELECT MFR_ID AS MFR, PRODUCT_ID AS PRODUCT

FROM PRODUCTS

WHERE (PRICE * QTY_ON_HAND) > 30000)

In this simple example, there is not much advantage in this construct, but in the
more general case where the individual queries involve calculated columns or are
grouped queries, the CORRESPONDING clause and column aliases can help to clarify the
meaning of the query.

Query Expressions in the FROM Clause
SQL2 query expressions provide a much more powerful and flexible method for
generating and combining tables of query results than the simple subquery and UNION
operations provided by the SQL1 standard. To make query expressions even more useful
and more general-purpose, the SQL2 standard allows them to appear almost anywhere
that a table reference could appear in a SQL1 query. In particular, a query expression can
appear in place of a table name in the FROM clause. Here is a simple example of a SQL2
query for the sample database that uses this feature:

Show the names and total outstanding orders of all customers with credit limits over
$50,000.

SELECT COMPANY, TOT_ORDERS

FROM CUSTOMER, (SELECT CUST, SUM(AMOUNT) AS TOT_ORDERS

FROM ORDERS

GROUP BY CUST),

WHERE (CREDIT_LIMIT > 50000.00)

AND (CUST_NUM = CUST)

The second “table name” in the FROM clause of the main query is not a table name
at all, but a full-blown query expression. In fact, the expression could have been much
more complex, involving UNION or JOIN operations. When a query expression appears
in the FROM clause, as it does here, the DBMS conceptually carries it out first, before
any other processing of the query, and creates a temporary table of the query results
generated by the query expression. In this case, this temporary table consists of two
columns, listing each customer number and the total of orders for that customer
number. This temporary table then acts as one of the source tables for the main query.
In this example, its contents are joined to the CUSTOMER table to obtain the company
name and generate the answer to the main question.

There are many other ways in which this query could be written. The entire query
could be written as one top-level grouped query that joins the CUSTOMER and ORDERS
table. The join operation could be made explicit with a SQL2 JOIN operator, and then
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the results of the join could be grouped in the top-level query. As this example shows,
one of the benefits of the SQL2 query expression capabilities is that they typically provide
several different ways to obtain the same query results.

The general philosophy behind the SQL2 capabilities in this area is that the SQL
language should provide the flexibility to express a query in the most natural form. The
underlying DBMS must be able to take the query, however expressed, break it down into
its fundamentals, and then determine the most efficient way to carry out the query. This
internal query execution plan may be quite different than the apparent plan called for by
the actual SQL statement, but as long as it produces the same query results, the net effect
is to shift the optimization workload from the human user or programmer to the DBMS.

SQL Queries: A Final Summary
This concludes the discussion of the SQL queries and the SELECT statement that began in
Chapter 6. As described in Chapters 6–9, the clauses of the SELECT statement provide a
powerful, flexible set of capabilities for retrieving data from the database. Each clause
plays a specific role in data retrieval:

� The FROM clause specifies the source tables that contribute data to the query results.
Every column name in the body of the SELECT statement must unambiguously
identify a column from one of these tables, or it must be an outer reference to a
column from a source table of an outer query.

� The WHERE clause, if present, selects individual combinations of rows from the
source tables to participate in the query results. Subqueries in the WHERE clause
are evaluated for each individual row.

� The GROUP BY clause, if present, groups the individual rows selected by the
WHERE clause into row groups.

� The HAVING clause, if present, selects row groups to participate in the query
results. Subqueries in the HAVING clause are evaluated for each row group.

� The SELECT clause determines which data values actually appear as columns
in the final query results.

� The DISTINCT keyword, if present, eliminates duplicate rows of query results.

� The UNION operator, if present, merges the query results produced by individual
SELECT statements into a single set of query results.

� The ORDER BY clause, if present, sorts the final query results based on one or
more columns.

� The SQL2 query expression capabilities add row-valued and table-valued
expressions and INTERSECT and EXCEPT operations to the SQL1 capabilities.
The fundamental flow of query processing is not changed, but the capability
to express queries within queries is greatly enhanced.
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Part III
Updating Data

SQL is not only a query language, it’s a complete language for

retrieving and modifying data in a database. Chapters 10–12 focus on

database updates. Chapter 10 describes SQL statements that add data

to a database, remove data from a database, and modify existing

database data. Chapter 11 describes how SQL maintains the integrity of

stored data when the data is modified. Chapter 12 describes the SQL

transaction-processing features that support concurrent database

updates by many different users.
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S
QL is a complete data manipulation language that is used not only for database
queries, but also to modify and update data in the database. Compared to the
complexity of the SELECT statement, which supports SQL queries, the SQL

statements that modify database contents are extremely simple. However, database
updates pose some challenges for a DBMS beyond those presented by database
queries. The DBMS must protect the integrity of stored data during changes, ensuring
that only valid data is introduced into the database, and that the database remains
self-consistent, even in the event of system failures. The DBMS must also coordinate
simultaneous updates by multiple users, ensuring that the users and their changes do
not interfere with one another.

This chapter describes the three SQL statements that are used to modify the contents
of a database:

� INSERT. Adds new rows of data to a table

� DELETE. Removes rows of data from a table

� UPDATE. Modifies existing data in the database

In Chapter 11, SQL facilities for maintaining data integrity are described. Chapter 12
covers SQL support for multiuser concurrency.

Adding Data to the Database
A new row of data is typically added to a relational database when a new entity
represented by the row appears in the outside world. For example, in the sample
database:

� When you hire a new salesperson, a new row must be added to the SALESREPS
table to store the salesperson’s data.

� When a salesperson signs a new customer, a new row must be added to the
CUSTOMERS table, representing the new customer.

� When a customer places an order, a new row must be added to the ORDERS
table to contain the order data.

In each case, the new row is added to maintain the database as an accurate model
of the real world. The smallest unit of data that can be added to a relational database is
a single row. In general, a SQL-based DBMS provides three ways to add new rows of
data to a database:
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� Single-row INSERT. A single-row INSERT statement adds a single new row of
data to a table. It is commonly used in daily applications—for example, data
entry programs.

� Multi-row INSERT. A multirow INSERT statement extracts rows of data from
another part of the database and adds them to a table. It is commonly used in
end-of-month or end-of-year processing when old rows of a table are moved to
an inactive table.

� Bulk load. A bulk load utility adds data to a table from a file that is outside of
the database. It is commonly used to initially load the database or to incorporate
data downloaded from another computer system or collected from many sites.

The Single-Row INSERT Statement
The single-row INSERT statement, shown in Figure 10-1, adds a new row to a table.
The INTO clause specifies the table that receives the new row (the target table), and the
VALUES clause specifies the data values that the new row will contain. The column list
indicates which data value goes into which column of the new row.

Figure 10-1. Single-row INSERT statement syntax diagram



Suppose you just hired a new salesperson, Henry Jacobsen, with the following
personal data:

Name: Henry Jacobsen

Age: 36

Employee Number: 111

Title: Sales Manager

Office: Atlanta (office number 13)

Hire Date: July 25, 1990

Quota: Not yet assigned

Year-to-Date Sales: $0.00

Here is the INSERT statement that adds Mr. Jacobsen to the sample database:

Add Henry Jacobsen as a new salesperson.

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, TITLE,

HIRE_DATE, REP_OFFICE)

VALUES ('Henry Jacobsen', 36, 111, 0.00, 'Sales Mgr',

'25-JUL-90', 13)

1 row inserted.

Figure 10-2 graphically illustrates how SQL carries out this INSERT statement.
Conceptually, the INSERT statement builds a single row of data that matches the
column structure of the table, fills it with the data from the VALUES clause, and then
adds the new row to the table. The rows of a table are unordered, so there is no notion
of inserting the row at the top, at the bottom, or between two rows of the table. After
the INSERT statement, the new row is simply a part of the table. A subsequent query
against the SALESREPS table will include the new row, but it may appear anywhere
among the rows of query results.

Suppose Mr. Jacobsen now receives his first order, from InterCorp, a new customer
who is assigned customer number 2126. The order is for 20 ACI-41004 widgets, for a
total price of $2340, and has been assigned order number 113069. Here are the INSERT
statements that add the new customer and the order to the database:

272 S Q L : T h e C o m p l e t e R e f e r e n c e



C h a p t e r 1 0 : D a t a b a s e U p d a t e s 273
U

P
D

A
T
IN

G
D

A
T
A

Insert a new customer and order for Mr. Jacobsen.

INSERT INTO CUSTOMERS (COMPANY, CUST_NUM, CREDIT_LIMIT, CUST_REP)

VALUES ('InterCorp', 2126, 15000.00, 111)

1 row inserted.

INSERT INTO ORDERS (AMOUNT, MFR, PRODUCT, QTY, ORDER_DATE,

ORDER_NUM, CUST, REP)

VALUES (2340.00, 'ACI', '41004', 20, CURRENT_DATE, 113069,

2126, 111)

1 row inserted.

Figure 10-2. Inserting a single row
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As this example shows, the INSERT statement can become lengthy if there are
many columns of data, but its format is still very straightforward. The second INSERT
statement uses the system constant CURRENT DATE in its VALUES clause, causing the
current date to be inserted as the order date. This system constant is specified in the
SQL2 standard and is supported by many of the popular SQL products. Other brands
of DBMS provide other system constants or built-in functions to obtain the current date
and time.

You can use the INSERT statement with interactive SQL to add rows to a table that
grows very rarely, such as the OFFICES table. In practice, however, data about a new
customer, order, or salesperson is almost always added to a database through a forms-
oriented data entry program. When the data entry is complete, the application program
inserts the new row of data using programmatic SQL. Regardless of whether interactive
or programmatic SQL is used, however, the INSERT statement is the same.

The table name specified in the INSERT statement is normally an unqualified table
name, specifying a table that you own. To insert data into a table owned by another
user, you can specify a qualified table name. Of course, you must also have permission
to insert data into the table, or the INSERT statement will fail. The SQL security scheme
and permissions are described in Chapter 15.

The purpose of the column list in the INSERT statement is to match the data values
in the VALUES clause with the columns that are to receive them. The list of values and
the list of columns must both contain the same number of items, and the data type of
each value must be compatible with the data type of the corresponding column, or an
error will occur. The ANSI/ISO standard mandates unqualified column names in the
column list, but many implementations allow qualified names. Of course, there can be
no ambiguity in the column names anyway, because they must all reference columns of
the target table.

Inserting NULL Values
When SQL inserts a new row of data into a table, it automatically assigns a NULL value
to any column whose name is missing from the column list in the INSERT statement. In
this INSERT statement, which added Mr. Jacobsen to the SALESREPS table, the QUOTA
and MANAGER columns were omitted:

INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, TITLE,

HIRE_DATE, REP_OFFICE)

VALUES ('Henry Jacobsen', 36, 111, 0.00, 'Sales Mgr',

'25-JUL-90', 13)

As a result, the newly added row has a NULL value in the QUOTA and MANAGER
columns, as shown in Figure 10-2. You can make the assignment of a NULL value more
explicit by including these columns in the column list and specifying the keyword NULL
in the values list. This INSERT statement has exactly the same effect as the previous one:
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INSERT INTO SALESREPS (NAME, AGE, EMPL_NUM, SALES, QUOTA, TITLE,

MANAGER, HIRE_DATE, REP_OFFICE)

VALUES ('Henry Jacobsen', 36, 111, 0.00, NULL, 'Sales Mgr',

NULL, '25-JUL-90', 13)

Inserting All Columns
As a convenience, SQL allows you to omit the column list from the INSERT statement.
When the column list is omitted, SQL automatically generates a column list consisting
of all columns of the table, in left-to-right sequence. This is the same column sequence
generated by SQL when you use a SELECT * query. Using this shortcut, the previous
INSERT statement could be rewritten equivalently as:

INSERT INTO SALESREPS

VALUES (111, 'Henry Jacobsen', 36, 13, 'Sales Mgr',

'25-JUL-90', NULL, NULL, 0.00)

When you omit the column list, the NULL keyword must be used in the values list to
explicitly assign NULL values to columns, as shown in the example. In addition, the
sequence of data values must correspond exactly to the sequence of columns in the table.

Omitting the column list is convenient in interactive SQL because it reduces the
length of the INSERT statement you must type. For programmatic SQL, the column list
should always be specified because it makes the program easier to read and understand.
In addition, table structures often change over time to include new columns or drop
columns that are no longer used. A program that contains an INSERT statement without
an explicit column list may work correctly for months or years, and then suddenly
begin producing errors if the number of columns or data types of columns is changed
by a database administrator.

The Multirow INSERT Statement
The second form of the INSERT statement, shown in Figure 10-3, adds multiple rows
of data to its target table. In this form of the INSERT statement, the data values for the
new rows are not explicitly specified within the statement text. Instead, the source
of new rows is a database query, specified in the statement.
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Figure 10-3. Multirow INSERT statement syntax diagram
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Adding rows whose values come from within the database itself may seem strange
at first, but it’s very useful in some special situations. For example, suppose you want
to copy the order number, date, and amount of all orders placed before January 1, 1990,
from the ORDERS table into another table, called OLDORDERS. The multirow INSERT
statement provides a concise, efficient way to copy the data:

Copy old orders into the OLDORDERS table.

INSERT INTO OLDORDERS (ORDER_NUM, ORDER_DATE, AMOUNT)

SELECT ORDER_NUM, ORDER_DATE, AMOUNT

FROM ORDERS

WHERE ORDER_DATE < '01-JAN-90'

9 rows inserted.

This INSERT statement looks complicated, but it’s really very simple. The statement
identifies the table to receive the new rows (OLDORDERS) and the columns to receive
the data, just like the single-row INSERT statement. The remainder of the statement is a
query that retrieves data from the ORDERS table. Figure 10-4 graphically illustrates the

Figure 10-4. Inserting multiple rows
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operation of this INSERT statement. Conceptually, SQL first performs the query against the
ORDERS table and then inserts the query results, row by row, into the OLDORDERS table.

Here’s another situation where you could use the multirow INSERT statement.
Suppose you want to analyze customer buying patterns by looking at which customers
and salespeople are responsible for big orders—those over $15,000. The queries that
you will be running will combine data from the CUSTOMERS, SALESREPS, and ORDERS
tables. These three-table queries will execute fairly quickly on the small sample
database, but in a real corporate database with many thousands of rows, they would
take a long time. Rather than running many long, three-table queries, you could create
a new table named BIGORDERS to contain the required data, defined as follows:

Column Information

AMOUNT Order amount (from ORDERS)

COMPANY Customer name (from CUSTOMERS)

NAME Salesperson name (from SALESREPS)

PERF Amount over/under quota (calculated from SALESREPS)

MFR Manufacturer ID (from ORDERS)

PRODUCT Product ID (from ORDERS)

QTY Quantity ordered (from ORDERS)

Once you have created the BIGORDERS table, this multirow INSERT statement can
be used to populate it:

Load data into the BIGORDERS table for analysis.

INSERT INTO BIGORDERS (AMOUNT, COMPANY, NAME, PERF, PRODUCT, MFR, QTY)

SELECT AMOUNT, COMPANY, NAME, (SALES - QUOTA), PRODUCT, MFR, QTY

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM

AND REP = EMPL_NUM

AND AMOUNT > 15000.00

6 rows inserted.

In a large database, this INSERT statement may take a while to execute because it
involves a three-table query. When the statement is complete, the data in the BIGORDERS
table will duplicate information in other tables. In addition, the BIGORDERS table
won’t be automatically kept up to date when new orders are added to the database, so
its data may quickly become outdated. Each of these factors seems like a disadvantage.
However, the subsequent data analysis queries against the BIGORDERS table can be
expressed very simply—they become single-table queries.



Furthermore, each of those queries will run much faster than if it were a three-
table join. Consequently, this is probably a good strategy for performing the analysis,
especially if the three original tables are large. In this situation, it’s likely that the
BIGORDERS table will be used as a temporary table for doing the analysis. It will be
created and populated with data, representing a snapshot of the order status in time,
the analysis programs will be run, and then the table will be emptied or dropped.

The SQL1 standard specifies several logical restrictions on the query that appears
within the multirow INSERT statement:

� The query cannot contain an ORDER BY clause. It’s useless to sort the query
results anyway, because they’re being inserted into a table that is, like all tables,
unordered.

� The query results must contain the same number of columns as the column list
in the INSERT statement (or the entire target table, if the column list is omitted),
and the data types must be compatible, column by column.

� The query cannot be the UNION of several different SELECT statements. Only a
single SELECT statement may be specified.

� The target table of the INSERT statement cannot appear in the FROM clause of
the query or any subqueries that it contains. This prohibits inserting part of a
table into itself.

The first two restrictions are structural, but the latter two were included in the
standard simply to avoid complexity. As a result, these restrictions were relaxed in the
SQL2 standard. The standard now allows UNION and JOIN operations and expressions
in the query, basically allowing the results of a general database query to be retrieved
and then inserted into a table with the INSERT statement. It also allows various forms
of self-insertion, where the source table for the data to be inserted and the destination
table are the same.

Bulk Load Utilities
Data to be inserted into a database is often downloaded from another computer system
or collected from other sites and stored in a sequential file. To load the data into a table,
you could write a program with a loop that reads each record of the file and uses the
single-row INSERT statement to add the row to the table. However, the overhead of
having the DBMS repeatedly execute single-row INSERT statements may be quite high.
If inserting a single row takes half a second under a typical system load, that is probably
acceptable performance for an interactive program. But that performance quickly
becomes unacceptable when applied to the task of bulk loading 50,000 rows of data. In
this case, loading the data would require over six hours.

For this reason, most commercial DBMS products include a bulk load feature that
loads data from a file into a table at high speed. The ANSI/ISO SQL standard does not
address this function, and it is usually provided as a stand-alone utility program rather
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than as part of the SQL language. Each vendor’s utility provides a slightly different set
of features, functions, and commands.

When SQL is used from within an application program, another technique is
frequently provided for more efficiently inserting a large amount of data into a
database. The standard programmatic INSERT statement inserts a single row of data,
just like the interactive single-row INSERT statements in the preceding examples. But
many commercial DBMS products allow data from two or more rows (often up to
hundreds of rows) to be supplied as part of a single bulk INSERT statement. All of the
supplied data must be for new rows of the single table that is the target of the INSERT
statement, and named in the INTO clause.

Executing a bulk INSERT statement for 100 rows of data has exactly the same effect
as executing 100 individual single-row INSERT statements. However, it is usually
much more efficient, because it involves only one call to the DBMS. Efficiency gains
from 20 percent to 30 percent and up to 300 percent or more times over single-row
INSERT statements are common, depending on the DBMS brand and the particular
kind of data being inserted.

Deleting Data from the Database
A row of data is typically deleted from a database when the entity represented by the
row disappears from the outside world. For example, in the sample database:

� When a customer cancels an order, the corresponding row of the ORDERS
table must be deleted.

� When a salesperson leaves the company, the corresponding row of the
SALESREPS table must be deleted.

� When a sales office is closed, the corresponding row of the OFFICES table must
be deleted. If the salespeople in the office are terminated, their rows should be
deleted from the SALESREPS table as well. If they are reassigned, their REP_
OFFICE columns must be updated.

In each case, the row is deleted to maintain the database as an accurate model of the
real world. The smallest unit of data that can be deleted from a relational database is a
single row.

The DELETE Statement
The DELETE statement, shown in Figure 10-5, removes selected rows of data from a single
table. The FROM clause specifies the target table containing the rows. The WHERE clause
specifies which rows of the table are to be deleted.

Suppose Henry Jacobsen, the new salesperson hired earlier in this chapter, has just
decided to leave the company. The DELETE statement that removes his row from the
SALESREPS table is shown next.
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Remove Henry Jacobsen from the database.

DELETE FROM SALESREPS

WHERE NAME = 'Henry Jacobsen'

1 row deleted.

The WHERE clause in this example identifies a single row of the SALESREPS table,
which SQL removes from the table. The WHERE clause should have a familiar
appearance—it’s exactly the same WHERE clause that you would specify in a SELECT
statement to retrieve the same row from the table. The search conditions that can be
specified in the WHERE clause of the DELETE statement are the same ones available in
the WHERE clause of the SELECT statement, as described in Chapters 6 and 9.

Recall that search conditions in the WHERE clause of a SELECT statement can specify
a single row or an entire set of rows, depending on the specific search condition. The
same is true of the WHERE clause in a DELETE statement. Suppose, for example, that
Mr. Jacobsen’s customer, InterCorp (customer number 2126) has called to cancel all its
orders. Here is the DELETE statement that removes the orders from the ORDERS table:

Remove all orders for InterCorp (customer number 2126).

DELETE FROM ORDERS

WHERE CUST = 2126

2 rows deleted.

In this case, the WHERE clause selects several rows of the ORDERS table, and SQL
removes all of the selected rows from the table. Conceptually, SQL applies the WHERE
clause to each row of the ORDERS table, deleting those where the search condition yields a
TRUE result and retaining those where the search condition yields a FALSE or NULL result.

Because this type of DELETE statement searches through a table for the rows to be
deleted, it is sometimes called a searched DELETE statement. This term is used to contrast
it with another form of the DELETE statement, called the positioned DELETE statement,
which always deletes a single row. The positioned DELETE statement applies only to
programmatic SQL and is described in Chapter 17.
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Figure 10-5. DELETE statement syntax diagram



Here are some additional examples of searched DELETE statements:

Delete all orders placed before November 15, 1989.

DELETE FROM ORDERS

WHERE ORDER_DATE < '15-NOV-89'

5 rows deleted.

Delete all rows for customers served by Bill Adams, Mary Jones, or Dan Roberts (employee
numbers 105, 109, and 101).

DELETE FROM CUSTOMERS

WHERE CUST_REP IN (105, 109, 101)

7 rows deleted.

Delete all salespeople hired before July 1988 who have not yet been assigned a quota.

DELETE FROM SALESREPS

WHERE HIRE_DATE < '01-JUL-88'

AND QUOTA IS NULL

0 rows deleted.

Deleting All Rows
The WHERE clause in a DELETE statement is optional, but it is almost always present. If
the WHERE clause is omitted from a DELETE statement, all rows of the target table are
deleted, as in this example:

Delete all orders.

DELETE FROM ORDERS

30 rows deleted.

Although this DELETE statement produces an empty table, it does not erase the
ORDERS table from the database. The definition of the ORDERS table and its columns is
still stored in the database. The table still exists, and new rows can still be inserted into
the ORDERS table with the INSERT statement. To erase the definition of the table from the
database, the DROP TABLE statement (described in Chapter 13) must be used.

C h a p t e r 1 0 : D a t a b a s e U p d a t e s 281
U

P
D

A
T
IN

G
D

A
T
A



282 S Q L : T h e C o m p l e t e R e f e r e n c e

Because of the potential damage from such a DELETE statement, be careful to
always specify a search condition, and be sure that it actually selects the rows you
want. When using interactive SQL, it’s a good idea first to use the WHERE clause in a
SELECT statement to display the selected rows. Make sure they are the ones you want
to delete, and only then use the WHERE clause in a DELETE statement.

DELETE with Subquery *
DELETE statements with simple search conditions, such as those in the previous
examples, select rows for deletion based solely on the contents of the rows themselves.
Sometimes the selection of rows must be made based on data from other tables. For
example, suppose you want to delete all orders taken by Sue Smith. Without knowing
her employee number, you can’t find the orders by consulting the ORDERS table alone.
To find the orders, you could use a two-table query:

Find the orders taken by Sue Smith.

SELECT ORDER_NUM, AMOUNT

FROM ORDERS, SALESREPS

WHERE REP = EMPL_NUM

AND NAME = 'Sue Smith'

ORDER_NUM      AMOUNT

---------- -----------

112979  $15,000.00

113065   $2,130.00

112993   $1,896.00

113048   $3,750.00

But you can’t use a join in a DELETE statement. The parallel DELETE statement
is illegal:

DELETE FROM ORDERS, SALESREPS

WHERE REP = EMPL_NUM

AND NAME = 'Sue Smith'

Error: More than one table specified in FROM clause
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The way to handle the request is with one of the subquery search conditions. Here
is a valid form of the DELETE statement that handles the request:

Delete the orders taken by Sue Smith.

DELETE FROM ORDERS

WHERE REP = (SELECT EMPL_NUM

FROM SALESREPS

WHERE NAME = 'Sue Smith')

4 rows deleted.

The subquery finds the employee number for Sue Smith, and the WHERE clause then
selects the orders with a matching value. As this example shows, subqueries can play
an important role in the DELETE statement because they let you delete rows based on
information in other tables. Here are two more examples of DELETE statements that
use subquery search conditions:

Delete customers served by salespeople whose sales are less than 80 percent of quota.

DELETE FROM CUSTOMERS

WHERE CUST_REP IN (SELECT EMPL_NUM

FROM SALESREPS

WHERE SALES < (.8 * QUOTA))

2 rows deleted.

Delete any salesperson whose current orders total less than 2 percent of their quota.

DELETE FROM SALESREPS

WHERE (.02 * QUOTA) > (SELECT SUM(AMOUNT)

FROM ORDERS

WHERE REP = EMPL_NUM)

1 row deleted.



Subqueries in the WHERE clause can be nested just as they can be in the WHERE
clause of the SELECT statement. They can also contain outer references to the target
table of the DELETE statement. In this respect, the FROM clause of the DELETE statement
functions like the FROM clause of the SELECT statement. Here is an example of a
deletion request that requires a subquery with an outer reference:

Delete customers who have not ordered since November 10, 1989.

DELETE FROM CUSTOMERS

WHERE NOT EXISTS (SELECT *

FROM ORDERS

WHERE CUST = CUST_NUM

AND ORDER_DATE < '10-NOV-89')

16 rows deleted.

Conceptually, this DELETE statement operates by going through the CUSTOMERS
table, row by row, and checking the search condition. For each customer, the subquery
selects any orders placed by that customer before the cutoff date. The reference to the
CUST_NUM column in the subquery is an outer reference to the customer number in the
row of the CUSTOMERS table currently being checked by the DELETE statement. The
subquery in this example is a correlated subquery, as described in Chapter 9.

Outer references will often be found in subqueries of a DELETE statement, because
they implement the join between the table(s) in the subquery and the target table of
the DELETE statement. In the SQL1 standard, a restriction on the use of subqueries in a
DELETE statement prevents the target table from appearing in the FROM clause of a
subquery or any of its subqueries at any level of nesting. This prevents the subqueries
from referencing the target table (some of whose rows may already have been deleted),
except for outer references to the row currently being tested by the DELETE statement’s
search condition.

The SQL2 standard eliminates this restriction by specifying that the DELETE
statement should treat such a subquery as applying to the entire target table, before
any rows have been deleted. This places more overhead on the DBMS (which must
handle the subquery processing and row deletion more carefully), but the behavior of
the statement is well defined by the standard.

Modifying Data in the Database
Typically, the values of data items stored in a database are modified when corresponding
changes occur in the outside world. For example, in the sample database:

� When a customer calls to change the quantity on an order, the QTY column in
the appropriate row of the ORDERS table must be modified.
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� When a manager moves from one office to another, the MGR column in the
OFFICES table and the REP_OFFICE column in the SALESREPS table must be
changed to reflect the new assignment.

� When sales quotas are raised by 5 percent in the New York sales office, the QUOTA
column of the appropriate rows in the SALESREPS table must be modified.

In each case, data values in the database are updated to maintain the database as an
accurate model of the real world. The smallest unit of data that can be modified in a
database is a single column of a single row.

The UPDATE Statement
The UPDATE statement, shown in Figure 10-6, modifies the values of one or more
columns in selected rows of a single table. The target table to be updated is named in
the statement, and you must have the required permission to update the table as well
as each of the individual columns that will be modified. The WHERE clause selects the
rows of the table to be modified. The SET clause specifies which columns are to be
updated and calculates the new values for them.

Here is a simple UPDATE statement that changes the credit limit and salesperson for
a customer:

Raise the credit limit for Acme Manufacturing to $60,000 and reassign them to Mary Jones
(employee number 109).

UPDATE CUSTOMERS

SET CREDIT_LIMIT = 60000.00, CUST_REP = 109

WHERE COMPANY = 'Acme Mfg.'

1 row updated.

C h a p t e r 1 0 : D a t a b a s e U p d a t e s 285
U

P
D

A
T
IN

G
D

A
T
A

Figure 10-6. UPDATE statement syntax diagram



In this example, the WHERE clause identifies a single row of the CUSTOMERS table,
and the SET clause assigns new values to two of the columns in that row. The WHERE
clause is exactly the same one you would use in a DELETE or SELECT statement to
identify the row. In fact, the search conditions that can appear in the WHERE clause
of an UPDATE statement are exactly the same as those available in the SELECT and
DELETE statements.

Like the DELETE statement, the UPDATE statement can update several rows at once
with the proper search condition, as in this example:

Transfer all salespeople from the Chicago office (number 12) to the New York office
(number 11), and lower their quotas by 10 percent.

UPDATE SALESREPS

SET REP_OFFICE = 11, QUOTA = .9 * QUOTA

WHERE REP_OFFICE = 12

3 rows updated.

In this case, the WHERE clause selects several rows of the SALESREPS table, and the
value of the REP_OFFICE and QUOTA columns are modified in all of them. Conceptually,
SQL processes the UPDATE statement by going through the SALESREPS table row by
row, updating those rows for which the search condition yields a TRUE result and
skipping over those for which the search condition yields a FALSE or NULL result.

Because it searches the table, this form of the UPDATE statement is sometimes called
a searched UPDATE statement. This term distinguishes it from a different form of the
UPDATE statement, called a positioned UPDATE statement, which always updates a single
row. The positioned UPDATE statement applies only to programmatic SQL and is
described in Chapter 17.

Here are some additional examples of searched UPDATE statements:

Reassign all customers served by employee numbers 105, 106, or 107 to employee number 102.

UPDATE CUSTOMERS

SET CUST_REP = 102

WHERE CUST_REP IN (105, 106, 107)

5 rows updated.

Assign a quota of $100,000 to any salesperson who currently has no quota.

UPDATE SALESREPS

SET QUOTA = 100000.00
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WHERE QUOTA IS NULL

1 row updated.

The SET clause in the UPDATE statement is a list of assignments separated by
commas. Each assignment identifies a target column to be updated and specifies how
to calculate the new value for the target column. Each target column should appear
only once in the list; there should not be two assignments for the same target column.
The ANSI/ISO specification mandates unqualified names for the target columns, but
some SQL implementations allow qualified column names. There can be no ambiguity
in the column names anyway, because they must refer to columns of the target table.

The expression in each assignment can be any valid SQL expression that yields a
value of the appropriate data type for the target column. The expression must be
computable based on the values of the row currently being updated in the target table.
In most DBMS implementations, the expression may not include any column functions
or subqueries.

If an expression in the assignment list references one of the columns of the target
table, the value used to calculate the expression is the value of that column in the current
row before any updates are applied. The same is true of column references that occur
in the WHERE clause. For example, consider this (somewhat contrived) UPDATE statement:

UPDATE OFFICES

SET QUOTA = 400000.00, SALES = QUOTA

WHERE QUOTA < 400000.00

Before the update, Bill Adams had a QUOTA value of $350,000 and a SALES value of
$367,911. After the update, his row has a SALES value of $350,000, not $400,000. The
order of the assignments in the SET clause is thus immaterial; the assignments can be
specified in any order.

Updating All Rows
The WHERE clause in the UPDATE statement is optional. If the WHERE clause is omitted,
then all rows of the target table are updated, as in this example:

Raise all quotas by 5 percent.

UPDATE SALESREPS

SET QUOTA = 1.05 * QUOTA

10 rows updated.
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Unlike the DELETE statement, in which the WHERE clause is almost never omitted,
the UPDATE statement without a WHERE clause performs a useful function. It basically
performs a bulk update of the entire table, as demonstrated in the preceding example.

UPDATE with Subquery *
As with the DELETE statement, subqueries can play an important role in the UPDATE
statement because they let you select rows to update based on information contained in
other tables. Here are several examples of UPDATE statements that use subqueries:

Raise by $5000 the credit limit of any customer who has placed an order for more than
$25,000.

UPDATE CUSTOMERS

SET CREDIT_LIMIT = CREDIT_LIMIT + 5000.00

WHERE CUST_NUM IN (SELECT DISTINCT CUST

FROM ORDERS

WHERE AMOUNT > 25000.00)

4 rows updated.

Reassign all customers served by salespeople whose sales are less than 80 percent of
their quota.

UPDATE CUSTOMERS

SET CUST_REP = 105

WHERE CUST_REP IN (SELECT EMPL_NUM

FROM SALESREPS

WHERE SALES < (.8 * QUOTA))

2 rows updated.

Have all salespeople who serve over three customers report directly to Sam Clark (employee
number 106).

UPDATE SALESREPS

SET MANAGER = 106

WHERE 3 < (SELECT COUNT(*)

FROM CUSTOMERS

WHERE CUST_REP = EMPL_NUM)

1 row updated.
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As in the DELETE statement, subqueries in the WHERE clause of the UPDATE
statement can be nested to any level and can contain outer references to the target table
of the UPDATE statement. The column EMPL_NUM in the subquery of the preceding
example is such an outer reference; it refers to the EMPL_NUM column in the row of the
SALESREPS table currently being checked by the UPDATE statement. The subquery in
this example is a correlated subquery, as described in Chapter 9.

Outer references will often be found in subqueries of an UPDATE statement, because
they implement the join between the table(s) in the subquery and the target table of the
UPDATE statement. The same SQL1 restriction applies as for the DELETE statement: the
target table cannot appear in the FROM clause of any subquery at any level of nesting.
This prevents the subqueries from referencing the target table (some of whose rows
may have already been updated). Any references to the target table in the subqueries
are thus outer references to the row of the target table currently being tested by the
UPDATE statement’s WHERE clause. The SQL2 standard again removed this restriction
and specifies that a reference to the target table in a subquery is evaluated as if none of
the target table had been updated.

Summary
This chapter described the SQL statements that are used to modify the contents of
a database:

� The single-row INSERT statement adds one row of data to a table. The values
for the new row are specified in the statement as constants.

� The multirow INSERT statement adds zero or more rows to a table. The values
for the new rows come from a query, specified as part of the INSERT statement.

� The DELETE statement deletes zero or more rows of data from a table. The rows
to be deleted are specified by a search condition.

� The UPDATE statement modifies the values of one or more columns in zero or
more rows of a table. The rows to be updated are specified by a search condition.
The columns to be updated, and the expressions that calculate their new values,
are specified in the UPDATE statement.

� Unlike the SELECT statement, which can operate on multiple tables, the INSERT,
DELETE, and UPDATE statements work on only a single table at a time.

� The search condition used in the DELETE and UPDATE statements has the same
form as the search condition for the SELECT statement.
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Chapter 11
Data Integrity
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T
he term data integrity refers to the correctness and completeness of the data in a
database. When the contents of a database are modified with the INSERT,
DELETE, or UPDATE statements, the integrity of the stored data can be lost in

many different ways. For example:

� Invalid data may be added to the database, such as an order that specifies
a nonexistent product.

� Existing data may be modified to an incorrect value, such as reassigning a
salesperson to a nonexistent office.

� Changes to the database may be lost due to a system error or power failure.

� Changes may be partially applied, such as adding an order for a product without
adjusting the quantity available for sale.

One of the important roles of a relational DBMS is to preserve the integrity of its
stored data to the greatest extent possible. This chapter describes the SQL language
features that assist the DBMS in this task.

What Is Data Integrity?
To preserve the consistency and correctness of its stored data, a relational DBMS
typically imposes one or more data integrity constraints. These constraints restrict the
data values that can be inserted into the database or created by a database update.
Several different types of data integrity constraints are commonly found in relational
databases, including:

� Required data. Some columns in a database must contain a valid data value in
every row; they are not allowed to contain missing or NULL values. In the sample
database, every order must have an associated customer who placed the order.
Therefore, the CUST column in the ORDERS table is a required column. The DBMS
can be asked to prevent NULL values in this column.

� Validity checking. Every column in a database has a domain, a set of data
values that are legal for that column. The sample database uses order numbers
that begin at 100,001, so the domain of the ORDER_NUM column is positive
integers greater than 100,000. Similarly, employee numbers in the EMPL_NUM
column must fall within the numeric range of 101 to 999. The DBMS can be
asked to prevent other data values in these columns.

� Entity integrity. The primary key of a table must contain a unique value in each
row, which is different from the values in all other rows. For example, each row
of the PRODUCTS table has a unique set of values in its MFR_ID and PRODUCT_ID
columns, which uniquely identifies the product represented by that row. Duplicate
values are illegal, because they wouldn’t allow the database to distinguish one
product from another. The DBMS can be asked to enforce this unique values
constraint.
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� Referential integrity. A foreign key in a relational database links each row in
the child table containing the foreign key to the row of the parent table containing
the matching primary key value. In the sample database, the value in the REP_
OFFICE column of each SALESREPS row links the salesperson represented by
that row to the office where he or she works. The REP_OFFICE column must
contain a valid value from the OFFICE column of the OFFICES table, or the
salesperson will be assigned to an invalid office. The DBMS can be asked to
enforce this foreign key/primary key constraint.

� Other data relationships. The real-world situation modeled by a database will
often have additional constraints that govern the legal data values that may
appear in the database. For example, in the sample database, the sales vice
president may want to ensure that the quota target for each office does not
exceed the total of the quota targets for the salespeople in that office. The DBMS
can be asked to check modifications to the office and salesperson quota targets
to make sure that their values are constrained in this way.

� Business rules. Updates to a database may be constrained by business rules
governing the real-world transactions that are represented by the updates. For
example, the company using the sample database may have a business rule that
forbids accepting an order for which there is an inadequate product inventory.
The DBMS can be asked to check each new row added to the ORDERS table to
make sure that the value in its QTY column does not violate this business rule.

� Consistency. Many real-world transactions cause multiple updates to a
database. For example, accepting a customer order may involve adding a row
to the ORDERS table, increasing the SALES column in the SALESREPS table for
the person who took the order, and increasing the SALES column in the OFFICES
table for the office where that salesperson is assigned. The INSERT and both
UPDATEs must all take place in order for the database to remain in a consistent,
correct state. The DBMS can be asked to enforce this type of consistency rule or to
support applications that implement such rules.

The ANSI/ISO SQL standard specifies some of the simpler data integrity constraints.
For example, the required data constraint is supported by the ANSI/ISO standard and
implemented in a uniform way across almost all commercial SQL products. More complex
constraints, such as business rules constraints, are not specified by the ANSI/ISO standard,
and there is a wide variation in the techniques and SQL syntax used to support them. The
SQL features that support the first five integrity constraints are described in this chapter.
The SQL transaction mechanism, which supports the consistency constraint, is described in
Chapter 12.

Required Data
The simplest data integrity constraint requires that a column contain a non-NULL
value. The ANSI/ISO standard and most commercial SQL products support this



constraint by allowing you to declare that a column is NOT NULL when the table
containing the column is first created. The NOT NULL constraint is specified as part
of the CREATE TABLE statement, described in Chapter 13.

When a column is declared NOT NULL, the DBMS enforces the constraint by ensuring
the following:

� Every INSERT statement that adds a new row or rows to the table must specify
a non-NULL data value for the column. An attempt to insert a row containing a
NULL value (either explicitly or implicitly) results in an error.

� Every UPDATE statement that updates the column must assign it a non-NULL
data value. Again, an attempt to update the column to a NULL value results in
an error.

One disadvantage of the NOT NULL constraint is that it must usually be specified
when a table is first created. Typically, you cannot go back to a previously created table
and disallow NULL values for a column. Usually, this disadvantage is not serious because
it’s obvious when the table is first created which columns should allow NULLs and which
should not. There is also a potential logical problem with adding the NOT NULL constraint
to an existing table. If one or more rows of that table already contain NULL values, then
what should the DBMS do with those rows? They represent valid real-world objects, but
they now violate the (new) required data constraint.

The inability to add a NOT NULL constraint to an existing table is also partly a result of
the way most DBMS brands implement NULL values internally. Usually a DBMS reserves
an extra byte in every stored row of data for each column that permits NULL values. The
extra byte serves as a null indicator for the column and is set to some specified value to
indicate a NULL value. When a column is defined as NOT NULL, the indicator byte is not
present, saving disk storage space. Dynamically adding and removing NOT NULL
constraints would thus require on-the-fly reconfiguration of the stored rows on the disk,
which is not practical in a large database.

Simple Validity Checking
The SQL1 standard provides limited support for restricting the legal values that can
appear in a column. When a table is created, each column in the table is assigned a data
type, and the DBMS ensures that only data of the specified type is introduced into the
column. For example, the EMPL_NUM column in the SALESREPS table is defined as an
INTEGER, and the DBMS will produce an error if an INSERT or UPDATE statement tries
to store a character string or a decimal number in the column.

However, the SQL1 standard and many commercial SQL products do not provide a
way to restrict a column to certain specific data values. The DBMS will happily insert a
SALESREPS row with an employee number of 12345, even though employee numbers
in the sample database have three digits by convention. A hire date of December 25
would also be accepted, even though the company is closed on Christmas day.
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Some commercial SQL implementations provide extended features to check for
legal data values. In DB2, for example, each table in the database can be assigned a
corresponding validation procedure, a user-written program to check for valid data values.
DB2 invokes the validation procedure each time a SQL statement tries to change or insert
a row of the table, and gives the validation procedure the proposed column values for
the row. The validation procedure checks the data and indicates by its return value
whether the data is acceptable. The validation procedure is a conventional program
(written in S/370 assembler or PL/I, for example), so it can perform whatever data value
checks are required, including range checks and internal consistency checks within the
row. However, the validation procedure cannot access the database, so it cannot be used
to check for unique values or foreign key/primary key relationships.

SQL Server also provides a data validation capability by allowing you to create a
rule that determines what data values can legally be entered into a particular column.
SQL Server checks the rule each time an INSERT or UPDATE statement is attempted for
the table that contains the column. Unlike DB2’s validation procedures, SQL Server
rules are written in the Transact-SQL dialect that is used by SQL Server. For example,
here is a Transact-SQL statement that establishes a rule for the QUOTA column in the
SALESREPS table:

CREATE RULE QUOTA_LIMIT

AS @VALUE BETWEEN 0.00 AND 500000.00

This rule prevents you from inserting or updating a quota to a negative value or to a
value greater than $500,000. As shown in the example, SQL Server allows you to assign
the rule a name (QUOTA_LIMIT, in this example). Like DB2 validation procedures,
however, SQL Server rules may not reference columns or other database objects.

The SQL2 standard provides extended support for validity checking through two
different features—column check constraints and domains. Both give the database
creator a way to tell the DBMS how to determine whether a data value is valid. The
check-constraint feature specifies the data validity test for a single column. The domain
feature lets you specify the validity test once, and then reuse it in the definition of
many different columns whose legal data values are the same.

Column Check Constraints (SQL2)
A SQL2 check constraint is a search condition, like the search condition in a WHERE clause,
that produces a true/false value. When a check constraint is specified for a column, the
DBMS automatically checks the value of that column each time a new row is inserted or a
row is updated to ensure that the search condition is true. If not, the INSERT or UPDATE
statement fails. A column check constraint is specified as part of the column definition
within the CREATE TABLE statement, described in Chapter 13.
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Consider this excerpt from a CREATE TABLE statement, modified from the
definition of the demo database to include three check constraints:

CREATE TABLE SALESREPS

(EMPL_NUM INTEGER NOT NULL

CHECK (EMPL_NUM BETWEEN 101 AND 199),

AGE INTEGER

CHECK (AGE >= 21),

.

.

.

QUOTA MONEY

CHECK (MONEY >= 0.0)

.

.

.

The first constraint (on the EMPL_NUM column) requires that valid employee
numbers be three-digit numbers between 101 and 199. The second constraint (on the
AGE column) similarly prevents hiring of minors. The third constraint (on the QUOTA
column) prevents a salesperson from having a quota target less than $0.00.

All three of these column check constraints are very simple examples of the capability
specified by the SQL2 standard. In general, the parentheses following the keyword
CHECK can contain any valid search condition that makes sense in the context of a
column definition. With this flexibility, a check constraint can compare values from
two different columns of the table, or even compare a proposed data value against
other values from the database. These capabilities are more fully described in the
“Advanced Constraint Capabilities” section later in this chapter.

Domains (SQL2)
A SQL2 domain generalizes the check-constraint concept and allows you to easily apply
the same check constraint to many different columns within a database. A domain is a
collection of legal data values. You specify a domain and assign it a domain name using the
SQL2 CREATE DOMAIN statement, described in Chapter 13. As with the check-constraint
definition, a search condition is used to define the range of legal data values. For example,
here is a SQL2 CREATE DOMAIN statement to create the domain VALID_EMPLOYEE_ID,
which includes all legal employee numbers:

CREATE DOMAIN VALID_EMPLOYEE_ID INTEGER

CHECK (VALUE BETWEEN 101 AND 199)
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After the VALID_EMPLOYEE_ID domain has been defined, it may be used to define
columns in database tables instead of a data type. Using this capability, the example
CREATE TABLE statement for the SALESREPS table would appear as:

CREATE TABLE SALESREPS

(EMPL_NUM VALID_EMPLOYEE_ID,

AGE INTEGER

CHECK (AGE >= 21),

.

.

.

QUOTA MONEY

CHECK (MONEY >= 0.0)

.

.

.

The advantage of using the domain is that if other columns in other tables also contain
employee numbers, the domain name can be used repeatedly, simplifying the table
definitions. The OFFICES table contains such a column:

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR VALID_EMPLOYEE_ID,

TARGET MONEY,

SALES MONEY NOT NULL

.

.

.

Another advantage of domains is that the definition of valid data (such as valid
employee numbers, in this example) is stored in one central place within the database. If
the definition changes later (for example, if the company grows and employee numbers
in the range 200–299 must be allowed), it is much easier to change one domain definition
than to change many column constraints scattered throughout the database. In a large
enterprise database, there may literally be hundreds of defined domains, and the benefits
of SQL2 domains for change management can be very substantial.
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Entity Integrity
A table’s primary key must have a unique value for each row of the table, or the database
will lose its integrity as a model of the outside world. For example, if two rows of the
SALESREPS table both had value 106 in their EMPL_NUM column, it would be impossible
to tell which row really represented the real-world entity associated with that key
value—Bill Adams, who is employee number 106. For this reason, the requirement that
primary keys have unique values is called the entity integrity constraint.

Support for primary keys was not found in the first commercial SQL databases but it is
now very common. It was added to DB2 in 1988 and was added to the original ANSI/ISO
SQL standard in an intermediate update, before the full SQL2 standard appeared. You
specify the primary key as part of the CREATE TABLE statement, described in Chapter 13.
The sample database definition in Appendix A includes primary key definitions for all of
its tables, following the ANSI/ISO standard syntax.

When a primary key is specified for a table, the DBMS automatically checks the
uniqueness of the primary key value for every INSERT and UPDATE statement performed
on the table. An attempt to insert a row with a duplicate primary key value or to update a
row so that its primary key would be a duplicate will fail with an error message.

Other Uniqueness Constraints
It is sometimes appropriate to require a column that is not the primary key of a table to
contain a unique value in every row. For example, suppose you wanted to restrict the
data in the SALESREPS table so that no two salespeople could have exactly the same
name in the table. You could achieve this goal by imposing a uniqueness constraint on
the NAME column. The DBMS enforces a uniqueness constraint in the same way that it
enforces the primary key constraint. Any attempt to insert or update a row in the table
that violates the uniqueness constraint will fail.

The ANSI/ISO SQL standard uses the CREATE TABLE statement to specify uniqueness
constraints for columns or combinations of columns. However, uniqueness constraints
were implemented in DB2 long before the publication of the ANSI/ISO standard, and
DB2 made them a part of its CREATE INDEX statement. This statement is one of the
SQL database administration statements that deals with physical storage of the database
on the disk. Normally, the SQL user doesn’t have to worry about these statements at
all; they are used only by the database administrator.

Many commercial SQL products followed the original DB2 practice rather than the
ANSI/ISO standard for uniqueness constraints and required the use of a CREATE
INDEX statement. Subsequent versions of DB2 added a uniqueness constraint to the
CREATE TABLE statement. Most of the other commercial vendors have followed the
same path, and now support the ANSI/ISO syntax for the uniqueness constraint.

Uniqueness and NULL Values
NULL values pose a problem when they occur in the primary key of a table or in a
column that is specified in a uniqueness constraint. Suppose you tried to insert a row



C h a p t e r 1 1 : D a t a I n t e g r i t y 299
U

P
D

A
T
IN

G
D

A
T
A

with a primary key that was NULL (or partially NULL, if the primary key is composed of
more than one column). Because of the NULL value, the DBMS cannot conclusively decide
whether the primary key duplicates one that is already in the table. The answer must
be “maybe,” depending on the “real” value of the missing (NULL) data.

For this reason, the SQL standard requires that every column that is part of a primary
key must be declared NOT NULL. The same restriction applies for every column that is
named in a uniqueness constraint. Together, these restrictions ensure that columns that
are supposed to contain unique data values in each row of a table actually do contain
unique values.

Referential Integrity
Chapter 4 discussed primary keys, foreign keys, and the parent/child relationships
that they create between tables. Figure 11-1 shows the SALESREPS and OFFICES tables
and illustrates once again how foreign keys and primary keys work. The OFFICE
column is the primary key for the OFFICES table, and it uniquely identifies each row.
The REP_OFFICE column, in the SALESREPS table, is a foreign key for the OFFICES
table. It identifies the office where each salesperson is assigned.

The REP_OFFICE and OFFICE columns create a parent/child relationship between
the OFFICES and SALESREPS rows. Each OFFICES (parent) row has zero or more

Figure 11-1. A foreign key/primary key reference
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SALESREPS (child) rows with matching office numbers. Similarly, each SALESREPS
(child) row has exactly one OFFICES (parent) row with a matching office number.

Suppose you tried to insert a new row into the SALESREPS table that contained an
invalid office number, as in this example:

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE, AGE,

HIRE_DATE, SALES)

VALUES (115, 'George Smith', 31, 37, '01-APR-90', 0.00)

On the surface, there’s nothing wrong with this INSERT statement. In fact, many
SQL implementations will successfully add the row. The database will show that
George Smith works in office number 31, even though no office number 31 is listed in
the OFFICES table. The newly inserted row clearly breaks the parent/child relationship
between the OFFICES and SALESREPS tables. In fact, the office number in the INSERT
statement is probably an error—the user may have intended office number 11, 21, or 13.

It seems clear that every legal value in the REP_OFFICE column should be forced
to match some value that appears in the OFFICE column. This rule is known as a
referential integrity constraint. It ensures the integrity of the parent/child relationships
created by foreign keys and primary keys.

Referential integrity has been a key part of the relational model since it was first
proposed by Codd. However, referential integrity constraints were not included in
IBM’s prototype System/R DBMS, nor in early releases of DB2 or SQL/DS. IBM added
referential integrity support to DB2 in 1989, and referential integrity was added to the
SQL1 standard after its initial release. Most DBMS vendors today support referential
integrity constraints.

Referential Integrity Problems
Four types of database updates can corrupt the referential integrity of the parent/child
relationships in a database. Using the OFFICES and SALESREPS tables in Figure 11-1
as illustrations, these four update situations are the following:

� Inserting a new child row. When an INSERT statement adds a new row to the
child (SALESREPS) table, its foreign key (REP_OFFICE) value must match one
of the primary key (OFFICE) values in the parent table (OFFICES). If the
foreign key value does not match any primary key, inserting the row will
corrupt the database, because there will be a child without a parent (an orphan).
Note that inserting a row in the parent table never poses a problem; it simply
becomes a parent without any children.

� Updating the foreign key in a child row. This is a different form of the
previous problem. If the foreign key (REP_OFFICE) is modified by an UPDATE
statement, the new value must match a primary key (OFFICE) value in the
parent (OFFICES) table. Otherwise, the updated row will be an orphan.
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� Deleting a parent row. If a row of the parent table (OFFICES) that has one or
more children (in the SALESREPS table) is deleted, the child rows will become
orphans. The foreign key (REP_OFFICE) values in these rows will no longer
match any primary key (OFFICE) value in the parent table. Note that deleting a
row from the child table never poses a problem; the parent of this row simply
has one less child after the deletion.

� Updating the primary key in a parent row. This is a different form of the
previous problem. If the primary key (OFFICE) of a row in the parent table
(OFFICES) is modified, all of the current children of that row become orphans
because their foreign keys no longer match a primary key value.

The referential integrity features of the ANSI/ISO SQL standard handle each of
these four situations. The first problem (INSERT into the child table) is handled by
checking the values of the foreign key columns before the INSERT statement is
permitted. If they don’t match a primary key value, the INSERT statement is rejected
with an error message. In Figure 11-1, this means that before a new salesperson can be
added to the SALESREPS table, the office to which the salesperson is assigned must
already be in the OFFICES table. As you can see, this restriction makes sense in the
sample database.

The second problem (UPDATE of the child table) is similarly handled by checking
the updated foreign key value. If there is no matching primary key value, the UPDATE
statement is rejected with an error message. In Figure 11-1, this means that before a
salesperson can be reassigned to a different office, that office must already be in the
OFFICES table. Again, this restriction makes sense in the sample database.

The third problem (DELETE of a parent row) is more complex. For example, suppose
you closed the Los Angeles office and wanted to delete the corresponding row from
the OFFICES table in Figure 11-1. What should happen to the two child rows in the
SALESREPS table that represent the salespeople assigned to the Los Angeles office?
Depending on the situation, you might want to:

� Prevent the office from being deleted until the salespeople are reassigned.

� Automatically delete the two salespeople from the SALESREPS table as well.

� Set the REP_OFFICE column for the two salespeople to NULL, indicating that
their office assignment is unknown.

� Set the REP_OFFICE column for the two salespeople to some default value,
such as the office number for the headquarters office in New York, indicating
that the salespeople are automatically reassigned to that office.

The fourth problem (UPDATE of the primary key in the parent table) has similar
complexity. For example, suppose for some reason you wanted to change the number
of the Los Angeles office from 21 to 23. As with the previous example, the question is
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what should happen to the two child rows in the SALESREPS table that represent
salespeople from the Los Angeles office. Again, there are four logical possibilities:

� Prevent the office number from being changed until the salespeople are
reassigned. In this case, you should first add a new row to the OFFICES table
with the new office number for Los Angeles, then update the SALESREPS table,
and finally delete the old OFFICES row for Los Angeles.

� Automatically update the office number for the two salespeople in the
SALESREPS table, so that their rows are still linked to the Los Angeles row
in the OFFICES table, via its new office number.

� Set the REP_OFFICE column for the two salespeople to NULL, indicating that
their office assignment is unknown.

� Set the REP_OFFICE column for the two salespeople to some default value,
such as the office number for the headquarters office in New York, indicating
that the salespeople are automatically reassigned to that office.

Although some of these alternatives may seem more logical than others in this
particular example, it’s relatively easy to come up with examples where any one of the
four possibilities is the right thing to do, if you want the database to accurately model
the real-world situation. The SQL1 standard provided only the first possibility for the
preceding examples—it prohibited the modification of a primary key value that was in
use and prohibited the deletion of a row containing such a primary key. DB2, however,
permitted other options through its concept of delete rules. The SQL2 standard has
expanded these delete rules into delete and update rules that cover both deleting of
parent rows and updating of primary keys.

Delete and Update Rules *
For each parent/child relationship created by a foreign key in a database, the SQL2
standard allows you to specify an associated delete rule and an associated update rule.
The delete rule tells the DBMS what to do when a user tries to delete a row of the parent
table. These four delete rules can be specified:

� RESTRICT delete rule. The RESTRICT delete rule prevents you from deleting a
row from the parent table if the row has any children. A DELETE statement that
attempts to delete such a parent row is rejected with an error message. Deletions
from the parent table are thus restricted to rows without any children. Applied
to Figure 11-1, this rule can be summarized as “You can’t delete an office if any
salespeople are assigned to it.”

� CASCADE delete rule. The CASCADE delete rule tells the DBMS that when a
parent row is deleted, all of its child rows should also automatically be deleted
from the child table. For Figure 11-1, this rule can be summarized as “Deleting
an office automatically deletes all the salespeople assigned to that office.”
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� SET NULL delete rule. The SET NULL delete rule tells the DBMS that when a
parent row is deleted, the foreign key values in all of its child rows should
automatically be set to NULL. Deletions from the parent table thus cause a “set to
NULL” update on selected columns of the child table. For the tables in Figure 11-1,
this rule can be summarized as “If an office is deleted, indicate that the current
office assignment of its salespeople is unknown.”

� SET DEFAULT delete rule. The SET DEFAULT delete rule tells the DBMS that
when a parent row is deleted, the foreign key values in all of its child rows should
automatically be set to the default value for that particular column. Deletions from
the parent table thus cause a “set to DEFAULT” update on selected columns of the
child table. For the tables in Figure 11-1, this rule can be summarized as “If an office
is deleted, indicate that the current office assignment of its salespeople is the default
office specified in the definition of the SALESREPS table.”

There are some slight differences between the SQL2 and DB2 implementations of the
delete rules. The current DB2 implementation does not support the SET DEFAULT rule; it
is specified only by the SQL2 standard. The SQL2 standard actually calls the previously
described RESTRICT rule, NO ACTION. The SQL2 naming is somewhat confusing. It
means “If you try to delete a parent row that still has children, the DBMS will take no
action on the row.” The DBMS will, however, generate an error code. Intuitively, the DB2
name for the rule, restrict, seems a better description of the situation—the DBMS will
restrict the DELETE operation from taking place and generate an error code.

Recent releases of DB2 support both a RESTRICT and a NO ACTION delete rule. The
difference between them is the timing of the enforcement of the rule. The RESTRICT
rule is enforced before any other constraints; the NO ACTION rule is enforced after other
referential constraints. Under almost all circumstances, the two rules operate identically.

Just as the delete rule tells the DBMS what to do when a user tries to delete a row
of the parent table, the update rule tells the DBMS what to do when a user tries to
update the value of one of the primary key columns in the parent table. Again, there
are four possibilities, paralleling those available for delete rules:

� RESTRICT update rule. The RESTRICT update rule prevents you from updating
the primary key of a row in the parent table if that row has any children. An
UPDATE statement that attempts to modify the primary key of such a parent row
is rejected with an error message. Changes to primary keys in the parent table are
thus restricted to rows without any children. Applied to Figure 11-1, this rule can
be summarized as “You can’t change an office number if salespeople are assigned
to the office.”

� CASCADE update rule. The CASCADE update rule tells the DBMS that when a
primary key value is changed in a parent row, the corresponding foreign key
value in all of its child rows should also automatically be changed in the child
table, to match the new primary key. For Figure 11-1, this rule can be summarized
as “Changing an office number automatically changes the office number for all
the salespeople assigned to that office.”



� SET NULL update rule. The SET NULL update rule tells the DBMS that when a
primary key value in a parent row is updated, the foreign key values in all of its
child rows should automatically be set to NULL. Primary key changes in the
parent table thus cause a “set to NULL” update on selected columns of the child
table. For the tables in Figure 11-1, this rule can be summarized as “If an office
number is changed, indicate that the current office assignment of its salespeople
is unknown.”

� SET DEFAULT update rule. The SET DEFAULT update rule tells the DBMS that
when a primary key value in a parent row is updated, the foreign key values in
all of its child rows should automatically be set to the default value for that
particular column. Primary key changes in the parent table thus cause a “set to
DEFAULT” update on selected columns of the child table. For the tables in
Figure 11-1, this rule can be summarized as “If an office number is changed,
automatically change the office assignment of its salespeople to the default
office specified in the definition of the SALESREPS table.”

The same differences between DB2 and the SQL2 standard described for the delete
rules apply to the update rules. The SET DEFAULT update rule is present only in the
standard, not in the current DB2 implementation. The RESTRICT update rule is a DB2
naming convention; the SQL2 standard again calls this update rule NO ACTION.

You can specify two different rules as the delete rule and the update rule for a
parent/child relationship, although in most cases, the two rules will be the same. If you
do not specify a rule, the RESTRICT rule is the default, because it has the least potential
for accidental destruction or modification of data. Each of the rules is appropriate in
different situations. Usually, the real-world behavior modeled by the database will
indicate which rule is appropriate. In the sample database, the ORDERS table contains
three foreign key/primary key relationships, as shown in Figure 11-2. These three
relationships link each order to:

� The product that was ordered

� The customer who placed the order

� The salesperson who took the order

For each of these relationships, different rules seem appropriate:

� The relationship between an order and the product that is ordered should
probably use the RESTRICT rule for delete and update. It shouldn’t be possible
to delete product information from the database if there are still current orders
for that product, or to change the product number.

� The relationship between an order and the customer who placed it should probably
use the CASCADE rule for delete and update. You probably will delete a customer
row from the database only if the customer is inactive or ends the customer’s
relationship with the company. In this case, when you delete the customer, any
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current orders for that customer should also be deleted. Similarly, changes in a
customer number should automatically propagate to orders for that customer.

� The relationship between an order and the salesperson who took it should
probably use the SET NULL rule. If the salesperson leaves the company, any
orders taken by that salesperson become the responsibility of an unknown
salesperson until they are reassigned. Alternatively, the SET DEFAULT rule
could be used to automatically assign these orders to the sales vice president.
This relationship should probably use the CASCADE update rule, so that
employee number changes automatically propagate to the ORDERS table.

Cascaded Deletes and Updates *
The RESTRICT rule for deletes and updates is a single-level rule—it affects only the
parent table in a relationship. The CASCADE rule, on the other hand, can be a multilevel
rule, as shown in Figure 11-3.

Assume for this discussion that the OFFICES/SALESREPS and SALESREPS/
ORDERS relationships shown in the figure both have CASCADE rules. What happens
when you delete Los Angeles from the OFFICES table? The CASCADE rule for the
OFFICES/SALESREPS relationship tells the DBMS to automatically delete all of the
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Figure 11-2. The DELETE rules in action
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SALESREPS rows that refer to the Los Angeles office (office number 21) as well. But
deleting the SALESREPS row for Sue Smith brings into play the CASCADE rule for the
SALESREPS/ORDERS relationship. This rule tells the DBMS to automatically delete all
of the ORDERS rows that refer to Sue (employee number 102). Deleting an office thus
causes cascaded deletion of salespeople, which causes cascaded deletion of orders.

Figure 11-3. Two levels of CASCADE rules
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As the example shows, CASCADE delete rules must be specified with care because
they can cause widespread automatic deletion of data if they’re used incorrectly.
Cascaded update rules can cause similar multilevel updates if the foreign key in the
child table is also its primary key. In practice, this is not very common, so cascaded
updates typically have less far-reaching effects than cascaded deletes.

The SET NULL and SET DEFAULT update and delete rules are both two-level rules;
their impact stops with the child table. Figure 11-4 shows the OFFICES, SALESREPS,
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and ORDERS tables again, with a SET NULL delete rule for the OFFICES/SALESREPS
relationship. This time, when the Los Angeles office is deleted, the SET NULL delete
rule tells the DBMS to set the REP_OFFICE column to NULL in the SALESREPS rows
that refer to office number 21. The rows remain in the SALESREPS table, however, and
the impact of the delete operation extends only to the child table.

Referential Cycles *
In the sample database, the SALESREPS table contains the REP_OFFICE column, a foreign
key for the OFFICES table. The OFFICES table contains the MGR column, a foreign key for
the SALESREPS table. As shown in Figure 11-5, these two relationships form a referential
cycle. Any given row of the SALESREPS table refers to a row of the OFFICES table, which
refers to a row of the SALESREPS table, and so on. This cycle includes only two tables, but
it’s also possible to construct cycles of three or more tables.

Regardless of the number of tables that they involve, referential cycles pose special
problems for referential integrity constraints. For example, suppose that NULL values
were not allowed in the primary or foreign keys of the two tables in Figure 11-5. (This

Figure 11-5. A referential cycle
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is not, in fact, the way the sample database is actually defined, for reasons that will
become obvious in a moment.) Consider this database update request and the INSERT
statements that attempt to implement it:

You have just hired a new salesperson, Ben Adams (employee number 115), who is the
manager of a new sales office in Detroit (office number 14).

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,

HIRE_DATE, SALES)

VALUES (115,'Ben Adams', 14, '01-APR-90', 0.00)

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)

VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00)

Unfortunately, the first INSERT statement (for Ben Adams) will fail. Why? Because
the new row refers to office number 14, which is not yet in the database! Of course,
reversing the order of the INSERT statements doesn’t help:

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)

VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00)

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,

HIRE_DATE, SALES)

VALUES (115,'Ben Adams', 14, '01-APR-90', 0.00)

The first INSERT statement (for Detroit this time) will still fail, because the new row
refers to employee number 115 as the office manager, and Ben Adams is not yet in the
database! To prevent this insertion deadlock, at least one of the foreign keys in a
referential cycle must permit NULL values. In the actual definition of the sample
database, the MGR column does not permit NULLs, but the REP_OFFICE does. The
two-row insertion can then be accomplished with two INSERTs and an UPDATE, as
shown here:

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE,

HIRE_DATE, SALES)

VALUES (115,'Ben Adams', NULL, '01-APR-90', 0.00)

INSERT INTO OFFICES (OFFICE, CITY, REGION, MGR, TARGET, SALES)

VALUES (14,'Detroit', 'Eastern', 115, 0.00, 0.00)

UPDATE SALESREPS

SET REP_OFFICE = 14

WHERE EMPL_NUM = 115



As the example shows, there are times when it would be convenient if the
referential integrity constraint were not checked until after a series of interrelated
updates are performed. Unfortunately, this type of complex deferred checking is not
provided by most current SQL implementations. Some deferred checking capabilities
are specified by the SQL2 standard, as described later in the “Deferred Constraint
Checking” section.

Referential cycles also restrict the delete and update rules that can be specified for the
relationships that form the cycle. Consider the three tables in the referential cycle shown
in Figure 11-6. The PETS table shows three pets and the boys they like, the GIRLS table
shows three girls and the pets they like, and the BOYS table shows four boys and the girls
they like, forming a referential cycle. All three of the relationships in the cycle specify the
RESTRICT delete rule. Note that George’s row is the only row you can delete from the
three tables. Every other row is the parent in some relationship and is therefore protected
from deletion by the RESTRICT rule. Because of this anomaly, you should not specify the
RESTRICT rule for all of the relationships in a referential cycle.
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Figure 11-6. A cycle with all RESTRICT rules
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The CASCADE rule presents a similar problem, as shown in Figure 11-7. This figure
contains exactly the same data as in Figure 11-6, but all three delete rules have been
changed to CASCADE. Suppose you try to delete Bob from the BOYS table. The delete
rules force the DBMS to delete Rover (who likes Bob) from the PETS table, which forces
you to delete Betty (who likes Rover) from the GIRLS table, which forces you to delete
Sam (who likes Betty), and so on, until all of the rows in all three tables have been
deleted. For these small tables this might be practical, but for a production database
with thousands of rows, it would quickly become impossible to keep track of the
cascaded deletions and retain the integrity of the database. For this reason, DB2
enforces a rule that prevents referential cycles of two or more tables where all of the
delete rules are CASCADE. At least one relationship in the cycle must have a RESTRICT
or SET NULL delete rule to break the cycle of cascaded deletions.
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Foreign Keys and NULL Values *
Unlike primary keys, foreign keys in a relational database are allowed to contain NULL
values. In the sample database, the foreign key REP_OFFICE in the SALESREPS table
permits NULL values. In fact, this column does contain a NULL value in Tom Snyder’s
row, because Tom has not yet been assigned to an office. But the NULL value poses an
interesting question about the referential integrity constraint created by the primary
key/foreign key relationship. Does the NULL value match one of the primary key
values, or doesn’t it? The answer is “maybe”—it depends on the real value of the
missing or unknown data.

The ANSI/ISO SQL1 standard automatically assumes that a foreign key that contains a
NULL value satisfies the referential integrity constraint. In other words, it gives the row the
benefit of the doubt and allows it to be part of the child table, even though its foreign key
value doesn’t match any row in the parent table. Interestingly, the referential integrity
constraint is assumed to be satisfied if any part of the foreign key has a NULL value. This can
produce unexpected and unintuitive behavior for compound foreign keys, such as the one
that links the ORDERS table to the PRODUCTS table.

Suppose for a moment that the ORDERS table in the sample database permitted NULL
values for the PRODUCT column, and that the PRODUCTS/ORDERS relationship had a SET
NULL delete rule. (This is not the actual structure of the sample database, for the reasons
illustrated by this example.) An order for a product with a manufacturer ID (MFR) of ABC
and a NULL product ID (PRODUCT) can be successfully inserted into the ORDERS table
because of the NULL value in the PRODUCT column. DB2 and the ANSI/ISO standard
assume that the row meets the referential integrity constraint for ORDERS and PRODUCTS,
even though no product in the PRODUCTS table has a manufacturer ID of ABC.

The SET NULL delete rule can produce a similar effect. Deleting a row from the
PRODUCTS table will cause the foreign key value in all of its child rows in the ORDERS
table to be set to NULL. Actually, only those columns of the foreign key that accept
NULL values are set to NULL. If there were a single row in the PRODUCTS table for
manufacturer DEF, deleting that row would cause its child rows in the ORDERS table to
have their PRODUCT column set to NULL, but their MFR column would continue to have
the value DEF. As a result, the rows would have an MFR value that did not match any
row in the PRODUCTS table.

To avoid creating this situation, you should be very careful with NULL values in
compound foreign keys. An application that enters or updates data in the table that
contains the foreign key should usually enforce an “all NULLs or no NULLs” rule on
the columns of the foreign key. Foreign keys that are partially NULL and partially
non-NULL can easily create problems.

The SQL2 standard addresses this problem by giving the database administrator
more control over the handling of NULL values in foreign keys for integrity constraints.
The integrity constraint in the CREATE TABLE statement provides two options:

� MATCH FULL option. The MATCH FULL option requires that foreign keys in a
child table fully match a primary key in the parent table. With this option, no



part of the foreign key can contain a NULL value, so the issue of NULL value
handling in delete and update rules does not arise.

� MATCH PARTIAL option. The MATCH PARTIAL option allows NULL values in
parts of a foreign key, so long as the non-NULL values match the corresponding
parts of some primary key in the parent table. With this option, NULL value
handling in delete and update rules proceeds as previously described.

Advanced Constraint Capabilities (SQL2)
Primary key and foreign key constraints, uniqueness constraints, and restrictions on
missing (NULL) values all provide data integrity checking for very specific structures
and situations within a database. The SQL2 standard goes beyond these capabilities to
include a much more general capability for specifying and enforcing data integrity
constraints. The complete scheme includes four types of constraints:

� Column constraints. Specified as part of a column definition when a table is
created. Conceptually, they restrict the legal values that may appear in the column.
Column constraints appear in the individual column definitions within the
CREATE TABLE statement.

� Domains. A specialized form of column constraints. They provide a limited
capability to define new data types within a database. In effect, a domain is one
of the predefined database data types plus some additional constraints, which
are specified as part of the domain definition. Once a domain is defined and
named, the domain name can be used in place of a data type to define new
columns. The columns inherit the constraints of the domain. Domains are
defined outside of the table and column definitions of the database, using the
CREATE DOMAIN statement.

� Table constraints. Specified as part of the table definition when a table is
created. Conceptually, they restrict the legal values that may appear in rows of
the table. Table constraints are specified in the CREATE TABLE statement that
defines a table. Usually, they appear as a group after the column definitions, but
the SQL2 standard allows them to be interspersed with the column definitions.

� Assertions. The most general type of SQL2 constraint. Like domains, they are
specified outside of the table and column structure of the database. Conceptually,
an assertion specifies a relationship among data values that crosses multiple
tables within the database.

Each of the four different types of constraints has its own conceptual purpose, and
each appears in a different part of the SQL2 statement syntax. However, the distinctions
between them are somewhat arbitrary. Any column constraint that appears for an
individual column definition can just as easily be specified as a table constraint.
Similarly, any table constraint can be specified as an assertion. In practice, it’s probably
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best to specify each database constraint where it seems to most naturally fit, given
the real-world situation that the database is trying to model. Constraints that apply
globally to the entire situation (business processes, interrelationships among customers
and products, and so on) should appear as assertions. Constraints that apply to a
specific type of entity (a customer or an order) should appear as table constraints or
column constraints within the appropriate table that describes that type of entity.
When the same constraint applies to many different columns in the database that all
refer to the same type of entity, then a domain is appropriate.

Assertions
Examples of the first three types of constraints have previously appeared in earlier
sections of this chapter. An assertion is specified using the SQL2 CREATE ASSERTION
statement. Here is an assertion that might be useful in the demo database:

Ensure that an office’s quota target does not exceed the sum of the quotas for its salespeople.

CREATE ASSERTION quota_valid

CHECK ((OFFICES.QUOTA <= SUM(SALESREPS.QUOTA)) AND

(SALESREPS.REP_OFFICE = OFFICES.OFFICE))

Because it is an object in the database (like a table or a column), the assertion must be
given a name (in this case, it’s quota_valid). The name is used in error messages
produced by the DBMS when the assertion is violated. The assertion causing an error may
be obvious in a small demo database, but in a large database that might contain dozens or
hundreds of assertions, it’s critical to know which of the assertions was violated.

Here is another example of an assertion that might be useful in the sample database:

Ensure that the total of the orders for any customer does not exceed their credit limit:

CREATE ASSERTION credit_orders

CHECK (CUSTOMER.CREDIT_LIMIT <=

SELECT SUM(ORDERS.AMOUNT)

FROM ORDERS

WHERE ORDERS.CUST = CUSTOMER.CUST_NUM)

As these examples show, a SQL2 assertion is defined by a search condition, which
is enclosed in parentheses and follows the keyword CHECK. Every time an attempt is
made to modify the contents of the database, through an INSERT or UPDATE or
DELETE statement, the search condition is checked against the (proposed) modified
database contents. If the search condition remains TRUE, the modification is allowed. If
the search condition would become untrue, the DBMS does not carry out the proposed
modification, and an error code is returned, indicating an assertion violation.
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In theory, assertions could cause a very large amount of database processing
overhead as they are checked for each statement that might modify the database. In
practice, the DBMS will analyze the assertion and determine which tables and columns it
involves. Only changes that involve those particular tables or columns will actually
trigger the search condition. Nonetheless, assertions should be defined with great care to
ensure that they impose a reasonable amount of overhead for the benefit they provide.

SQL2 Constraint Types
The types of constraints that can be specified in SQL2, and the role played by each, can
be summarized as follows:

� NOT NULL constraint. The NOT NULL constraint can appear only as a column
constraint. It prevents the column from being assigned a NULL value.

� PRIMARY KEY constraint. A PRIMARY KEY constraint can appear as a column
constraint or a table constraint. If the primary key consists of a single column, the
column constraint may be more convenient. If it consists of multiple columns, it
should be specified as a table constraint.

� UNIQUE constraint. A UNIQUE constraint can appear as a column constraint or
a table constraint. If the unique values restriction is being enforced only for
a single column, the column constraint is the easiest way to specify it. If the
unique values restriction applies to a set of two or more columns (that is, the
combination of values for those columns must be unique for all rows in the
table), then the table constraint form should be used.

� Referential (FOREIGN KEY) constraint. A referential (FOREIGN KEY) constraint
can appear as a column constraint or a table constraint. If the foreign key consists
of a single column, the column constraint may be more convenient. If it consists
of multiple columns, it should be specified as a table constraint. If a table has
many foreign key relationships to other tables, it may be most convenient to
gather all of its foreign key constraints together at one place in the table definition,
rather than having them scattered throughout the column definitions.

� CHECK constraint. A CHECK constraint can appear as a column constraint or a table
constraint. It is also the only kind of constraint that forms part of the definition of a
domain or an assertion. The check constraint is specified as a search condition, like
the search condition that appears in the WHERE clause of a database query. The
constraint is satisfied if the search condition has a TRUE value.

Each individual constraint within a database (no matter what its type) may be
assigned a constraint name to uniquely identify it from the other constraints. It’s
probably not necessary to assign constraint names in a simple database where each
constraint is clearly associated with a single table, column, or domain, and where
there is little potential for confusion. In a more complex database involving multiple
constraints on a single table or column, it can be very useful to be able to identify the
individual constraints by name (especially when errors start to occur!). Note that the
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check constraint in an assertion must have a constraint name; this name effectively
becomes the name of the assertion containing the constraint.

Deferred Constraint Checking
In their simplest form, the various constraints that are specified within a database are
checked every time an attempt is made to change the database contents—that is, during
the execution of every attempted INSERT, UPDATE, or DELETE statement. For database
systems claiming only Intermediate-Level or Entry-Level conformance to the SQL2
standard, this is the only mode of operation allowed for database constraints. The
Full-Level SQL2 standard specifies an additional capability for deferred constraint checking.

When constraint checking is deferred, the constraints are not checked for each
individual SQL statement. Instead, constraint checking is held in abeyance until the
end of a SQL transaction. (Transaction processing and the associated SQL statements
are described in detail in Chapter 12.) When the completion of the transaction is
signaled by the SQL COMMIT statement, the DBMS checks the deferred constraints. If
all of the constraints are satisfied, then the COMMIT statement can proceed, and the
transaction can complete normally. At this point, any changes made to the database
during the transaction become permanent. If, however, one or more of the constraints
would be violated by the proposed transaction, then the COMMIT statement fails, and
the transaction is rolled back—that is, all of the proposed changes to the database are
reversed, and the database goes back to its state before the transaction began.

Deferred constraint checking can be very important when several updates to a database
must all be made at once to keep the database in a consistent state. For example, suppose
the demo database contained this assertion:

Ensure that an office’s quota target is exactly equal to the sum of the quotas for its
salespeople.

CREATE ASSERTION quota_totals

CHECK ((OFFICES.QUOTA = SUM(SALESREPS.QUOTA)) AND

(SALESREPS.REP_OFFICE = OFFICES.OFFICE))

Without the deferred constraint checking, this constraint would effectively prevent you
from ever adding a salesperson to the database. Why? Because to keep the office quota and
the salespersons’ quotas in the right relationship, you must both add a new salesperson
row with the appropriate quota (using an INSERT statement) and increase the quota for the
appropriate office by the same amount (using an UPDATE statement). If you try to perform
the INSERT statement on the SALESREPS table first, the OFFICES table will not yet have
been updated, the assertion will not be TRUE, and the statement will fail.

Similarly, if you try to perform the UPDATE statement on the OFFICES table first,
the SALESREPS table will not yet have been updated, the assertion will not be TRUE,
and the statement will fail. The only solution to this dilemma is to defer constraint
checking until both statements have completed, and then check to make sure that both
operations, taken together, have left the database in a valid state.

316 S Q L : T h e C o m p l e t e R e f e r e n c e



C h a p t e r 1 1 : D a t a I n t e g r i t y 317
U

P
D

A
T
IN

G
D

A
T
A

The SQL2 deferred constraint mechanism provides for this capability, and much
more. Each individual constraint (of all types) within the database can be identified as
either DEFERRABLE or NOT DEFERRABLE when it is first created or defined:

� DEFERRABLE constraint. A DEFERRABLE constraint is one whose checking can
be deferred to the end of a transaction. The assertion in the previous example is
one that should be deferrable. When updating quotas or adding new salespeople
to the database, you certainly want to be able to defer constraint checking, as
the example showed.

� NOT DEFERRABLE constraint. A NOT DEFERRABLE constraint is one whose
checking cannot be deferred. A primary key constraint, a uniqueness constraint,
and many column check constraints would usually fall into this category. These
data integrity checks typically don’t depend on other database interactions.
They can and should be checked after every SQL statement that tries to modify
the database.

Because it provides the most stringent integrity checking, NOT DEFERRABLE is the
default. You must explicitly declare a constraint to be DEFERRABLE if you want to defer
its operation. Note also that these constraint attributes define only the deferability of a
constraint—that is, whether or not its operation can be deferred. The constraint
definition may also specify the initial state of the constraint:

� INITIALLY IMMEDIATE constraint. An INITIALLY IMMEDIATE constraint is
one that starts out as an immediate constraint; that is, it will be checked
immediately for each SQL statement.

� INITIALLY DEFERRED constraint. An INITIALLY DEFERRED constraint is one
that starts out as a deferred constraint; that is, its checking will be deferred until
the end of a transaction. Of course, this option cannot be specified if the constraint
is defined as NOT DEFERRABLE.

The constraint is put into the specified initial state when it is first created. It is also
reset into this initial state at the beginning of each transaction. Because it provides the
most stringent integrity checking, INITIALLY IMMEDIATE is the default. You must
explicitly declare a constraint to be INITIALLY DEFERRED if you want it to automatically
start out each transaction in a deferred state.

SQL2 adds one more mechanism to control the immediate or deferred processing of
constraints. You can dynamically change the processing of a constraint during database
operation using the SET CONSTRAINTS statement. For example, suppose the sample
database contains this assertion:

CREATE ASSERTION quota_totals

CHECK ((OFFICES.QUOTA = SUM(SALESREPS.QUOTA)) AND

(SALESREPS.REP_OFFICE = OFFICES.OFFICE))

DEFERRABLE INITIALLY IMMEDIATE
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The initially immediate checking causes the constraint to be processed, statement
by statement, for all normal database processing. For the special transaction that adds a
new salesperson to the database, however, you will need to temporarily defer constraint
processing. This sequence of statements accomplishes the goal:

SET CONSTRAINTS quota_totals DEFERRED

INSERT INTO SALESREPS (EMPL_NUM, NAME, REP_OFFICE, HIRE_DATE,

QUOTA, SALES)

VALUES (:num, :name, :office_num, :date, :amount, 0)

UPDATE OFFICES SET TARGET = TARGET + :amount

WHERE (OFFICE = :office_num)

COMMIT

After the COMMIT statement ends the transaction, the quota_totals constraint is
reset back into IMMEDIATE mode because of the INITIALLY IMMEDIATE specification.
If there were more work to be done after the UPDATE statement before the end of the
transaction, you could manually set the constraint back into IMMEDIATE mode using
this statement:

SET CONSTRAINTS quota_totals IMMEDIATE

You can set the same mode for several different constraints by including the constraint
names in a comma-separated list:

SET CONSTRAINTS quota_totals, rep_totals IMMEDIATE

Finally, you can set the processing mode for all constraints with a single statement:

SET CONSTRAINTS ALL DEFERRED

The SQL2 capabilities for deferred constraint checking form a very comprehensive
facility for managing the integrity of a database. As with many SQL2 capabilities,
individual pieces of the SQL2 capability were taken from existing SQL implementations,
and individual pieces have found their way into other implementations since the
publication of the standard. IBM’s DB2, for example, includes deferred constraint
checking capability and supports SQL2-style deferability options. Its SET CONSTRAINTS
statement, however, differs from the SQL2 standard. It operates on individual tables in
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the database, turning on and off the deferral of constraint checking associated with the
table contents.

Business Rules
Many of the data integrity issues in the real world have to do with the rules and procedures
of an organization. For example, the company that is modeled by the sample database
might have rules like these:

� No customer is allowed to place orders that would exceed the customer’s
credit limit.

� The sales vice president must be notified whenever any customer is assigned
a credit limit higher than $50,000.

� Orders may remain on the books for only six months; orders older than six
months must be canceled and reentered.

In addition, there are often accounting rules that must be followed to maintain the
integrity of totals, counts, and other amounts stored in a database. For the sample
database, these rules probably make sense:

� Whenever a new order is taken, the SALES column for the salesperson who
took the order and for the office where that salesperson works should be increased
by the order amount. Deleting an order or changing the order amount should
also cause the SALES columns to be adjusted.

� Whenever a new order is taken, the QTY_ON_HAND column for the product
being ordered should be decreased by the quantity of products ordered.
Deleting an order, changing the quantity, or changing the product ordered
should also cause corresponding adjustments to the QTY_ON_HAND column.

These rules fall outside the realm of the SQL language as defined by the SQL1
standard and as implemented by many SQL-based DBMS products today. The DBMS
takes responsibility for storing and organizing data and ensuring its basic integrity, but
enforcing the business rules is the responsibility of the application programs that access
the database.

Placing the burden of enforcing business rules on the application programs that
access the database has several disadvantages:

� Duplication of effort. If six different programs deal with various updates to
the ORDERS table, each of them must include code that enforces the rules
relating to ORDERS updates.

� Lack of consistency. If several programs written by different programmers handle
updates to a table, they will probably enforce the rules somewhat differently.
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� Maintenance problems. If the business rules change, the programmers must
identify every program that enforces the rules, then locate the code and
modify it correctly.

� Complexity. There are often many rules to remember. Even in the small sample
database, a program that handles order changes must worry about enforcing
credit limits, adjusting sales totals for salespeople and offices, and adjusting the
quantities on hand. A program that handles simple updates can become complex
very quickly.

The requirement that application programs enforce business rules is not unique to
SQL. Application programs have had that responsibility since the earliest days of
COBOL programs and file systems. However, there has been a steady trend over the
years to put more “understanding” of the data and more responsibility for its integrity
into the database itself. In 1986, the Sybase DBMS introduced the concept of a trigger as
a step toward including business rules in a relational database. The concept proved to
be very popular, so support for triggers began to appear in many SQL DBMS products
in the early 1990s, including those of the mainstream enterprise DBMS vendors.
Triggers and the enforcement of business rules that they provide have been especially
useful in enterprise database environments. When hundreds of application programs
are being developed or modified every year by dozens of application programmers, the
ability to centralize the definition and administration of business rules can be very useful.

What Is a Trigger?
The concept of a trigger is relatively straightforward. For any event that causes a change
in the contents of a table, a user can specify an associated action that the DBMS should
carry out. The three events that can trigger an action are attempts to INSERT, DELETE,
or UPDATE rows of the table. The action triggered by an event is specified by a sequence
of SQL statements.

To understand how a trigger works, let’s examine a concrete example. When a new
order is added to the ORDERS table, these two changes to the database should also
take place:

� The SALES column for the salesperson who took the order should be increased
by the amount of the order.

� The QTY_ON_HAND amount for the product being ordered should be decreased
by the quantity ordered.

This Transact-SQL statement defines a SQL Server trigger, named NEWORDER, that
causes these database updates to happen automatically:

CREATE TRIGGER NEWORDER

ON ORDERS

FOR INSERT
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AS UPDATE SALESREPS

SET SALES = SALES + INSERTED.AMOUNT

FROM SALESREPS, INSERTED

WHERE SALESREPS.EMPL_NUM = INSERTED.REP

UPDATE PRODUCTS

SET QTY_ON_HAND = QTY_ON_HAND - INSERTED.QTY

FROM PRODUCTS, INSERTED

WHERE PRODUCTS.MFR_ID = INSERTED.MFR

AND PRODUCTS.PRODUCT_ID = INSERTED.PRODUCT

The first part of the trigger definition tells SQL Server that the trigger is to be
invoked whenever an INSERT statement is attempted on the ORDERS table. The
remainder of the definition (after the keyword AS) defines the action of the trigger. In
this case, the action is a sequence of two UPDATE statements, one for the SALESREPS
table and one for the PRODUCTS table. The row being inserted is referred to using the
pseudo-table name inserted within the UPDATE statements. As the example shows,
SQL Server extends the SQL language substantially to support triggers. Other extensions
not shown here include IF/THEN/ELSE tests, looping, procedure calls, and even
PRINT statements that display user messages.

The trigger capability, while popular in many DBMS products, is not a part of the
ANSI/ISO SQL2 standard. As with other SQL features whose popularity has preceded
standardization, this has led to a considerable divergence in trigger support across
various DBMS brands. Some of the differences between brands are merely differences
in syntax. Others reflect real differences in the underlying capability.

DB2’s trigger support provides an instructive example of the differences. Here is the
same trigger definition shown previously for SQL Server, this time using the DB2 syntax:

CREATE TRIGGER NEWORDER

AFTER INSERT ON ORDERS

REFERENCING NEW AS NEW_ORD

FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

UPDATE SALESREPS

SET SALES = SALES + NEW_ORD.AMOUNT

WHERE SALESREPS.EMPL_NUM = NEW_ORD.REP;

UPDATE PRODUCTS

SET QTY_ON_HAND = QTY_ON_HAND – NEW_ORD.QTY

WHERE PRODUCTS.MFR_ID = NEW_ORD.MFR

AND PRODUCTS.PRODUCT_ID = NEW_ORD.PRODUCT;

END

The beginning of the trigger definition includes the same elements as the SQL
Server definition, but rearranges them. It explicitly tells DB2 that the trigger is to be



invoked after a new order is inserted into the database. DB2 also allows you to specify
that the trigger is to be carried out before a triggering action is applied to the database
contents. This doesn’t make sense in this example, because the triggering event is an
INSERT operation, but it does make sense for UPDATE or DELETE operations.

The DB2 REFERENCING clause specifies a table alias (NEW_ORD) that will be used to
refer to the row being inserted throughout the remainder of the trigger definition. It
serves the same function as the INSERTED keyword in the SQL Server trigger. The
statement references the new values in the inserted row because this is an INSERT
operation trigger. For a DELETE operation trigger, the old values would be referenced.
For an UPDATE operation trigger, DB2 gives you the ability to refer to both the old
(pre-UPDATE) values and new (post-UPDATE) values.

BEGIN ATOMIC and END serve as brackets around the sequence of SQL statements
that define the triggered action. The two searched UPDATE statements in the body of
the trigger definition are straightforward modifications of their SQL Server counterparts.
They follow the standard SQL syntax for searched UPDATE statements, using the table
alias specified by the REFERENCING clause to identify the particular row of the
SALESREPS table and the PRODUCTS table to be updated. The row being inserted is
referred to using the pseudo-table name inserted within the UPDATE statements.

Here is another example of a trigger definition, this time using Informix Universal
Server:

CREATE TRIGGER NEWORDER

INSERT ON ORDERS

AFTER (EXECUTE PROCEDURE NEW_ORDER)

This trigger again specifies an action that is to take place after a new order is inserted. In
this case, the multiple SQL statements that form the triggered action can’t be specified
directly in the trigger definition. Instead, the triggered statements are placed into an
Informix stored procedure, named NEW_ORDER, and the trigger causes the stored
procedure to be executed. As this and the preceding examples show, although the core
concepts of a trigger mechanism are very consistent across databases, the specifics vary a
great deal. Triggers are certainly among the least portable aspects of SQL databases today.

Triggers and Referential Integrity
Triggers provide an alternative way to implement the referential integrity constraints
provided by foreign keys and primary keys. In fact, advocates of the trigger feature point
out that the trigger mechanism is more flexible than the strict referential integrity provided
by the ANSI/ISO standard. For example, here is a trigger that enforces referential integrity
for the OFFICES/SALESREPS relationship and displays a message when an attempted
update fails:
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CREATE TRIGGER REP_UPDATE

ON SALESREPS

FOR INSERT, UPDATE

AS IF ((SELECT COUNT(*)

FROM OFFICES, INSERTED

WHERE OFFICES.OFFICE = INSERTED.REP_OFFICE) = 0)

BEGIN

PRINT "Invalid office number specified."

ROLLBACK TRANSACTION

END

Triggers can also be used to provide extended forms of referential integrity. For
example, DB2 initially provided cascaded deletes through its CASCADE delete rule but
did not support cascaded updates if a primary key value is changed. This limitation
need not apply to triggers, however. The following SQL Server trigger cascades any
update of the OFFICE column in the OFFICES table down into the REP_OFFICE
column of the SALESREPS table:

CREATE TRIGGER CHANGE_REP_OFFICE

ON OFFICES

FOR UPDATE

AS IF UPDATE (OFFICE)

BEGIN

UPDATE SALESREPS

SET SALESREPS.REP_OFFICE = INSERTED.OFFICE

FROM SALESREPS, INSERTED, DELETED

WHERE SALESREPS.REP_OFFICE = DELETED.OFFICE

END

As in the previous SQL Server example, the references DELETED.OFFICE and
INSERTED.OFFICE in the trigger refer, respectively, to the values of the OFFICE
column before and after the UPDATE statement. The trigger definition must be able to
differentiate between these before and after values to perform the appropriate search
and update actions specified by the trigger.

Trigger Advantages and Disadvantages
Over the last several years, the trigger mechanisms in many commercial DBMS
products have expanded significantly. In many commercial implementations, the
distinctions between triggers and stored procedures (described in Chapter 20) have
blurred, so the action triggered by a single database change may be defined by
hundreds of lines of stored procedure programming. The role of triggers has thus



evolved beyond the enforcement of data integrity into a programming capability
within the database.

A complete discussion of triggers is beyond the scope of this book, but even these
simple examples show the power of the trigger mechanism. The major advantage of
triggers is that business rules can be stored in the database and enforced consistently
with each update to the database. This can dramatically reduce the complexity of
application programs that access the database. Triggers also have some disadvantages,
including these:

� Database complexity. When the rules are moved into the database, setting
up the database becomes a more complex task. Users who could reasonably
be expected to create small ad hoc applications with SQL will find that the
programming logic of triggers makes the task much more difficult.

� Hidden rules. With the rules hidden away inside the database, programs that
appear to perform straightforward database updates may, in fact, generate an
enormous amount of database activity. The programmer no longer has total
control over what happens to the database. Instead, a program-initiated database
action may cause other, hidden actions.

� Hidden performance implications. With triggers stored inside the database,
the consequences of executing a SQL statement are no longer completely visible
to the programmer. In particular, an apparently simple SQL statement could, in
concept, trigger a process that involves a sequential scan of a very large database
table, which would take a long time to complete. These performance implications
of any given SQL statement are invisible to the programmer.

Triggers and the SQL Standard
Triggers were one of the most widely praised and publicized features of Sybase SQL
Server when it was first introduced, and they have since found their way into many
commercial SQL products. Although the SQL2 standard provided an opportunity to
standardize the DBMS implementation of triggers, the standards committee included
check constraints instead. As the trigger and check-constraint examples in the preceding
sections show, check constraints can be effectively used to limit the data that can be
added to a table or modified in a table. However, unlike triggers, they lack the ability
to cause an independent action in the database, such as adding a row or changing a
data item in another table.

The extra capability provided by triggers has led several industry experts to
advocate that they be included in a future SQL3 standard. Other experts have argued
that triggers are a pollution of the data management function of a database, and that
the functions performed by triggers belong in fourth generation languages (4GLs) and
other database tools, rather than in the DBMS itself. While the debate continues, DBMS
products have experimented with new trigger capabilities that extend beyond the
database itself. These extended trigger capabilities allow modifications to data in
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a database to automatically cause actions such as sending mail, alerting a user, or
launching another program to perform a task. This makes triggers even more useful
and will add to the debate over including them in future official SQL standards. Regardless
of the official stance, triggers have become a more and more important part of the SQL
language in enterprise applications over the last several years.

Summary
The SQL language provides a number of features that help to protect the integrity of
data stored in a relational database:

� Required columns can be specified when a table is created, and the DBMS will
prevent NULL values in these columns.

� Data validation is limited to data type checking in standard SQL, but many
DBMS products offer other data validation features.

� Entity integrity constraints ensure that the primary key uniquely identifies each
entity represented in the database.

� Referential integrity constraints ensure that relationships among entities in the
database are preserved during database updates.

� The SQL2 standard and newer implementations provide extensive referential
integrity support, including delete and update rules that tell the DBMS how to
handle the deletion and modification of rows that are referenced by other rows.

� Business rules can be enforced by the DBMS through the trigger mechanism
popularized by Sybase and SQL Server. Triggers allow the DBMS to take
complex actions in response to events such as attempted INSERT, DELETE, or
UPDATE statements. Check constraints provide a more limited way to include
business rules in the definition of a database and have the DBMS enforce them.
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D
atabase updates are usually triggered by real-world events, such as the receipt
of a new order from a customer. In fact, receiving a new order would generate
not just one, but this series of four updates to the sample database:

� Add the new order to the ORDERS table.

� Update the sales total for the salesperson who took the order.

� Update the sales total for the salesperson’s office.

� Update the quantity-on-hand total for the ordered product.

To leave the database in a self-consistent state, all four updates must occur as a
unit. If a system failure or another error creates a situation where some of the updates
are processed and others are not, the integrity of the database will be lost. Similarly, if
another user calculates totals or ratios partway through the sequence of updates, the
calculations will be incorrect. The sequence of updates must thus be an all-or-nothing
proposition in the database. SQL provides precisely this capability through its
transaction-processing features, which are described in this chapter.

What Is a Transaction?
A transaction is a sequence of one or more SQL statements that together form a logical
unit of work. The SQL statements that form the transaction are typically closely related
and perform interdependent actions. Each statement in the transaction performs some
part of a task, but all of them are required to complete the task. Grouping the statements
as a single transaction tells the DBMS that the entire statement sequence should be
executed atomically—all of the statements must be completed for the database to be in
a consistent state.

Here are some examples of typical transactions for the sample database, along with
the SQL statement sequence that comprises each transaction:

� Add-an-order. To accept a customer’s order, the order-entry program should
(a) query the PRODUCTS table to ensure that the product is in stock, (b) insert
the order into the ORDERS table, (c) update the PRODUCTS table, subtracting
the quantity ordered from the quantity-on-hand of the product, (d) update the
SALESREPS table, adding the order amount to the total sales of the salesperson
who took the order, and (e) update the OFFICES table, adding the order amount
to the total sales of the office where the salesperson works.

� Cancel-an-order. To cancel a customer’s order, the program should (a) delete
the order from the ORDERS table, (b) update the PRODUCTS table, adjusting
the quantity-on-hand total for the product, (c) update the SALESREPS table,
subtracting the order amount from the salesperson’s total sales, and (d) update
the OFFICES table, subtracting the order amount from the office’s total sales.
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� Reassign-a-customer. When a customer is reassigned from one salesperson
to another, the program should (a) update the CUSTOMERS table to reflect the
change, (b) update the ORDERS table to show the new salesperson for all orders
placed by the customer, (c) update the SALESREPS table, reducing the quota
for the salesperson losing the customer, and (d) update the SALESREPS table,
raising the quota for the salesperson gaining the customer.

In each of these cases, a sequence of four or five actions, where each action consists
of a separate SQL statement, is required to handle the single logical transaction.

The transaction concept is critical for programs that update a database because it
ensures the integrity of the database. A SQL-based DBMS makes this commitment
about the statements in a transaction:

The statements in a transaction will be executed as an atomic unit of work in the database.
Either all of the statements will be executed successfully, or none of the statements will
be executed.

The DBMS is responsible for keeping this commitment even if the application
program aborts or a hardware failure occurs in the middle of the transaction, as shown
in Figure 12-1. In each case, the DBMS must make sure that when failure recovery is
complete, the database never reflects a partial transaction.

COMMIT and ROLLBACK
SQL supports database transactions through two SQL transaction-processing
statements, shown in Figure 12-2:

� COMMIT. The COMMIT statement signals the successful end of a transaction. It
tells the DBMS that the transaction is now complete; all of the statements that
comprise the transaction have been executed, and the database is self-consistent.

� ROLLBACK. The ROLLBACK statement signals the unsuccessful end of a
transaction. It tells the DBMS that the user does not want to complete the
transaction; instead, the DBMS should back out any changes made to the
database during the transaction. In effect, the DBMS restores the database
to its state before the transaction began.

The COMMIT and ROLLBACK statements are executable SQL statements, just like
SELECT, INSERT, and UPDATE. Here is an example of a successful update transaction
that changes the quantity and amount of an order and adjusts the totals for the product,
salesperson, and office associated with the order. A change like this would typically be
handled by a forms-based change order program, which would use programmatic SQL
to execute the statements shown here.
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Figure 12-1. The SQL transaction concept

Figure 12-2. The COMMIT and ROLLBACK statement syntax diagrams
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Change the quantity on order number 113051 from 4 to 10, which raises its amount from
$1458 to $3550. The order is for QSA-XK47 reducers and was placed with Larry Fitch
(employee number 108) who works in Los Angeles (office number 21).

UPDATE ORDERS

SET QTY = 10, AMOUNT = 3550.00

WHERE ORDER_NR = 113051

UPDATE SALESREPS

SET SALES = SALES - 1458.00 + 3550.00

WHERE EMPL_NUM = 108

UPDATE OFFICES

SET SALES = SALES - 1458.00 + 3550.00

WHERE OFFICE = 21

UPDATE PRODUCTS

SET QTY_ON_HAND = QTY_ON_HAND + 4 - 10

WHERE MFR_ID = 'QSA'

AND PRODUCT_ID = 'XK47'

. . . confirm the change one last time with the customer . . .

COMMIT WORK

Here is the same transaction, but this time assume that the user makes an error
entering the product number. To correct the error, the transaction is rolled back, so that
it can be reentered correctly:

Change the quantity on order number 113051 from 4 to 10, which raises its amount from
$1458 to $3550. The order is for QAS-XK47 reducers and was placed with Larry Fitch
(employee number 108), who works in Los Angeles (office number 21).

UPDATE ORDERS

SET QTY = 10, AMOUNT = 3550.00

WHERE ORDER_NR = 113051

UPDATE SALESREPS

SET SALES = SALES - 1458.00 + 3550.00

WHERE EMPL_NUM = 108



UPDATE OFFICES

SET SALES = SALES - 1458.00 + 3550.00

WHERE OFFICE = 21

UPDATE PRODUCTS

SET QTY_ON_HAND = QTY_ON_HAND + 4 - 10

WHERE MFR_ID = 'QAS'

AND PRODUCT_ID = 'XK47'

. . . oops! the manufacturer is “QSA,” not “QAS” . . .

ROLLBACK WORK

The ANSI/ISO Transaction Model
The ANSI/ISO SQL standard defines a SQL transaction model and the roles of the
COMMIT and ROLLBACK statements. Most, but not all, commercial SQL products use
this transaction model, which is based on the transaction support in the early releases
of DB2. The standard specifies that a SQL transaction automatically begins with the
first SQL statement executed by a user or a program. The transaction continues
through subsequent SQL statements until it ends in one of four ways:

� COMMIT. A COMMIT statement ends the transaction successfully, making its
database changes permanent. A new transaction begins immediately after the
COMMIT statement.

� ROLLBACK. A ROLLBACK statement aborts the transaction, backing out its database
changes. A new transaction begins immediately after the ROLLBACK statement.

� Successful program termination. For programmatic SQL, successful program
termination also ends the transaction successfully, just as if a COMMIT statement
had been executed. Because the program is finished, there is no new transaction
to begin.

� Abnormal program termination. For programmatic SQL, abnormal program
termination also aborts the transaction, just as if a ROLLBACK statement had been
executed. Because the program is finished, there is no new transaction to begin.

Figure 12-3 shows typical transactions that illustrate these four conditions. Note
that the user or program is always in a transaction under the ANSI/ISO transaction
model. No explicit action is required to begin a transaction; it begins automatically
with the first SQL statement or immediately after the preceding transaction ends.

Recall that the ANSI/ISO SQL standard is primarily focused on a programmatic SQL
language for use in application programs. Transactions play an important role in
programmatic SQL, because even a simple application program often needs to carry out
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a sequence of two or three SQL statements to accomplish its task. Because users can
change their minds and other conditions can occur (such as being out of stock on a
product that a customer wants to order), an application program must be able to proceed
partway through a transaction and then choose to abort or continue. The COMMIT and
ROLLBACK statements provide precisely this capability.

The COMMIT and ROLLBACK statements can also be used in interactive SQL, but
in practice, they are rarely seen in this context. Interactive SQL is generally used for
database queries; updates are less common, and multistatement updates are almost
never performed by typing the statements into an interactive SQL facility. As a result,
transactions are typically a minor concern in interactive SQL. In fact, many interactive
SQL products default to an autocommit mode, where a COMMIT statement is
automatically executed after each SQL statement typed by the user. This effectively
makes each interactive SQL statement its own transaction.

Figure 12-3. Committed and rolled back transactions



Other Transaction Models
A few commercial SQL products depart from the ANSI/ISO transaction model to
provide additional transaction-processing capability for their users. The Sybase
DBMS, which is designed for online transaction-processing applications, is one
example. SQL Server, which was derived from the Sybase product, also uses the
Sybase transaction model.

The Transact-SQL dialect used by Sybase includes four transaction-processing
statements:

� BEGIN TRANSACTION. The BEGIN TRANSACTION statement signals the
beginning of a transaction. Unlike the ANSI/ISO transaction model, which
implicitly begins a new transaction when the previous one ends, Sybase
requires an explicit statement to start a transaction.

� COMMIT TRANSACTION. Signals the successful end of a transaction. As in the
ANSI/ISO model, all changes made to the database during the transaction
become permanent. However, a new transaction is not automatically started.

� SAVE TRANSACTION. Establishes a savepoint in the middle of a transaction.
Sybase saves the state of the database at the current point in the transaction
and assigns the saved state a savepoint name, specified in the statement.

� ROLLBACK TRANSACTION. Has two roles. If a savepoint is named in the
ROLLBACK statement, Sybase backs out the database changes made since
the savepoint, effectively rolling the transaction back to the point where the
SAVE TRANSACTION statement was executed. If no savepoint is named, the
ROLLBACK statement backs out all database changes made since the BEGIN
TRANSACTION statement.

The Sybase savepoint mechanism is especially useful in complex transactions
involving many statements, as shown in Figure 12-4. The application program in the
figure periodically saves its status as the transaction progresses, establishing two
named savepoints. If problems develop later during the transaction, the application
program does not have to abort the entire transaction. Instead, it can roll the transaction
back to any of its savepoints and proceed from there. All of the statements executed
before the savepoint remain in effect; those executed since the savepoint are backed
out by the rollback operation.

Note that the entire transaction is still the logical unit of work for Sybase, as it is
for the ANSI/ISO model. If a system or hardware failure occurs in the middle of a
transaction, for example, the entire transaction is backed out of the database. Thus,
savepoints are a convenience for the application program, but not a fundamental
change to the ANSI/ISO transaction model.

The explicit use of a BEGIN TRANSACTION statement is, however, a significant
departure from the ANSI/ISO model. SQL statements that are executed outside a
transaction (that is, statements that do not appear between a BEGIN/COMMIT or a
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Figure 12-4. An alternative (explicit) transaction model used by Sybase
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BEGIN/ROLLBACK statement pair) are effectively handled in autocommit mode. Each
statement is committed as it is executed; there is no way to roll back the statement once
it has succeeded.

Some DBMS brands that use a Sybase-style transaction model prohibit statements
that alter the structure of a database or its security from occurring within a transaction
(such as CREATE TABLE, ALTER TABLE, and DROP TABLE, discussed in Chapter 13,
and GRANT and REVOKE, discussed in Chapter 15). These statements must be executed
outside a transaction. This restriction makes the transaction model easier to implement,
because it ensures that the structure of the database cannot change during a transaction.

In contrast, in a complete implementation of the ANSI/ISO-style transaction model,
the structure of a database can change significantly during a transaction. (Tables can be
dropped, created, and populated, for example.) The DBMS must be able to undo all of
these alterations if the user later decides to roll back the transaction, including the
structural changes. In practice, this can be difficult to implement, and many popular
DBMS products introduce simplifying restrictions. A common restriction is that
database structure changes cannot be intermixed with database access operations
within a transaction. Another common restriction is that a transaction that alters the
database structure may contain one and only one SQL statement (such as a CREATE
TABLE or a DROP TABLE statement).

Transactions: Behind the Scenes *
The all-or-nothing commitment that a DBMS makes for the statements in a transaction
seems almost like magic to a new SQL user. How can the DBMS possibly back out the
changes made to a database, especially if a system failure occurs during the middle of
a transaction? The actual techniques used by brands of DBMS vary, but almost all of
them are based on a transaction log, as shown in Figure 12-5.

Here is how the transaction log works, in simplified, conceptual form. When a user
executes a SQL statement that modifies the database, the DBMS automatically writes a
record in the transaction log showing two copies of each row affected by the statement.
One copy shows the row before the change, and the other copy shows the row after the
change. Only after the log is written does the DBMS actually modify the row on the
disk. If the user subsequently executes a COMMIT statement, the end-of-transaction is
noted in the transaction log. If the user executes a ROLLBACK statement, the DBMS
examines the log to find the “before” images of the rows that have been modified
since the transaction began. Using these images, the DBMS restores the rows to their
earlier state, effectively backing out all changes to the database that were made during
the transaction.

If a system failure occurs, the system operator typically recovers the database by
running a special recovery utility supplied with the DBMS. The recovery utility examines
the end of the transaction log, looking for transactions that were not committed before
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the failure. The utility rolls back each of these incomplete transactions, so that only
committed transactions are reflected in the database; transactions in process at the time
of the failure have been rolled back.

The use of a transaction log obviously imposes an overhead on updates to the
database. In practice, the mainstream commercial DBMS products use much more
sophisticated logging techniques than the simple scheme described here to minimize
this overhead. In addition, the transaction log is usually stored on a fast disk drive,
different from the one that stores the database, to minimize disk access contention.

Figure 12-5. The transaction log



Some personal computer DBMS brands allow you to disable transaction logging to
increase the performance of the DBMS.

Specialized databases, such as in-memory databases or cached database copies,
may also use this log-free architecture. This may also be an acceptable alternative in
specialized production databases, for example, where the database contents are
replicated on a duplicate computer system. In most common production databases,
however, a logging scheme and its overhead are an integral part of the database
operation.

Transactions and Multiuser Processing
When two or more users concurrently access a database, transaction processing takes on
a new dimension. Now the DBMS must not only recover properly from system failures
or errors, but it must also ensure that the users’ actions do not interfere with one another.
Ideally, each user should be able to access the database as if he or she had exclusive
access to it, without worrying about the actions of other users. The SQL transaction
model allows a SQL-based DBMS to insulate users from one another in this way.

The best way to understand how SQL handles concurrent transactions is to look at
the problems that result if transactions are not handled properly. Although they can
show up in many different ways, four fundamental problems can occur. The next four
sections give a simple example of each problem.

The Lost Update Problem
Figure 12-6 shows a simple application where two users accept telephone orders from
customers. The order-entry program checks the PRODUCTS file for adequate inventory
before accepting the customer’s order. In the figure, Joe starts entering an order for 100
ACI-41004 widgets from his customer. At the same time, Mary starts entering her
customer’s order for 125 ACI-41004 widgets. Each order-entry program does a query
on the PRODUCTS file, and each finds that 139 widgets are in stock—more than enough
to cover the customer’s request. Joe asks his customer to confirm the order, and his
copy of the order-entry program updates the PRODUCTS file to show (139 – 100) = 39
widgets remaining for sale and inserts a new order for 100 widgets into the ORDERS
table. A few seconds later, Mary asks her customer to confirm the order. Her copy of
the order-entry program updates the PRODUCTS file to show (139 – 125) = 14 widgets
remaining in stock and inserts a new order for 125 widgets into the ORDERS table.

The handling of the two orders has obviously left the database in an inconsistent
state. The first of the two updates to the PRODUCTS file has been lost! Both customers’
orders have been accepted, but not enough widgets are in inventory to satisfy both
orders. Further, the database shows that there are still 14 widgets remaining for sale.
This example illustrates the lost update problem that can occur whenever two
programs read the same data from the database, use the data as the basis for a
calculation, and then try to update the data.
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The Uncommitted Data Problem
Figure 12-7 shows the same order-processing application as Figure 12-6. Joe again
begins taking an order for 100 ACI-41004 widgets from his customer. This time, Joe’s
copy of the order-processing program queries the PRODUCTS table, finds 139 widgets
available, and updates the PRODUCTS table to show 39 widgets remaining after the
customer’s order. Then Joe begins to discuss with the customer the relative merits of
the ACI-41004 and ACI-41005 widgets.

In the meantime, Mary’s customer tries to order 125 ACI-41004 widgets. Mary’s copy
of the order-processing program queries the PRODUCTS table, finds only 39 widgets
available, and refuses the order. It also generates a notice telling the purchasing manager
to buy more ACI-41004 widgets, which are in great demand. Now Joe’s customer decides
not to order the size 4 widgets after all, and Joe’s order-entry program does a ROLLBACK
to abort its transaction.
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Figure 12-6. The lost update problem
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Because Mary’s order-processing program was allowed to see the uncommitted
update of Joe’s program, the order from Mary’s customer was refused, and the
purchasing manager will order more widgets, even though 139 of them are still in
stock. The situation would have been even worse if Mary’s customer had decided to
settle for the 39 available widgets. In this case, Mary’s program would have updated
the PRODUCTS table to show zero units available. But when the ROLLBACK of Joe’s
transaction occurred, the DBMS would have set the available inventory back to 139
widgets, even though 39 of them are committed to Mary’s customer.

The problem in this example is that Mary’s program has been allowed to see the
uncommitted updates from Joe’s program and has acted on them, producing the
erroneous results. The SQL2 standard refers to this as problem P1, also known as the
dirty read problem. In the parlance of the standard, the data that Mary’s program has
seen is dirty because it has not been committed by Joe’s program.

Figure 12-7. The uncommitted data problem



The Inconsistent Data Problem
Figure 12-8 shows the order-processing application once more. Again, Joe begins
taking an order for 100 ACI-41004 widgets from his customer. A short time later, Mary
also begins talking to her customer about the same widgets, and her program does a
single-row query to find out how many are available. This time Mary’s customer
inquires about the ACI-41005 widgets as an alternative, and Mary’s program does a
single-row query on that row.

Meanwhile, Joe’s customer decides to order the widgets, so his program updates
that row of the database and does a COMMIT to finalize the order in the database. After
considering the ACI-41005 widgets as an alternative, Mary’s customer decides to order
the ACI-41004 widgets that Mary originally proposed. Her program does a new single-row
query to get the information for the ACI-41004 widgets again. But instead of finding the 139
widgets that were in stock just a moment ago, the new query shows only 39 in stock.
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Figure 12-8. The inconsistent data problem
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In this example, unlike the preceding two, the status of the database has remained
an accurate model of the real-world situation. There are only 39 ACI-41004 widgets
left because Joe’s customer has purchased 100 of them. There is no problem with
Mary having seen uncommitted data from Joe’s program—the order was complete
and committed to the database. However, from the point of view of Mary’s program,
the database did not remain consistent during her transaction. At the beginning of
the transaction, a row contained certain data, and later in the same transaction, it
contained different data, so external events have interfered with her consistent view
of the database. This inconsistency can cause problems even if Mary’s program never
tries to update the database based on the results of the first query.

For example, if the program is accumulating totals or calculating statistics, it cannot
be sure that the statistics reflect a stable, consistent view of the data. The problem in
this case is that Mary’s program has been allowed to see committed updates from Joe’s
program that affect rows that it has already examined. The SQL2 standard refers to this
problem as P2, also known as the nonrepeatable read problem. The name comes from the
fact that Mary’s program can’t repeat the same read access to the database and obtain
the same results.

The Phantom Insert Problem
Figure 12-9 shows an order-processing application once more. This time, the sales
manager runs a report program that scans the ORDERS table, printing a list of the
orders from customers of Bill Adams and computing their total. In the meantime, a
customer calls Bill to place an additional order for $5000. The order is inserted into the
database, and the transaction is committed. A short time later, the sales manager’s
program (still operating within its initial transaction) again scans the ORDERS table,
running the very same query. This time, there is an additional order, and the total is
$5000 higher than for the first query.

Like the previous example, the problem here is inconsistent data. The database
remains an accurate model of the real-world situation, and its integrity is intact, but the
same query executed twice during the same transaction yielded two different results.
In the previous example, the query was a single-row query, and the inconsistency in
the data was caused by a committed UPDATE statement. A committed DELETE
statement could cause the same kind of problem.

In the example of Figure 12-9, the problem is caused by a committed INSERT
statement. The additional row did not participate in the first query, but it shows up
as a phantom row, out of nowhere in the second query. Like the inconsistent data
problem, the consequences of the phantom insert problem can be inconsistent and
incorrect calculations. The SQL2 standard refers to this as P3, and also uses the name
phantom to describe it.

Concurrent Transactions
As the three multiuser update examples show, when users share access to a database
and one or more users is updating data, there is a potential for database corruption.



SQL uses its transaction mechanism to eliminate this source of database corruption.
In addition to the all-or-nothing commitment for the statements in a transaction, a
SQL-based DBMS makes this commitment about transactions:

During a transaction, the user will see a completely consistent view of the database. The
user will never see the uncommitted changes of other users, and even committed changes
made by others will not affect data seen by the user in mid-transaction.
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Figure 12-9. The phantom insert problem
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Transactions are thus the key to both recovery and concurrency control in a SQL
database. The previous commitment can be restated explicitly in terms of concurrent
transaction execution:

If two transactions, A and B, are executing concurrently, the DBMS ensures that the
results will be the same as they would be if either (a) Transaction A were executed first,
followed by Transaction B, or (b) Transaction B were executed first, followed by
Transaction A.

This concept is known as the serializability of transactions. Effectively, it means
that each database user can access the database as if no other users were concurrently
accessing the database. In practice, dozens or hundreds of transactions may be
concurrently executing within a large production database. The serializability concept
can be directly extended to cover this situation. Serializability guarantees that, if some
number, N, concurrent transactions are executing, the DBMS must ensure that its
results are the same as if they had been executed in some sequence, one at a time. The
concept does not specify which sequence of transactions must be used, only that the
results must match the results of some sequence.

The fact that a DBMS insulates you from the actions of other concurrent users
doesn’t mean, however, that you can forget all about the other users. In fact, the
situation is quite the opposite. Because other users want to concurrently update the
database, you should keep your transactions as short and simple as possible, to
maximize the amount of parallel processing that can occur.

Suppose, for example, that you run a program that performs a sequence of three
large queries. Since the program doesn’t update the database, it might seem that it
doesn’t need to worry about transactions. It certainly seems unnecessary to use COMMIT
statements. But in fact, the program should use a COMMIT statement after each query.
Why? Recall that SQL automatically begins a transaction with the first SQL statement
in a program. Without a COMMIT statement, the transaction continues until the program
ends. Further, SQL guarantees that the data retrieved during a transaction will be
self-consistent, unaffected by other users’ transactions. This means that once your
program retrieves a row from the database, no other user can modify the row until
your transaction ends, because you might try to retrieve the row again later in your
transaction, and the DBMS must guarantee that you will see the same data. Thus, as
your program performs its three queries, it will prevent other users from updating
larger and larger portions of the database.

The moral of this example is simple: you must always worry about transactions
when writing programs for a production SQL database. Transactions should always be
as short as possible “COMMIT early and COMMIT often” is good advice when you are
using programmatic SQL.

In practice, implementing a strict multiuser transaction model can impose a
substantial overhead on the operation of a database with dozens, hundreds, or
thousands of concurrent users. In addition, the specifics of the application may not
require the absolute isolation among the user programs that the SQL transaction model
implies. For example, maybe the application designer knows that an order inquiry



C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 345
U

P
D

A
T
IN

G
D

A
T
A

program has been designed so that it will never attempt to read and then reread a row
of the database during a single transaction. In this case, the inconsistent data problem
can’t occur because of the program structure. Alternatively, maybe the application
designer knows that all of a program’s access to particular tables of a database is
read-only. If the programmer can convey information like this to the DBMS, some of
the overhead of SQL transactions can be eliminated.

The SQL1 standard did not address this database performance issue, and most of
the major DBMS brands implemented proprietary schemes for enhancing the performance
of SQL transactions. The SQL2 standard specified a new SET TRANSACTION statement
whose function is to specify the level of SQL transaction-model support that an
application needs. You don’t need to use the SET TRANSACTION statement for casual
use of SQL or for relatively simple or low-volume SQL transaction processing. To fully
understand its operation, it’s useful to understand the locking and other techniques
used by commercial DBMS products to implement multiuser SQL transactions. The
remainder of this chapter discusses locking, the performance-optimizing capabilities
of SQL2, and the various DBMS brands that depend on it.

Locking *
Most major DBMS products use sophisticated locking techniques to handle concurrent
SQL transactions for many simultaneous users. However, the basic concepts behind
locking and transactions are very simple. Figure 12-10 shows a simple locking scheme
and how it handles contention between two concurrent transactions.

As Transaction A in the figure accesses the database, the DBMS automatically locks
each piece of the database that the transaction retrieves or modifies. Transaction B
proceeds in parallel, and the DBMS also locks the pieces of the database that it accesses.
If Transaction B tries to access part of the database that has been locked by Transaction
A, the DBMS blocks Transaction B, causing it to wait for the data to be unlocked. The
DBMS releases the locks held by Transaction A only when it ends in a COMMIT or
ROLLBACK operation. The DBMS then unblocks Transaction B, allowing it to proceed.
Transaction B can now lock that piece of the database on its own behalf, protecting it
from the effects of other transactions.

As the figure shows, the locking technique temporarily gives a transaction exclusive
access to a piece of a database, preventing other transactions from modifying the
locked data. Locking thus solves all of the concurrent transaction problems. It prevents
lost updates, uncommitted data, and inconsistent data from corrupting the database.
However, locking introduces a new problem—it may cause a transaction to wait for a
very long time while the pieces of the database that it wants to access are locked by
other transactions.

Locking Levels
Locking can be implemented at various levels of the database. In its most basic form,
the DBMS could lock the entire database for each transaction. This locking strategy
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would be simple to implement, but it would allow processing of only one transaction
at a time. If the transaction included any think time at all (such as time to discuss an
order with a customer), all other access to the database would be blocked during that
time, leading to unacceptably slow performance. However, database-level locking may
be appropriate for certain types of transactions, such as those that modify the structure
of the database or for complex queries that must sequentially scan many large tables. In
these cases, it may be more efficient to rapidly do a single locking operation, quickly

Figure 12-10. Locking with two concurrent transactions
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execute the database operation, and then quickly unlock the database than to individually
lock dozens of tables.

An enhanced form of locking is table-level locking. In this scheme, the DBMS locks
only the tables accessed by a transaction. Other transactions can concurrently access
other tables. This technique permits more parallel processing, but can still lead to
unacceptably slow performance in applications such as order entry, where many users
must share access to the same table or tables.

Many DBMS products implement locking at the page level. In this scheme, the
DBMS locks individual blocks of data (pages) from the disk as they are accessed by a
transaction. Other transactions are prevented from accessing the locked pages but may
access (and lock for themselves) other pages of data. Page sizes of 2KB, 4KB, and 16KB
are commonly used. Since a large table will be spread out over hundreds or thousands
of pages, two transactions trying to access two different rows of a table will usually be
accessing two different pages, allowing the two transactions to proceed in parallel.

Over the last several years, most of the major commercial DBMS systems have moved
beyond page-level locking to row-level locks. Row-level locking allows two concurrent
transactions that access two different rows of a table to proceed in parallel, even if the
two rows fall in the same disk block. While this may seem a remote possibility, it can be a
real problem with small tables containing small records, such as the OFFICES table in the
sample database.

Row-level locking provides a high degree of parallel transaction execution.
Unfortunately, keeping track of locks on variable-length pieces of the database (in
other words, rows) rather than fixed-size pages is a much more complex task, so
increased parallelism comes at the cost of more sophisticated locking logic and
increased overhead. In fact, for certain transactions or applications, the overhead of
row-level locking might be greater than the performance gains of permitting more
parallel operation within the database.

Some DBMS products address this situation by automatically promoting many
individual row-level locks into a page-level or table-level lock when the number of
row-level locks for a given transaction rises above a certain limit. As this example shows,
it’s not always the case that a more granular (smaller) level of lock implementation
is better; the best scheme heavily depends on the specific transactions and the SQL
operations that they contain.

It’s theoretically possible to move beyond row-level locking to locking at the
individual data item level. In theory, this would provide even more parallelism than
row-level locks, because it would allow concurrent access to the same row by two
different transactions, provided they were accessing different sets of columns. The
overhead in managing item-level locking, however, has thus far outweighed its
potential advantages. No commercial SQL DBMS uses item-level locking. In fact,
locking is an area of considerable research in database technology, and the locking
schemes used in commercial DBMS products are much more sophisticated than the
fundamental scheme described here. The most straightforward of these advanced
locking schemes, using shared and exclusive locks, is described in the next section.



Shared and Exclusive Locks
To increase concurrent access to a database, most commercial DBMS products use a
locking scheme with more than one type of lock. A scheme using shared and exclusive
locks is quite common:

� Shared lock. Used by the DBMS when a transaction wants to read data from
the database. Another concurrent transaction can also acquire a shared lock
on the same data, allowing the other transaction to also read the data.

� Exclusive lock. Used by the DBMS when a transaction wants to update data
in the database. When a transaction has an exclusive lock on some data, other
transactions cannot acquire any type of lock (shared or exclusive) on the data.

Figure 12-11 shows the rules for this locking scheme and the permitted combinations
of locks that can be held by two concurrent transactions. Note that a transaction can
acquire an exclusive lock only if no other transaction currently has a shared or an
exclusive lock on the data. If a transaction tries to acquire a lock not permitted by the
rules in Figure 12-11, it is blocked until other transactions unlock the data that it requires.

Figure 12-12 shows the same transactions shown in Figure 12-10, this time using
shared and exclusive locks. If you compare the two figures, you can see how the new
locking scheme improves concurrent access to the database. Mature and complex
DBMS products, such as DB2, have more than two types of locks and use different
locking techniques at different levels of the database. Despite the increased complexity,
the goal of the locking scheme remains the same: to prevent unwanted interference
between transactions while providing the greatest possible concurrent access to the
database, all with minimal locking overhead.

Deadlocks *
Unfortunately, the use of any locking scheme to support concurrent SQL transactions
leads to a problem called a deadlock. Figure 12-13 illustrates a deadlock situation.
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Figure 12-11. Rules for shared and exclusive locks
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Program A updates the ORDERS table, thereby locking part of it. Meanwhile, Program
B updates the PRODUCTS table, locking part of it. Now Program A tries to update the
PRODUCTS table and Program B tries to update the ORDERS table, in each case trying to
update a part of the table that has been previously locked by the other program (the
same row or the same page, depending on the type of locking implemented). Without
outside intervention, each program will wait forever for the other program to commit
its transaction and unlock the data. The situation in the figure is a simple deadlock
between two programs, but more complex situations can occur where three, four, or

Figure 12-12. Locking with shared and exclusive locks
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more programs are in a cycle of locks, each waiting for data that is locked by one of the
other programs.

To deal with deadlocks, a DBMS typically includes logic that periodically (for
example, once every five seconds) checks the locks held by various transactions. When
it detects a deadlock, the DBMS arbitrarily chooses one of the transactions as the
deadlock loser and rolls back the transaction. This frees the locks held by the losing
transaction, allowing the deadlock winner to proceed. The losing program receives an

Figure 12-13. A transaction deadlock
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error code informing it that it has lost a deadlock and that its current transaction has
been rolled back.

This scheme for breaking deadlocks means that any SQL statement can potentially
return a deadlock loser error code, even if nothing is wrong with the statement per se.
Thus, even though COMMIT and ROLLBACK are the SQL transaction-processing
statements, it’s possible for other SQL statements—an INSERT statement, for example,
or even a SELECT statement—to be a deadlock loser. The transaction attempting the
statement is rolled back through no fault of its own, but because of other concurrent
activity in the database. This may seem unfair, but in practice, it’s much better than the
other two alternatives—eternal deadlock or database corruption. If a deadlock loser
error occurs in interactive SQL, the user can simply retype the SQL statement(s). In
programmatic SQL, the application program must be prepared to handle the deadlock
loser error code. Typically, the program will respond by either alerting the user or
automatically retrying the transaction.

The probability of deadlocks can be dramatically reduced by carefully planning
database updates. All programs that update multiple tables during a transaction
should, whenever possible, update the tables in the same sequence. This allows the
locks to flow smoothly across the tables, minimizing the possibility of deadlocks. In
addition, some of the advanced locking features described in later sections of this
chapter can be used to further reduce the number of deadlocks that occur.

Advanced Locking Techniques *
Many commercial database products offer advanced locking facilities that go well
beyond those provided by standard SQL transactions. These include:

� Explicit locking. A program can explicitly lock an entire table or some
other part of the database if it will be repeatedly accessed by the program.

� Isolation levels. You can tell the DBMS that a specific program will not
reretrieve data during a transaction, allowing the DBMS to release locks
before the transaction ends.

� Locking parameters. The database administrator can manually adjust the
size of the lockable piece of the database and other locking parameters to
tune locking performance.

These facilities tend to be nonstandard and product-specific. However, several of
them, particularly those initially introduced in mainframe versions of DB2 years ago,
have been implemented in several commercial SQL products and have achieved the
status of common, if not standard, features. In fact, the isolation-level capabilities
introduced in DB2 have found their way into the SQL2 standard.
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Explicit Locking *
If a transaction repeatedly accesses a table, the overhead of acquiring small locks on
many parts of the table can be very substantial. A bulk update program that walks
through every row of a table, for example, will lock the entire table, piece by piece,
as it proceeds. For this type of transaction, the program should explicitly lock the
entire table, process the updates, and then unlock the table. Locking the entire table
has three advantages:

� It eliminates the overhead of row-by-row (or page-by-page) locking.

� It eliminates the possibility that another transaction will lock part of the
table, forcing the bulk update transaction to wait.

� It eliminates the possibility that another transaction will lock part of the
table and deadlock the bulk update transaction, forcing it to be restarted.

Of course, locking the table has the disadvantage that all other transactions
attempting to access the table must wait while the update is in process. However,
because the bulk update transaction can proceed much more quickly, the overall
throughput of the DBMS can be increased by explicitly locking the table.

In the IBM databases, the LOCK TABLE statement, shown in Figure 12-14, is used
to explicitly lock an entire table. It offers two locking modes:

� EXCLUSIVE mode acquires an exclusive lock on the entire table. No other
transaction can access any part of the table for any purpose while the lock is
held. This is the mode you would request for a bulk update transaction.

� SHARE mode acquires a shared lock on the entire table. Other transactions can
read parts of the table (that is, they can also acquire shared locks), but they
cannot update any part of it. Of course, if the transaction issuing the LOCK
TABLE statement now updates part of the table, it will still incur the overhead
of acquiring exclusive locks on the parts of the table that it updates. This is the
mode you would request if you wanted a snapshot of a table, accurate at a
particular point in time.

Oracle also supports a DB2-style LOCK TABLE statement. The same effect can be
achieved in Ingres with a different statement. Several other database management
systems do not support explicit locking at all, choosing instead to optimize their implicit
locking techniques.

Isolation Levels *
Under the strict definition of a SQL transaction, no action by a concurrently executing
transaction is allowed to impact the data visible during the course of your transaction.
If your program performs a database query during a transaction, proceeds with other
work, and later performs the same database query a second time, the SQL transaction
mechanism guarantees that the data returned by the two queries will be identical
(unless your transaction acted to change the data). This ability to reliably reretrieve a
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row during a transaction is the highest level of isolation that your program can have
from other programs and users. The level of isolation is called the isolation level of your
transaction.

This absolute isolation of your transaction from all other concurrently executing
transactions is very costly in terms of database locking and loss of database concurrency.
As your program reads each row of query results, the DBMS must lock the row (with a
shared lock) to prevent concurrent transactions from modifying the row. These locks
must be held until the end of your transaction, just in case your program performs the
query again. In many cases, the DBMS can significantly reduce its locking overhead if it
knows in advance how a program will access a database during a transaction.

To gain this efficiency, the major IBM mainframe databases added support for the
concept of a user-specified isolation level that gives the user control over the trade-off
between isolation and processing efficiency. The SQL2 specification formalized the
IBM isolation-level concept and expanded it to include four isolation levels, shown in
Figure 12-15. The isolation levels are linked directly to the fundamental multiuser
update problems discussed earlier in this chapter. As the level of isolation decreases
(moving down the rows of the table), the DBMS insulates the user from fewer of the
multiuser update problems.

The SERIALIZABLE isolation level is the highest level provided. At this level, the
DBMS guarantees that the effects of concurrently executing transactions are exactly the
same as if they executed in sequence. This is the default isolation level specified in the
ANSI/ISO SQL standard, because it is the way SQL databases are supposed to work.
If your program needs to perform the same multirow query twice during a transaction
and be guaranteed that the results will be identical regardless of other activity in the
database, then it should use the SERIALIZABLE isolation level.

The REPEATABLE READ isolation level is the second highest level. At this level, your
transaction is not allowed to see either committed or uncommitted updates from other
transactions, so the lost update, uncommitted data, and modified data problems cannot
occur. However, a row inserted into the database by another concurrent transaction may
become visible during your transaction. As a result, a multirow query run early in your
transaction may yield different results than the same query run later in the same
transaction (the phantom insert problem). If your program does not depend on the
capability to repeat a multirow query during a single transaction, you can safely use the
REPEATABLE READ isolation level to improve DBMS performance without sacrificing

Figure 12-14. The LOCK TABLE statement syntax diagram
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data integrity. This is one of the isolation levels supported in the IBM mainframe
database products.

The READ COMMITTED isolation level is the third highest level. In this mode, your
transaction is not allowed to see uncommitted updates from other transactions, so the
lost update and the uncommitted data problems cannot occur. However, updates that
are committed by other concurrently executing transactions may become visible during
the course of your transaction. Your program could, for example, perform a single-row
SELECT statement twice during the course of a transaction and find that the data in
the row had been modified by another user. If your program does not depend on the
capability to reread a single row of data during a transaction, and it is not accumulating
totals or doing other calculations that rely on a self-consistent set of data, it can safely
use the READ COMMITTED isolation level. Note that if your program attempts to update
a row that has already been updated by another user, your transaction will automatically
be rolled back, to prevent the lost update problem from occurring.

The READ UNCOMMITTED isolation level is the lowest level specified in the SQL
standard. In this mode, your transaction may be impacted by committed or uncommitted
updates from other transactions, so the uncommitted data, modified data, and phantom
insert problems can occur. The DBMS still prevents the lost update problem. Generally,
the READ UNCOMMITTED level is appropriate only for certain ad hoc query applications
where the user can tolerate the fact that the query results may contain dirty data. (Some
DBMS brands call this isolation mode a dirty read capability because of this possibility.)

Figure 12-15. Isolation levels and multiuser updates



If it is important that query results contain only information that has, in fact, been
committed to the database, your program should not use this mode.

The SQL2 standard specifies a SET TRANSACTION statement, shown in Figure 12-16,
which is used to set the isolation level of the current transaction. The SET TRANSACTION
statement also allows you to specify whether the transaction is READ ONLY (that is, it will
only query the database) or READ WRITE (it may query or update the database). The
DBMS can use this information, along with the isolation level, to optimize its database
processing. The default isolation level is SERIALIZABLE. If the READ UNCOMMITTED
isolation level is specified, then READ ONLY is assumed, and you may not specify a READ
WRITE transaction. Otherwise, a READ WRITE transaction is the default. These defaults
provide for the maximum safety of transactions, at the expense of database performance,
but they prevent inexperienced SQL programmers from inadvertently suffering one of
the multiuser transaction-processing problems.

Note that the SET TRANSACTION statement specified in the SQL2 standard is an
executable SQL statement. It’s possible, in fact sometimes very desirable, to have one
transaction of a program execute in one mode and have the next transaction execute in a
different mode. However, you can’t switch isolation levels or read/write modes in the
middle of a transaction. The standard effectively requires that the SET TRANSACTION
statement be the first statement of a transaction. This means it must be executed as the
first statement after a COMMIT or ROLLBACK, or as the first statement of a program, before
any other statements affecting the content or structure of a database.

As noted earlier in the “Advanced Locking Techniques” section, many of the
commercial DBMS products implemented their own locking and performance-
enhancement schemes long before the publication of the SQL2 standard, and these
locking strategies affect the heart of the internal database architecture and logic. It’s not
surprising that the adoption of the SQL2 standard in this area has been relatively slow
compared to some other areas where implementation was much easier. For example,
the IBM mainframe databases (DB2 and SQL/DS) historically offered a choice of two
isolation levels—REPEATABLE READ or READ COMMITTED (called CURSOR STABILITY
mode in IBM terminology). In the IBM implementations, the choice is made during
the program development process, in the BIND step described in Chapter 17.

C h a p t e r 1 2 : T r a n s a c t i o n P r o c e s s i n g 355
U

P
D

A
T
IN

G
D

A
T
A

Figure 12-16. The SET TRANSACTION statement syntax diagram



Although the modes are not strictly part of the SQL language, the choice of mode
strongly impacts how the application performs and how it can use retrieved data.

The Ingres DBMS offers a capability similar to the isolation modes of the IBM
databases but provides it in a different form. Using the SET LOCKMODE statement,
an application program can tell Ingres which type of locking to use when handling
a database query. The options are the following:

� No locking. Similar to the IBM CURSOR STABILITY mode just described

� Shared locking. Similar to the IBM REPEATABLE READ mode just described

� Exclusive locking. Provides exclusive access to the table during the query and
offers a capability like the IBM LOCK TABLE statement

The Ingres default is shared locking, which parallels the repeatable read default in
the IBM scheme. Note, however, that the Ingres locking modes are set by an executable
SQL statement. Unlike the IBM modes, which must be chosen at compile time, the Ingres
modes can be chosen when the program executes and can even be changed from one
query to the next.

Locking Parameters *
A mature DBMS such as DB2, SQL/DS, Oracle, Informix, Sybase, or SQL Server
employs much more complex locking techniques than those described here. The
database administrator can improve the performance of these systems by manually
setting the locking parameters. Typical parameters that can be tuned include these:

� Lock size. Some DBMS products offer a choice of table-level, page-level,
row-level, and other lock sizes. Depending on the specific application, a
different size lock may be appropriate.

� Number of locks. A DBMS typically allows each transaction to have some
finite number of locks. The database administrator can often set this limit,
raising it to permit more complex transactions or lowering it to encourage
earlier lock escalation.

� Lock escalation. A DBMS will often automatically escalate locks, replacing
many small locks with a single larger lock (for example, replacing many
page-level locks with a table-level lock). The database administrator may have
some control over this escalation process.

� Lock timeout. Even when a transaction is not deadlocked with another
transaction, it may wait a very long time for the other transaction to release
its locks. Some DBMS brands implement a timeout feature, where a SQL
statement fails with a SQL error code if it cannot obtain the locks it needs
within a certain period of time. The timeout period can usually be set by the
database administrator.
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Versioning *
The locking techniques described in the preceding sections are the most widely used
techniques for supporting concurrent multiuser transaction processing in relational
DBMS products. Locking is sometimes called a pessimistic approach to concurrency,
because by locking parts of the database, the DBMS is implicitly assuming that
concurrent transactions will probably interfere with one another. In recent years, a
different approach to concurrency, called versioning, has been implemented in some
DBMS products and has been increasing in popularity. Versioning is sometimes called
an optimistic approach to concurrency because in this approach, the DBMS implicitly
assumes that concurrent transactions will not interfere with one another.

With a locking (pessimistic) architecture, the DBMS internally maintains one and
only one copy of the data for each row in the database. As multiple users access the
database, the locking scheme arbitrates the access to this row of data among the users
(more precisely, among their concurrent transactions). In contrast, with a versioning
(optimistic) architecture, the DBMS will create two or more copies of the data for a row in
the database when a user attempts to update the row. One copy of the row will contain
the old data for the row, before the update; the other copy of the row will contain the
new data for the row, after the update. The DBMS internally keeps track of which
transactions should see which version of the row, depending on their isolation levels.

Versioning in Operation *
Figure 12-17 shows a simple versioning architecture in action. Transaction A starts the
action, reading a row of the PRODUCTS table, and finding 139 units of ACI-41004 size 4
widgets available. Transaction B comes along next and updates the same row, reducing
the quantity available to 39 units. In response, the DBMS internally creates a new copy
of the row. From this point on, if Transaction B rereads the contents of the row, the
contents will come from this new copy, since it reflects Transaction B’s updated quantity
on hand (39 units). Next, Transaction C comes along and tries to read the same row.
Because Transaction B’s update has not yet been committed, the DBMS gives Transaction
C the data from the old copy of the row, showing 139 units available. The same thing
happens a few seconds later for Transaction D; it will also see 139 units available. Now
Transaction B performs a COMMIT operation, making its update of the row permanent.
A short time later, Transaction E attempts to read the row. With Transaction B’s update
now committed, the DBMS will give Transaction E the data from the new copy,
showing 100 units. Finally, Transactions C, D, and E end their database activity with
a COMMIT operation.

The activity shown in Figure 12-17 meets the serializability requirement for proper
DBMS operation. The sequential transaction series A-C-D-B-E would produce the same
results shown in the Figure. (In fact, the series A-D-C-B-E would also produce these
results.) Furthermore, the versioning implementation delivers the correct operation
without causing any of the transactions to wait. This is not true of the typical locking
implementation, as shown in Figure 12-18.
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In Figure 12-18, Transaction A again starts the action, finding 139 units of ACI-41004
widgets available. Internally, the DBMS places a shared lock on the row. Transaction B next
tries to update the row, reducing quantity on hand to 39 units. If Transaction A is operating
at a strict isolation level (such as REPEATABLE READ), Transaction B will be held at this
point, because it cannot acquire the required exclusive lock. If Transaction A is operating
at a less strict isolation level, the DBMS can allow Transaction B to proceed, giving it an
exclusive lock on the row and actually updating the data. The internal row in the database
(recall that there is only a single copy of the row in this locking architecture) now shows 39
units available. When Transaction C comes along, it must wait for Transaction B to release
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its lock unless Transaction C is operating at a very low (READ UNCOMMITTED) isolation
level. The same is true of Transaction D. Only after Transaction B has committed its
changes can Transactions C and D proceed.

Comparing the operations in Figures 12-17 and 12-18, two differences are worth
noting. First, and more fundamentally, the versioning approach in Figure 12-17 allows
more concurrent transactions to proceed in parallel. The locking approach in Figure 12-18
will, under most circumstances, cause two or more transactions to wait for others
to complete and free their locks. The second, and more subtle, difference is that the

Figure 12-18. Concurrent transactions in a locking architecture



effective order of serial transaction execution is different between the two figures. As
noted, in Figure 12-17, the transaction sequence A-C-D-B-E produces the results. In
Figure 12-18, the sequence A-B-C-D-E produces the results. Note that neither is correct;
the serializability principle states only that the results produced by the DBMS must
match some sequence of serial transactions.

The example in Figure 12-17 includes only one updating transaction, so only two
copies of the updated row are required (before and after the update). The versioning
architecture is easily extended to support more concurrent updates. For each attempt to
update the row, the DBMS can create another new row, reflecting the update. With this
multiversioned approach, the task of keeping track of which transactions should see
which version of the row obviously becomes more complex. In practice, the decision
about which version of the row should be visible to each concurrent transaction
depends not only on the sequence of database operations, but also on the isolation
levels requested by each of the transactions.

Versioning does not completely eliminate the possibility of deadlocks within the
database. The two transactions in Figure 12-13, with their interleaved attempts to
update two different tables, each in a different order, will still produce problems,
even for a versioning scheme. However, for workloads with a mix of database READ
operations and database UPDATE operations, versioning can significantly reduce the
locking and lock timeouts or deadlocks associated with shared locks.

Versioning Advantages and Disadvantages *
The advantage of a versioning architecture is that, under the right circumstances, it
can significantly increase the number of concurrent transactions that can execute in
parallel. Concurrent execution is becoming more and more important in large DBMS
installations, especially those that support web sites that may have thousands or tens of
thousands of concurrent users. Versioning is also becoming more useful as the number
of processors on typical DBMS server computer systems increases. Servers containing
16 or more processors are becoming increasingly common, and large DBMS servers
may support 64 or more processors in a symmetric multiprocessing (SMP) configuration.
These servers can actually execute many database-access applications in parallel by
spreading the workload out over many processors.

The disadvantage of a versioning architecture is the internal DBMS overhead that
it creates. One obvious overhead is the added memory requirement of storing two or
more copies of rows that are being updated. In practice, a more serious overhead is the
memory management required to allocate memory for each temporary copy of a row as
it is needed (potentially thousands of times per second), and then releasing the memory
to be reused when the older copies of the row are no longer needed. An additional
overhead is keeping track of which transactions should see which copies of which rows.

Implicitly, a versioning architecture is based on the underlying assumption that most
concurrent transactions will tend not to interfere with one another. If this assumption
proves accurate (i.e., if concurrently executing transactions mostly access and update
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different rows, or if the transaction workload is dominated by READ operations rather
than UPDATEs), then the added overhead of the versioning scheme will be more than
offset by a significant boost in the amount of parallel work that can be performed. If the
assumption proves inaccurate (i.e., if concurrently executing transactions tend to access
and update the same rows), then the overhead of the versioning technique will tend to
become very high, swamping the concurrency gains.

Summary
This chapter described the transaction mechanism provided by the SQL language:

� A transaction is a logical unit of work in a SQL-based database. It consists of
a sequence of SQL statements that are effectively executed as a single unit by
the DBMS.

� The COMMIT statement signals successful completion of a transaction, making
all of its database modifications permanent.

� The ROLLBACK statement asks the DBMS to abort a transaction, backing out all
of its database modifications.

� Transactions are the key to recovering a database after a system failure; only
transactions that were committed at the time of failure remain in the recovered
database.

� Transactions are the key to concurrent access in a multiuser database. A user or
program is guaranteed that its transaction will not be interfered with by other
concurrent transactions.

� Occasionally, a conflict with another concurrently executing transaction may
cause the DBMS to roll back a transaction through no fault of its own. An
application program that uses SQL must be prepared to deal with this situation
if it occurs.

� The subtleties of transaction management, and their impact on DBMS
performance, are one of the more complex areas of using and operating a large
production database. This is also an area where major DBMS brands diverge in
their capabilities and tuning options.

� Many DBMS brands use locking techniques to handle concurrent transactions.
For these products, adjustments to the locking parameters and explicit locking
statements allow you to tune transaction-processing performance.

� An alternative versioning technique for handling concurrent transactions is
gaining in popularity. For DBMS products that use versioning, adjustments
to the depth of the versioning scheme and to the transaction mix itself are the
keys to performance tuning.
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Part IV
Database Structure

An important role of SQL is to define the structure and organization of a

database. Chapters 13–16 describe the SQL features that support this

role. Chapter 13 describes how to create a database and its tables.

Chapter 14 describes views, an important SQL feature that lets users see

alternate organizations of database data. The SQL security features that

protect stored data are described in Chapter 15. Finally, Chapter 16

discusses the system catalog, a collection of system tables that describe

the structure of a database.
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Chapter 13
Creating a Database
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M
any SQL users don’t have to worry about creating a database; they use interactive
or programmatic SQL to access a database of corporate information or to access
some other database that has been created by someone else. In a typical corporate

database, for example, the database administrator may give you permission to retrieve and
perhaps to update the stored data. However, the administrator will not allow you to create
new databases or to modify the structure of the existing tables.

As you grow more comfortable with SQL, you will probably want to start creating
your own private tables to store personal data such as engineering test results or sales
forecasts. If you are using a multiuser database, you may want to create tables or even
entire databases that will be shared with other users. If you are using a personal computer
database, you will certainly want to create your own tables and databases to support
your personal applications.

This chapter describes the SQL language features that let you create databases and
tables and define their structure.

The Data Definition Language
The SELECT, INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK statements
described in Parts II and III of this book are all concerned with manipulating the data
in a database. These statements collectively are called the SQL Data Manipulation
Language, or DML. The DML statements can modify the data stored in a database, but
they cannot change its structure. None of these statements creates or deletes tables or
columns, for example.

Changes to the structure of a database are handled by a different set of SQL statements,
usually called the SQL Data Definition Language, or DDL. Using DDL statements, you can:

� Define and create a new table

� Remove a table that’s no longer needed

� Change the definition of an existing table

� Define a virtual table (or view) of data

� Establish security controls for a database

� Build an index to make table access faster

� Control the physical storage of data by the DBMS

For the most part, the DDL statements insulate you from the low-level details of
how data is physically stored in the database. They manipulate abstract database objects,
such as tables and columns. However, the DDL cannot avoid physical storage issues
entirely, and by necessity, the DDL statements and clauses that control physical storage
vary from one DBMS to another.

The core of the Data Definition Language is based on three SQL verbs:
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� CREATE. Defines and creates a database object

� DROP. Removes an existing database object

� ALTER. Changes the definition of a database object

In all major SQL-based DBMS products, these three DDL verbs can be used while
the DBMS is running. The database structure is thus dynamic. The DBMS can be creating,
dropping, or changing the definition of the tables in the database, for example, while it is
simultaneously providing access to the database for its users. This is a major advantage
of SQL and relational databases over earlier systems, where the DBMS had to be stopped
before you could change the structure of the database. It means that a relational database
can grow and change easily over time. Production use of a database can continue while
new tables and applications are added.

Although the DDL and DML are two distinct parts of the SQL language, in most
SQL-based DBMS products, the split is only a conceptual one. Usually, the DDL and
DML statements are submitted to the DBMS in exactly the same way, and they can be
freely intermixed in both interactive SQL sessions and programmatic SQL applications.
If a program or user needs a table to store its temporary results, it can create the table,
populate it, manipulate the data, and then delete the table. Again, this is a major advantage
over earlier data models, in which the structure of the database was fixed when the
database was created.

Although virtually all commercial SQL products support the DDL as an integral part
of the SQL language, the SQL1 standard did not require it. In fact, the SQL1 standard
implies a strong separation between the DML and the DDL, allowing vendors to achieve
compliance with the DML part of the standard through a SQL layer on top of a non-SQL
underlying database. The SQL2 standard still differentiates between different types of
SQL statements. (It calls the DDL statements SQL-schema statements and the DML
statements SQL-data statements and SQL-transaction statements.) However, it brings the
standard into alignment with the actual implementation of popular SQL products by
requiring that DDL statements be executed interactively and by a program.

The SQL2 standard specifies only the parts of the DDL that are relatively
independent of physical storage structures, operating system dependencies, and other
DBMS brand-specific capabilities. In practice, all DBMS brands include significant
extensions to the standard DDL to deal with these issues and other enhanced database
capabilities. The differences between the ANSI/ISO standard and the DDL as implemented
in popular SQL products are described for each SQL statement through the remainder
of this chapter.

Creating a Database
In a large mainframe or enterprise-level network DBMS installation, the corporate
database administrator is solely responsible for creating new databases. On smaller
workgroup DBMS installations, individual users may be allowed to create their own
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personal databases, but it’s much more common for databases to be created centrally
and then accessed by individual users. If you are using a personal computer DBMS,
you are probably both the database administrator and the user, and you will have to
create the database(s) that you use personally.

The SQL1 standard specified the SQL language used to describe a database structure,
but it did not specify how databases are created, because each DBMS brand had taken a
slightly different approach. Those differences persist in present-day mainstream DBMS
products. The techniques used by these SQL products illustrate the differences:

� IBM’s DB2 has a simple default database structure. A DB2 database is associated
with a running copy of the DB2 server software, and users access the database
by connecting to the DB2 server. A DB2 “database” is thus effectively defined by
an installation of the DB2 software on a particular computer system.

� Oracle, by default, creates a database as part of the Oracle software installation
process, like DB2. For the most part, user tables are always placed in this single,
systemwide database, which is named by an Oracle configuration file and
associated with this particular copy of the Oracle server software. More recent
versions of Oracle have been extended with a CREATE DATABASE statement for
defining database names.

� Microsoft SQL Server and Sybase include a CREATE DATABASE statement as
part of their Data Definition Language. A companion DROP DATABASE statement
destroys previously created databases. These statements can be used with
interactive or programmatic SQL. The names of these databases are tracked in a
special master database that is associated with a single installation of SQL Server.
Database names must be unique within this SQL Server installation. Options to
the CREATE DATABASE statement specify the physical I/O device on which the
database is to be located.

� Informix Universal Server supports CREATE DATABASE and DROP DATABASE
SQL statements as well. An option to the CREATE DATABASE statement allows
the database to be created in a specific dbspace, which is a named area of disk
storage controlled by the Informix software. Another option controls the type of
database logging to be performed for the new database, with trade-offs between
performance and data integrity during system failures.

The SQL2 standard specifically avoids a specification of the term database because
it is so overloaded with contradictory meanings from DBMS products. SQL2 uses the
term catalog to describe a named collection of tables that is called a database by most
popular DBMS brands. (Additional information about the database structure specified
by the SQL2 standard is provided later in the section “Database Structure and the ANSI/
ISO Standard.”) The standard does not specify how a catalog is created or destroyed,
and specifically says that creation or destruction is implementation dependent. It also
indicates how many catalogs there are, and whether individual SQL statements that
can access data from different catalogs are implementation defined. In practice, as
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shown by the preceding examples, many of the major DBMS vendors have moved
toward the use of a CREATE DATABASE/DROP DATABASE statement pair.

Table Definitions
The most important structure in a relational database is the table. In a multiuser
production database, the major tables are typically created once by the database
administrator and then used day after day. As you use the database, you will often find
it convenient to define your own tables to store personal data or data extracted from
other tables. These tables may be temporary, lasting for only a single interactive SQL
session, or more permanent, lasting weeks or months. In a personal computer database,
the table structure is even more fluid. Because you are both the user and the database
administrator, you can create and destroy tables to suit your own needs, without worrying
about other users.

Creating a Table (CREATE TABLE)
The CREATE TABLE statement, shown in Figure 13-1, defines a new table in the
database and prepares it to accept data. The various clauses of the statement specify the
elements of the table definition. The syntax diagram for the statement appears complex
because there are so many parts of the definition to be specified and so many options
for each element. In addition, some of the options are available in some DBMS brands
or in the SQL2 standard, but not in other brands. In practice, creating a new table is
relatively straightforward.

When you execute a CREATE TABLE statement, you become the owner of the newly
created table, which is given the name specified in the statement. The table name must
be a legal SQL name, and it must not conflict with the name of one of your existing
tables. The newly created table is empty, but the DBMS prepares it to accept data
added with the INSERT statement.

Column Definitions
The columns of the newly created table are defined in the body of the CREATE TABLE
statement. The column definitions appear in a comma-separated list enclosed in
parentheses. The order of the column definitions determines the left-to-right order of
the columns in the table. In the CREATE TABLE statements supported by the major
DBMS brands, each column definition specifies the following:

� Column name. Used to refer to the column in SQL statements. Every column
in the table must have a unique name, but the names may duplicate those of
columns in other tables.

� Data type. Identifies the kind of data that the column stores. Data types were
discussed in Chapter 5. Some data types, such as VARCHAR and DECIMAL,
require additional information, such as the length or number of decimal places
in the data. This additional information is enclosed in parentheses following the
keyword that specifies the data type.

C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 369



370 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 13-1. Basic CREATE TABLE syntax diagram



D
A

T
A

B
A

S
E

S
T
R

U
C

T
U

R
E

� Required data. Determines whether the column contains required data, and
prevents NULL values from appearing in the column; otherwise, NULL values
are allowed.

� Default value. Uses an optional default value for the column when an INSERT
statement for the table does not specify a value for the column.

The SQL2 standard allows several additional parts of a column definition, which can
be used to require that the column contains unique values, to specify that the column is a
primary key or a foreign key or to restrict the data values that the column may contain.
These are single-column versions of capabilities provided by other clauses in the CREATE
TABLE statement and are described as part of that statement in the following sections.

Here are some simple CREATE TABLE statements for the tables in the sample database:

Define the OFFICES table and its columns.

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER,

TARGET MONEY,

SALES MONEY NOT NULL)

Define the ORDERS table and its columns.

CREATE TABLE ORDERS

(ORDER_NUM INTEGER NOT NULL,

ORDER_DATE DATE NOT NULL,

CUST INTEGER NOT NULL,

REP INTEGER,

MFR CHAR(3) NOT NULL,

PRODUCT CHAR(5) NOT NULL,

QTY INTEGER NOT NULL,

AMOUNT MONEY NOT NULL)

The CREATE TABLE statement for a given table can vary slightly from one DBMS
brand to another, because each DBMS supports its own set of data types and uses its own
keywords to identify them in the column definitions. In addition, the SQL2 standard allows
you to specify a domain instead of a data type within a column definition. (Domains were
described in Chapter 11.) A domain is a specific collection of valid data values, which is
defined within the database and assigned a name. The domain definition is based on one
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of the DBMS’ supported data types but performs additional data-value checking that
restricts the legal values. For example, if this domain definition appeared in a
SQL2-compliant database:

CREATE DOMAIN VALID_OFICE_ID INTEGER

CHECK (VALUE BETWEEN 11 AND 99)

then the OFFICES table definition could be modified to:

Define the OFFICES table and its columns.

CREATE TABLE OFFICES

(OFFICE VALID_OFFICE_ID NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER,

TARGET MONEY,

SALES MONEY NOT NULL)

and the DBMS would automatically check any newly inserted rows to insure that their
office numbers fall in the designated range. Domains are particularly effective when the
same legal data values restrictions apply to many different columns within the database.
In the sample database, office numbers appear in the OFFICES and the SALESREPS table,
and the VALID_OFFICE_ID domain would be used to define the columns in both of
these tables. In a real-world database, there may be dozens or hundreds of such columns
whose data is drawn from the same domain.

Missing and Default Values
The definition of each column within a table tells the DBMS whether the data for the
column is allowed to be missing—that is, whether the column is allowed to have a
NULL value. In most of the major DBMS brands and in the SQL standard, the default is
to allow missing data for a column. If the column must contain a legal data value for
every row of a table, then its definition must include the NOT NULL clause. The Sybase
DBMS products and Microsoft SQL Server use the opposite convention, assuming that
NULL values are not allowed unless the column is explicitly declared NULL or the
default nullability mode defined for the database is set to allow NULLs by default.

The SQL2 standard and many of the major SQL DBMS products support default
values for columns. If a column has a default value, it is specified within the column
definition. For example, here is a CREATE TABLE statement for the OFFICES table that
specifies default values:
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Define the OFFICES table with default values (ANSI/ISO syntax).

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL DEFAULT 'Eastern',

MGR INTEGER DEFAULT 106,

TARGET MONEY DEFAULT NULL,

SALES MONEY NOT NULL DEFAULT 0.00)

With this table definition, only the office number and the city need to be specified
when you insert a new office. The region defaults to Eastern, the office manager to Sam
Clark (employee number 106), the sales to zero, and the target to NULL. Note that the
target would default to NULL even without the DEFAULT NULL specification.

Primary and Foreign Key Definitions
In addition to defining the columns of a table, the CREATE TABLE statement identifies
the table’s primary key and the table’s relationships to other tables in the database. The
PRIMARY KEY and FOREIGN KEY clauses handle these functions. These clauses have
been supported by the IBM SQL databases for some time and have been added to the
ANSI/ISO specification. Most major SQL products support them.

The PRIMARY KEY clause specifies the column or columns that form the primary key
for the table. Recall from Chapter 4 that this column (or column combination) serves as a
unique identifier for each row of the table. The DBMS automatically requires that the
primary key value be unique in every row of the table. In addition, the column definition
for every column in the primary key must specify that the column is NOT NULL.

The FOREIGN KEY clause specifies a foreign key in the table and the relationship
that it creates to another (parent) table in the database. The clause specifies:

� The column or columns that form the foreign key, all of which are columns of
the table being created.

� The table that is referenced by the foreign key. This is the parent table in the
relationship; the table being defined is the child.

� An optional name for the relationship. The name is not used in any SQL data
manipulation statements, but it may appear in error messages and is required
if you want to be able to drop the foreign key later.

� How the DBMS should treat a NULL value in one or more columns of the foreign
key, when matching it against rows of the parent table.

� An optional delete rule for the relationship (CASCADE, SET NULL, SET DEFAULT,
or NO ACTION as described in Chapter 11), which determines the action to take
when a parent row is deleted.
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� An optional update rule for the relationship as described in Chapter 11, which
determines the action to take when part of the primary key in a parent row
is updated.

� An optional check constraint, which restricts the data in the table so that its rows
meet a specified search condition.

Here is an expanded CREATE TABLE statement for the ORDERS table, which includes
a definition of its primary key and the three foreign keys that it contains:

Define the ORDERS table with its primary and foreign keys.

CREATE TABLE ORDERS

(ORDER_NUM INTEGER NOT NULL,

ORDER_DATE DATE NOT NULL,

CUST INTEGER NOT NULL,

REP INTEGER,

MFR CHAR(3) NOT NULL,

PRODUCT CHAR(5) NOT NULL,

QTY INTEGER NOT NULL,

AMOUNT MONEY NOT NULL,

PRIMARY KEY (ORDER_NUM),

CONSTRAINT PLACEDBY

FOREIGN KEY (CUST)

REFERENCES CUSTOMERS

ON DELETE CASCADE,

CONSTRAINT TAKENBY

FOREIGN KEY (REP)

REFERENCES SALESREPS

ON DELETE SET NULL,

CONSTRAINT ISFOR

FOREIGN KEY (MFR, PRODUCT)

REFERENCES PRODUCTS

ON DELETE RESTRICT)

Figure 13-2 shows the three relationships created by this statement and the names it
assigns to them. In general, it’s a good idea to assign a relationship name, because it
helps to clarify the relationship created by the foreign key. For example, each order was
placed by the customer whose number appears in the CUST column of the ORDERS
table. The relationship created by this column has been given the name PLACEDBY.

When the DBMS processes the CREATE TABLE statement, it checks each foreign key
definition against the definition of the table that it references. The DBMS makes sure
that the foreign key and the primary key of the referenced table agree in the number of
columns they contain and their data types. The referenced table must already be defined
in the database for this checking to succeed.

Note that the FOREIGN KEY clause also specifies the delete and update rules that
are to be enforced for the parent/child table relationship that it creates. Delete and
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update rules, and the actions that can trigger them, are described in Chapter 11. The
DBMS enforces the default rules (NO ACTION) if no rule is explicitly specified.

If you want to create two or more tables from a referential cycle (like the OFFICES
and SALESREPS tables in the sample database), you cannot include the foreign key
definition in the first CREATE TABLE statement because the referenced table does not
yet exist. The DBMS will reject the attempted CREATE TABLE statement with an error
saying that the table definition refers to an undefined table. Instead, you must create
the first table without its foreign key definition and add the foreign key later using the
ALTER TABLE statement. (The SQL2 standard and several of the major DBMS products
offer a different solution to this problem with the CREATE SCHEMA statement, which
creates an entire set of tables at once. This statement and the other database objects that
are included within a SQL2 schema are described later in the “SQL2 Schemas” section.)

Figure 13-2. Relationship names in the CREATE TABLE statement



Uniqueness Constraints
The SQL2 standard specifies that uniqueness constraints are also defined in the CREATE
TABLE statement, using the UNIQUE clause shown in Figure 13-1. Here is a CREATE TABLE
statement for the OFFICES table, modified to require unique CITY values:

Define the OFFICES table with a uniqueness constraint.

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER,

TARGET MONEY,

SALES MONEY NOT NULL,

PRIMARY KEY (OFFICE),

CONSTRAINT HASMGR

FOREIGN KEY (MGR)

REFERENCES SALESREPS

ON DELETE SET NULL,

UNIQUE (CITY))

If a primary key, foreign key, uniqueness constraint, or check constraint involves a
single column, the ANSI/ISO standard permits a shorthand form of the definition. The
primary key, foreign key, uniqueness constraint, or check constraint is simply added to
the end of the column definition, as shown in this example:

Define the OFFICES table with a uniqueness constraint (ANSI/ISO syntax).

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL PRIMARY KEY,

CITY VARCHAR(15) NOT NULL UNIQUE,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER REFERENCES SALESREPS,

TARGET MONEY,

SALES MONEY NOT NULL)

Several of the major DBMS brands, including SQL Server, Informix, Sybase, and
DB2, support this shorthand.

Check Constraints
Another SQL2 data integrity feature, the check constraint (described in Chapter 11) is
also specified in the CREATE TABLE statement. A check constraint specifies a check
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condition (identical in form to a search condition in a SQL query) that is checked every
time an attempt is made to modify the contents of the table (with an INSERT, UPDATE,
or DELETE statement). If the check condition remains TRUE after the modification, it is
allowed; otherwise, the DBMS disallows the attempt to modify the data and returns an
error. The following is a CREATE TABLE statement for the OFFICES table, with a very
simple check condition to make sure the TARGET for the office is greater than $0.00.

Define the OFFICES table with a uniqueness constraint.

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER,

TARGET MONEY,

SALES MONEY NOT NULL,

PRIMARY KEY (OFFICE),

CONSTRAINT HASMGR

FOREIGN KEY (MGR)

REFERENCES SALESREPS

ON DELETE SET NULL,

CHECK (TARGET >= 0.00))

You can optionally specify a name for the check constraint, which will be used by
the DBMS when it reports an error if the constraint is violated. Here is a slightly more
complex check constraint for the SALESREPS table to enforce the rule “Salespeople
whose hire date is later than January 1, 1988, shall not be assigned quotas higher than
$300,000.” The CREATE TABLE statement names this constraint QUOTA_CAP:

CREATE TABLE SALESREPS

(EMPL_NUM INTEGER NOT NULL,

NAME VARCHAR (15) NOT NULL,

.

.

.

CONSTRAINT WORKSIN

FOREIGN KEY (REP_OFFICE)

REFERENCES OFFICES

ON DELETE SET NULL

CONSTRAINT QUOTA_CAP CHECK ((HIRE_DATE < "01-JAN-88") OR

(QUOTA <= 300000)))

This check constraint capability is supported by many of the major DBMS brands.
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Physical Storage Definition *
The CREATE TABLE statement typically includes one or more optional clauses that specify
physical storage characteristics for a table. Generally, these clauses are used only by the
database administrator to optimize the performance of a production database. By their
nature, these clauses are very specific to a particular DBMS. Although they are of little
practical interest to most SQL users, the different physical storage structures provided by
various DBMS products illustrate their different intended applications and levels of
sophistication.

Most of the personal computer databases provide very simple physical storage
mechanisms. Many personal computer database products store an entire database within
a single Windows file, or use a separate Windows file for each database table. They may
also require that the entire table or database be stored on a single physical disk volume.

Multiuser databases typically provide more sophisticated physical storage schemes
to support improved database performance. For example, Ingres allows the database
administrator to define multiple named locations, which are physical directories where
database data can be stored. The locations can be spread across multiple disk volumes
to take advantage of parallel disk input/output operations. You can optionally specify
one or more locations for a table in the Ingres CREATE TABLE statement:

CREATE TABLE OFFICES (table-definition)

WITH LOCATION = (AREA1, AREA2, AREA3)

By specifying multiple locations, you can spread a table’s contents across several
disk volumes for greater parallel access to the table.

Sybase offers a similar approach, allowing the database administrator to specify
multiple named logical database devices that are used to store data. The correspondence
between Sybase’s logical devices and the actual physical disk drives of the computer
system is handled by a Sybase utility program, and not within the SQL language. The
Sybase CREATE DATABASE statement can then specify that a database should be stored
on one or more database devices:

CREATE DATABASE OPDATA

ON DBFILE1, DBFILE2, DBFILE3

Within a given database device, Sybase then allows the database administrator to
define logical segments, using one of the Sybase system-provided stored procedures.
Finally, a Sybase CREATE TABLE statement can specify the segment where a table’s
data is to be stored:

CREATE TABLE OFFICES (table-definition)

ON SEGMENT SEG1A
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DB2 offers a similarly comprehensive scheme for managing physical storage, based on
the concepts of tablespaces and nodegroups. A tablespace is a logical-level storage container,
whereas nodegroups are defined more specifically in terms of physical storage. When you
create a DB2 table, you can optionally assign it to a specific tablespace:

CREATE TABLE OFFICES (table-definition)

IN ADMINDB.OPSPACE

Unlike Sybase, DB2 puts most of the management of these storage entities within
the SQL language itself, through the CREATE TABLESPACE and CREATE NODEGROUP
statements. A consequence is that these statements include operating system–dependent
specifications of filenames and directories, which vary from one supported DB2 operating
system to another. Other clauses specify the DB2 buffer pool to be used, the overhead and
transfer rate of the storage medium, and other characteristics closely related to the physical
storage medium. DB2 uses this information in its performance optimization algorithms.

Removing a Table (DROP TABLE)
Over time, the structure of a database grows and changes. New tables are created to
represent new entities, and some old tables are no longer needed. You can remove an
unneeded table from the database with the DROP TABLE statement, shown in Figure 13-3.

The table name in the statement identifies the table to be dropped. Normally, you
will be dropping one of your own tables and will use an unqualified table name. With
proper permission, you can also drop a table owned by another user by specifying a
qualified table name. Here are some examples of the DROP TABLE statement:

The CUSTOMERS table has been replaced by two new tables, CUST_INFO and
ACCOUNT_INFO, and is no longer needed.

DROP TABLE CUSTOMERS

Sam gives you permission to drop his table, named BIRTHDAYS.

DROP TABLE SAM.BIRTHDAYS

When the DROP TABLE statement removes a table from the database, its definition
and all of its contents are lost. There is no way to recover the data, and you would have

Figure 13-3. DROP TABLE statement syntax diagram



380 S Q L : T h e C o m p l e t e R e f e r e n c e

to use a new CREATE TABLE statement to recreate the table definition. Because of its
serious consequences, you should use the DROP TABLE statement with care.

The SQL2 standard requires that a DROP TABLE statement include either CASCADE
or RESTRICT, which specifies the impact of dropping a table on other database objects
(such as views, described in Chapter 14) that depend on the table. If CASCADE is specified,
the DROP TABLE statement fails if other database objects reference the table. Most
commercial DBMS products accept the DROP TABLE statement with no option specified.

Changing a Table Definition (ALTER TABLE)
After a table has been in use for some time, users often discover that they want to store
additional information about the entities represented in the table. In the sample database,
for example, you might want to:

� Add the name and phone number of a key contact person to each row of the
CUSTOMERS table, as you begin to use it for contacting customers

� Add a minimum inventory-level column to the PRODUCTS table, so the database
can automatically alert you when stock of a particular product is low

� Make the REGION column in the OFFICES table a foreign key for a newly created
REGIONS table, whose primary key is the region name

� Drop the foreign key definition linking the CUST column in the ORDERS table to
the CUSTOMERS table, replacing it with two foreign key definitions linking the
CUST column to the newly created CUST_INFO and ACCOUNT_INFO tables

Each of these changes, and some others, can be handled with the ALTER TABLE
statement, shown in Figure 13-4. As with the DROP TABLE statement, you will normally
use the ALTER TABLE statement on one of your own tables. With proper permission,
however, you can specify a qualified table name and alter the definition of another
user’s table. As shown in the figure, the ALTER TABLE statement can:

� Add a column definition to a table

� Drop a column from a table

� Change the default value for a column

� Add or drop a primary key for a table

� Add or drop a new foreign key for a table

� Add or drop a uniqueness constraint for a table

� Add or drop a check constraint for a table

The clauses in Figure 13-4 are specified in the SQL standard. Many DBMS brands
lack support for some of these clauses or offer clauses unique to the DBMS, which
alters other table characteristics. The SQL2 standard restricts each ALTER TABLE
statement to a single table change. To add a column and define a new foreign key, for
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example, requires two separate ALTER TABLE statements. Several DBMS brands relax
this restriction and allow multiple action clauses in a single ALTER TABLE statement.

Adding a Column
The most common use of the ALTER TABLE statement is to add a column to an existing
table. The column definition clause in the ALTER TABLE statement is just like the one in the
CREATE TABLE statement, and it works the same way. The new column is added to the
end of the column definitions for the table, and it appears as the rightmost column in
subsequent queries. The DBMS normally assumes a NULL value for a newly added column
in all existing rows of the table. If the column is declared to be NOT NULLwith a default
value, the DBMS instead assumes the default value.

Note that you cannot simply declare the new column NOT NULL, because the DBMS
would assume NULL values for the column in the existing rows, immediately violating
the constraint! (When you add a new column, the DBMS doesn’t actually go through
all of the existing rows of the table adding a NULL or default value. Instead, it detects
the fact that an existing row is too short for the new table definition when the row is
retrieved, and extends it with a NULL or default value before displaying it or passing it
to your program.)

Some sample ALTER TABLE statements that add new columns are:

Add a contact name and phone number to the CUSTOMERS table.

ALTER TABLE CUSTOMERS

ADD CONTACT_NAME VARCHAR(30)

Figure 13-4. ALTER TABLE statement syntax diagram



ALTER TABLE CUSTOMERS

ADD CONTACT_PHONE CHAR(10)

Add a minimum inventory-level column to the PRODUCTS table.

ALTER TABLE PRODUCTS

ADD MIN_QTY INTEGER NOT NULL WITH DEFAULT 0

In the first example, the new columns will have NULL values for existing customers.
In the second example, the MIN_QTY column will have the value zero (0) for existing
products, which is appropriate.

When the ALTER TABLE statement first appeared in SQL implementations, the only
major structures within a table were the column definitions, and it was very clear what
the ADD clause meant. Since then, tables have grown to include primary and foreign
key definitions and constraints, and the ADD clauses for these types of objects specify
which type of object is being added. For consistency with these other ADD/DROP
clauses, the SQL2 standard includes the optional keyword COLUMN after the keyword
ADD. With this addition, the preceding example becomes:

Add a minimum inventory-level column to the PRODUCTS table.

ALTER TABLE PRODUCTS

ADD COLUMN MIN_QTY INTEGER NOT NULL WITH DEFAULT 0

Dropping a Column
The ALTER TABLE statement can be used to drop one or more columns from an existing
table when they are no longer needed. Here is an example that drops the HIRE_DATE
column from the SALESREPS table:

Drop a column from the SALESREPS table.

ALTER TABLE SALESREPS

DROP HIRE_DATE

The SQL2 standard forces you to issue a separate ALTER TABLE statement if you
want to drop several columns, but several of the major DBMS brands allow you to
drop multiple columns with a single statement.

Note that dropping a column can pose the same kinds of data-integrity issues that
were described in Chapter 11 for database update operations. For example, if you drop
a column that is a primary key in some relationship, the foreign key columns that refer
to the dropped column become invalid. A similar problem can arise if you drop a column
that is referenced in a check constraint—the column that provides the data value for
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checking the constraint is now gone. A similar problem is created in views that are
defined based on the dropped column.

The SQL2 standard deals with these issues the same way it handled the potential
data-integrity problems posed by DELETE and UPDATE statements—with a drop rule
(actually called a drop behavior in the standard) that operates just like the delete rules
and update rules. You can specify one of two drop rules:

� RESTRICT. If any other objects in the database (foreign keys, constraints, and so
on) depend on the column to be dropped, the ALTER TABLE statement fails with
an error and the column is not dropped.

� CASCADE. Any other objects in the database (foreign keys, constraints, and so
on) that depend on the column are also dropped as a cascaded effect of the ALTER
TABLE statement.

The CASCADE effect can cause quite dramatic changes in the database; therefore,
use it with care. It’s usually a better idea to use the RESTRICT mode (explicitly drop
the dependent foreign keys and constraints, using the appropriate ALTER or DROP
statements) before dropping the column.

Changing Primary and Foreign Keys
The other common use for the ALTER TABLE statement is to change or add primary
key and foreign key definitions for a table. Since primary key and foreign key support
is being provided in new releases of several SQL-based database systems, this form of
the ALTER TABLE statement is particularly useful. It can be used to inform the DBMS
about intertable relationships that already exist in a database, but which have not been
explicitly specified before.

Unlike column definitions, primary key and foreign key definitions can be added and
dropped from a table with the ALTER TABLE statement. The clauses that add primary key
and foreign key definitions are exactly the same as those in the CREATE TABLE statement,
and they work the same way. The clauses that drop a primary key or foreign key are
straightforward, as shown in the following examples. Note that you can drop a foreign key
only if the relationship that it creates was originally assigned a name. If the relationship
was unnamed, there is no way to specify it in the ALTER TABLE statement. In this case, you
cannot drop the foreign key unless you drop and re-create the table, using the procedure
described for dropping a column.

Here is an example that adds a foreign key definition to an existing table:

Make the REGION column in the OFFICES table a foreign key for the newly created
REGIONS table, whose primary key is the region name.

ALTER TABLE OFFICES

ADD CONSTRAINT INREGION

FOREIGN KEY (REGION)

REFERENCES REGIONS
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Here is an example of an ALTER TABLE statement that modifies a primary key. Note
that the foreign key corresponding to the original primary key must be dropped because
it is no longer a foreign key for the altered table:

Change the primary key of the OFFICES table.

ALTER TABLE SALESREPS

DROP CONSTRAINT WORKSIN

FOREIGN KEY (REP_OFFICE)

REFERENCES OFFICES

ALTER TABLE OFFICES

DROP PRIMARY KEY (CITY)

Constraint Definitions
The tables in a database define its basic structure, and in most early commercial SQL
products, the table definitions were the only specification of database structure. With
the advent of primary key/foreign key support in DB2 and in the SQL2 standard, the
definition of database structure was expanded to include the relationships among the
tables in a database. More recently, through the SQL2 standard and the evolution of
commercial products, the definition of database structure has expanded to include a
new area—database constraints that restrict the data that can be entered into the
database. The types of constraints, and the role that they play in maintaining database
integrity, are described in Chapter 11.

Four types of database constraints (uniqueness constraints, primary and foreign
key constraints, and check constraints) are closely associated with a single database
table. They are specified as part of the CREATE TABLE statement and can be modified
or dropped using the ALTER TABLE statement. The other two types of database integrity
constraints, assertions and domains, are created as stand-alone objects within a database,
independent of any individual table definition.

Assertions
An assertion is a database constraint that restricts the contents of the database as a
whole. Like a check constraint, an assertion is specified as a search condition. But
unlike a check constraint, the search condition in an assertion can restrict the contents
of multiple tables and the data relationships among them. For that reason, an assertion
is specified as part of the overall database definition, via a SQL2 CREATE ASSERTION
statement. Suppose you wanted to restrict the contents of the sample database so that
the total orders for any given customer may not exceed that customer’s credit limit.
You can implement that restriction with the statement:
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CREATE ASSERTION CREDLIMIT

CHECK ((CUSTOMERS.CUST_NUM = ORDERS.CUST) AND

(SUM (AMOUNT) <= CREDIT_LIMIT))

With the assertion named CREDLIMIT as part of the database definition, the DBMS
is required to check that the assertion remains true each time a SQL statement attempts
to modify the CUSTOMER or ORDERS tables. If you later determine that the assertion is
no longer needed, you can drop it using the DROP ASSERTION statement:

DROP ASSERTION CREDLIMIT

There is no SQL2 ALTER ASSERTION statement. To change an assertion definition,
you must drop the old definition and then specify the new one with a new CREATE
ASSERTION statement.

Domains
The SQL2 standard implements the formal concept of a domain as a part of a database
definition. As described in Chapter 11, a domain is a named collection of data values
that effectively functions as an additional data type, for use in database definitions. A
domain is created with a CREATE DOMAIN statement. Once created, the domain can be
referenced as if it were a data type within a column definition. Here is a CREATE
DOMAIN statement to define a domain named VALID_EMPL_IDS, which consists of
valid employee identification numbers in the sample database. These numbers are
three-digit integers in the range 101 to 999, inclusive:

CREATE DOMAIN VALID_EMPL_IDS INTEGER

CHECK (VALUE BETWEEN 101 AND 199)

If a domain is no longer needed, you can drop it using one of the forms of the SQL2
DROP DOMAIN statement:

DROP DOMAIN VALID_EMPL_IDS CASCADE

DROP DOMAIN VALID_EMPL_IDS RESTRICT

The CASCADE and RESTRICT drop rules operate just as they do for dropped columns.
If CASCADE is specified, any column defined in terms of the dropped domain will also be
automatically dropped from the database. If RESTRICT is specified, the attempt to drop the
domain will fail if any column definitions are based on it. You must first drop or alter the
column definitions so that they no longer depend on the domain before dropping it. This
provides an extra margin of safety against accidentally dropping columns (and more
importantly, the data that they contain).
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Aliases and Synonyms (CREATE/DROP ALIAS)
Production databases are often organized like the copy of the sample database shown in
Figure 13-5, with all of their major tables collected together and owned by the database
administrator. The database administrator gives other users permission to access the
tables, using the SQL security scheme described in Chapter 15. Recall, however, that you
must use qualified table names to refer to another user’s tables. In practice, this means
that every query against the major tables in Figure 13-5 must use qualified table names,
which makes queries like the following one long and tedious to type:

List the name, sales, office, and office sales for everyone.

SELECT NAME, OP_ADMIN.SALESREPS.SALES, OFFICE,

OP_ADMIN.OFFICES.SALES

FROM OP_ADMIN.SALESREPS, OP_ADMIN.OFFICES

To address this problem, many SQL DBMS products provide an alias or synonym
capability. A synonym is a name that you define that stands for the name of some other
table. In DB2, you create an alias using the CREATE ALIAS statement. (Older versions
of DB2 actually used a CREATE SYNONYM statement, and Oracle still uses this form of
the statement, but it has the same effect as the CREATE ALIAS statement.) If you were

Figure 13-5. Typical organization of a production database
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the user named George in Figure 13-5, for example, you might use this pair of CREATE
ALIAS statements:

Create synonyms for two tables owned by another user.

CREATE ALIAS REPS

FOR OP_ADMIN.SALESREPS

CREATE ALIAS OFFICES

FOR OP_ADMIN.OFFICES

Once you have defined a synonym or alias, you can use it just like a table name in
SQL queries. The previous query thus becomes:

SELECT NAME, REPS.SALES, OFFICE, OFFICES.SALES

FROM REPS, OFFICES

The use of aliases doesn’t change the meaning of the query, and you must still have
permission to access the other users’ tables. Nonetheless, synonyms simplify the SQL
statements you use and make it appear as if the tables were your own. If you decide
later that you no longer want to use the synonyms, they can be removed with the DROP
ALIAS statement:

Drop the synonyms created earlier.

DROP ALIAS REPS

DROP ALIAS OFFICES

Synonyms or aliases are supported by DB2, Oracle, and Informix. They are not
specified by the ANSI/ISO SQL standard.

Indexes (CREATE/DROP INDEX)
One of the physical storage structures that is provided by most SQL-based database
management systems is an index, which is a structure that provides rapid access to the
rows of a table based on the values of one or more columns. Figure 13-6 shows the
PRODUCTS table and two indexes that have been created for it. One of the indexes
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provides access based on the DESCRIPTION column. The other provides access based
on the primary key of the table, which is a combination of the MFR_ID and PRODUCT_
ID columns.

The DBMS uses the index as you might use the index of a book. The index stores data
values and pointers to the rows where those data values occur. In the index the data values
are arranged in ascending or descending order, so that the DBMS can quickly search
the index to find a particular value. It can then follow the pointer to locate the row
containing the value.

The presence or absence of an index is completely transparent to the SQL user who
accesses a table. For example, consider this SELECT statement:

Find the quantity and price for size 4 widgets.

Figure 13-6. Two indexes on the PRODUCTS table
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SELECT QTY_ON_HAND, PRICE

FROM PRODUCTS

WHERE DESCRIPTION = 'Size 4 Widget'

The statement doesn’t say whether there is an index on the DESCRIPTION column,
and the DBMS will carry out the query in either case.

If there were no index for the DESCRIPTION column, the DBMS would be forced to
process the query by sequentially scanning the PRODUCTS table, row by row, examining
the DESCRIPTION column in each row. To make sure it had found all of the rows that
satisfied the search condition, it would have to examine every row in the table. For a
large table with thousands or millions of rows, the scan of the table could take minutes
or hours.

With an index for the DESCRIPTION column, the DBMS can locate the requested
data with much less effort. It searches the index to find the requested value (“Size 4
widget”) and then follows the pointer to find the requested row(s) of the table. The
index search is very rapid because the index is sorted and its rows are very small.
Moving from the index to the row(s) is also very rapid because the index tells the
DBMS where on the disk the row(s) are located.

As this example shows, the advantage of having an index is that it greatly speeds
the execution of SQL statements with search conditions that refer to the indexed
column(s). One disadvantage of having an index is that it consumes additional disk
space. Another disadvantage is that the index must be updated every time a row is
added to the table and every time the indexed column is updated in an existing row.
This imposes additional overhead on INSERT and UPDATE statements for the table.

In general, it’s a good idea to create an index for columns that are used frequently
in search conditions. Indexing is also more appropriate when queries against a table
are more frequent than inserts and updates. Most DBMS products always establish an
index for the primary key of a table, because they anticipate that access to the table will
most frequently be via the primary key.

Most DBMS products also automatically establish an index for any column (or
column combination) defined with a uniqueness constraint. The DBMS must check the
value of such a column in any new row to be inserted, or in any update to an existing
row, to make certain that the value does not duplicate a value already contained in the
table. Without an index on the column(s), the DBMS would have to sequentially search
through every row of the table to check the constraint. With an index, the DBMS can
simply use the index to find a row (if it exists) with the value in question, which is a
much faster operation than a sequential search.

In the sample database, these columns are good candidates for additional indexes:

� The COMPANY column in the CUSTOMERS table should be indexed if customer
data is often retrieved by company name.

� The NAME column in the SALESREPS table should be indexed if data about
salespeople is often retrieved by salesperson name.
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� The REP column in the ORDERS table should be indexed if orders are frequently
retrieved based on the salesperson who took them.

� The CUST column in the ORDERS table should similarly be indexed if orders are
frequently retrieved based on the customer who placed them.

� The MFR and PRODUCT columns, together, in the ORDERS table should be indexed
if orders are frequently retrieved based on the product ordered.

The SQL2 standard doesn’t talk about indexes or how to create them. It treats
database indexes as an implementation detail, which is outside of the core, standardized
SQL language. However, the use of indexes is essential to achieve adequate performance
in any sizeable enterprise-class database.

In practice, most popular DBMS brands (including Oracle, Microsoft SQL Server,
Informix, Sybase, and DB2) support indexes through some form of the CREATE INDEX
statement, shown in Figure 13-7. The statement assigns a name to the index and specifies
the table for which the index is created. The statement also specifies the column(s) to be
indexed and whether they should be indexed in ascending or descending order. The DB2
version of the CREATE INDEX statement, shown in Figure 13-7, is the most straightforward.
Its only option is the keyword UNIQUE, which is used to specify that the combination of
columns being indexed must contain a unique value for every row of the table.

The following is an example of a CREATE INDEX statement that builds an index for
the ORDERS table based on the MFR and PRODUCT columns and that requires combinations
of columns to have a unique value.

Create an index for the ORDERS table.

CREATE UNIQUE INDEX ORD_PROD_IDX

ON ORDERS (MFR, PRODUCT)

Figure 13-7. Basic CREATE INDEX statement syntax diagram
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In most major DBMS products, the CREATE INDEX statement includes additional
DBMS-specific clauses that specify the disk location for the index and for performance-
tuning parameters. Typical performance parameters include the size of the index
pages, the percentage of free space that the index should allow for new rows, the type
of index to be created, whether it should be clustered (an arrangement that places the
physical data rows on the disk medium in the same sequence as the index), and so on.
These options make the CREATE INDEX statement quite DBMS-specific in actual use.

Some DBMS products support two or more different types of indexes, which are
optimized for different types of database access. For example, a B-tree index uses a tree
structure of index entries and index blocks (groups of index entries) to organize the data
values that it contains into ascending or descending order. This type of index provides
efficient searching for a single value or for a range of values, such as the search required
for an inequality comparison operator or a range test (BETWEEN) operation.

A different type of index, a hash index, uses a randomizing technique to place all
of the possible data values into a moderate number of buckets within the index. For
example, if there are 10,000,000 possible data values, an index with 500 hash buckets
might be appropriate. Since a given data value is always placed into the same bucket, the
DBMS can search for that value simply by locating the appropriate bucket and searching
within it. With 500 buckets, the number of items to be searched is reduced, on average,
by a factor of 500. This makes hash indexes very fast when searching for an exact match
of a data value. But the assignment of values to buckets does not preserve the order of
data values, so a hash index cannot be used for inequality or range searches.

Other types of indexes are appropriate for other specific DBMS situations. For
example, a variation of the B-tree index, known as a T-tree index, is optimized for
in-memory databases. A bit-map index is useful when there is a relatively small number
of possible data values. When a DBMS supports multiple index types, the CREATE
INDEX statement not only defines and creates the index, but defines its type as well.

If you create an index for a table and later decide that it is not needed, the DROP
INDEX statement removes the index from the database. The statement removes the
index created in the previous example:

Drop the index created earlier.

DROP INDEX ORD_PROD_IDX

Managing Other Database Objects
The CREATE, DROP, and ALTER verbs form the cornerstone of the SQL Data Definition
Language. Statements based on these verbs are used in all SQL implementations to
manipulate tables, indexes, and views (described in Chapter 14). Most of the popular
SQL-based DBMS products also use these verbs to form additional DDL statements
that create, destroy, and modify other database objects unique to that particular brand
of DBMS.



The Sybase DBMS, for example, pioneered the use of triggers and stored procedures,
which are treated as objects within a SQL database, along with its tables, assertions,
indexes, and other structures. Sybase added the CREATE TRIGGER and CREATE
PROCEDURE statements to its SQL dialect to define these new database structures, and
the corresponding DROP statements to delete them when no longer needed. As these
features became popular, other DBMS products added the capabilities, along with their
own variants of the CREATE TRIGGER and CREATE PROCEDURE statements.

The common conventions across DBMS brands is (a) the use of the CREATE/
DROP/ALTER verbs, (b) the next word in the statement is the type of object being managed,
and (c) the third word is the name of the object, which must obey SQL naming conventions.
Beyond the first three words, the statements become very DBMS-specific and nonstandard.
Nonetheless, this commonality gives a uniform feel to the various SQL dialects. At the very
least, it tells you where to look in the reference manual for a description of a new capability.
If you encounter a new SQL-based DBMS and know that it supports an object known as a
BLOB, the odds are that it uses CREATE BLOB, DROP BLOB, and ALTER BLOB statements.
Table 13-1 shows how some of the popular SQL products use the CREATE, DROP, and
ALTER verbs in their expanded DDL. The SQL2 standard adopts this same convention to
deal with the creation, destruction, and modification of all objects in a SQL2 database.
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SQL DDL Statements Managed Object

Supported by almost all DBMS brands

CREATE/DROP/ALTER TABLE Table

CREATE/DROP/ALTER VIEW View

CREATE/DROP/ALTER INDEX

Supported by DB2

CREATE/DROP ALIAS Alias for a table or view

CREATE/DROP/ALTER BUFFERPOOL Collection of I/O buffers used by DB2

CREATE/DROP DISTINCT TYPE Distinct user-defined data type

CREATE/DROP FUNCTION User-defined function

CREATE/DROP/ALTER NODEGROUP Group of database partitions or nodes

DROP PACKAGE DB2 program access module

CREATE/DROP PROCEDURE User-defined DB2 stored procedure

CREATE/DROP SCHEMA Database schema

Table 13-1. DDL Statements in Popular SQL-Based Products
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SQL DDL Statements Managed Object

CREATE/DROP/ALTER TABLESPACE Tablespace (storage area for DB2 data)

CREATE/DROP TRIGGER Database trigger

Supported by Informix

CREATE/DROP CAST Cast for converting data types

CREATE/DROP DATABASE Named Informix database

CREATE/DROP DISTINCT TYPE Distinct user-defined data type

CREATE/DROP FUNCTION User-defined function

CREATE/DROP OPAQUE TYPE User-defined opaque data type

CREATE/DROP OPCLASS User-defined disk storage access method

CREATE/DROP PROCEDURE User-defined Informix stored procedure

CREATE/DROP ROLE User role within the database

CREATE/DROP ROUTINE User-defined Informix stored procedure

CREATE/DROP ROW TYPE Named row type (object extension)

CREATE SCHEMA Database schema

CREATE/DROP SYNONYM Synonym (alias) for table or view

CREATE/DROP TRIGGER Database trigger

Supported by Microsoft SQL Server

CREATE/DROP/ALTER DATABASE Database

CREATE/DROP DEFAULT Default column value

CREATE/DROP/ALTER PROCEDURE SQL Server stored procedure

CREATE/DROP RULE Column integrity rule

CREATE SCHEMA Database schema

CREATE/DROP/ALTER TRIGGER Stored trigger

Supported by Oracle

CREATE/DROP CLUSTER Cluster of tables for performance tuning

CREATE DATABASE Named Oracle database

CREATE/DROP DATABASE LINK Network link for remote table access

Table 13-1. DDL Statements in Popular SQL-Based Products (continued)
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SQL DDL Statements Managed Object

CREATE/DROP DIRECTORY O/S directory for large object storage

CREATE/DROP/ALTER FUNCTION User-defined function

CREATE/DROP LIBRARY External functions callable from PL/SQL

CREATE/DROP/ALTER PACKAGE Group of sharable PL/SQL procedures

CREATE/DROP/ALTER PROCEDURE User-defined Oracle stored procedure

CREATE/DROP/ALTER PROFILE Limits on database resource usage

CREATE/DROP/ALTER ROLE User role within the database

CREATE/DROP/ALTER ROLLBACK
SEGMENT

Storage area for database recovery

CREATE SCHEMA Database schema

CREATE/DROP/ALTER SEQUENCE User-defined value sequence

CREATE/DROP/ALTER SNAPSHOT Table of read-only query results

CREATE/DROP SYNONYM Synonym (alias) for table or view

CREATE/DROP/ALTER TABLESPACE Tablespace (storage area for Oracle data)

CREATE/DROP/ALTER TRIGGER Database trigger

CREATE/DROP TYPE User-defined abstract data type

CREATE/DROP TYPE BODY Methods for an abstract data type

CREATE/DROP/ALTER USER Oracle user-id

Supported by Sybase

CREATE/DROP/ALTER DATABASE Database

CREATE/DROP DEFAULT Default column value

CREATE EXISTING TABLE Local copy of existing remote table

CREATE/DROP PROCEDURE Sybase stored procedure

CREATE/DROP/ALTER ROLE User role within the database

CREATE/DROP RULE Column integrity rule

CREATE SCHEMA Database schema

CREATE/DROP TRIGGER Stored trigger

Table 13-1. DDL Statements in Popular SQL-Based Products (continued)



C h a p t e r 1 3 : C r e a t i n g a D a t a b a s e 395
D

A
T
A

B
A

S
E

S
T
R

U
C

T
U

R
E

Database Structure
The SQL1 standard specified a simple structure for the contents of a database, shown in
Figure 13-8. Each user of the database has a collection of tables that are owned by that
user. Virtually all major DBMS products support this scheme, although some (particularly
those focused on special-purpose or embedded applications or personal computer
usage) do not support the concept of table ownership. In these systems, all of the tables
in a database are part of one large collection.

Although different brands of SQL-based database management systems provide the
same structure within a single database, there is wide variation in how they organize and

SQL DDL Statements Managed Object

Specified by the ANSI/ISO SQL standard

CREATE/DROP ASSERTION Schemawide check constraint

CREATE/DROP CHARACTER SET Extended character set

CREATE/DROP COLLATION Sorting sequence for character set

CREATE/DROP/ALTER DOMAIN Specification of valid data values

CREATE/DROP SCHEMA Database schema

CREATE/DROP TRANSLATION Conversion between character sets

Table 13-1. DDL Statements in Popular SQL-Based Products (continued)

Figure 13-8. SQL1 organization of a database



structure the various databases on a particular computer system. Some brands assume a
single systemwide database that stores all of the data on that system. Other DBMS
brands support multiple databases on a single computer, with each database identified
by name. Still other DBMS brands support multiple databases within the context of the
computer’s directory system.

These variations don’t change the way you use SQL to access the data within a
database. However, they do affect the way you organize your data—for example, do
you mix order processing and accounting data in one database, or do you divide it into
two databases? They also affect the way you initially gain access to the database—for
example, if there are multiple databases, you need to tell the DBMS which one you
want to use. To illustrate how various DBMS brands deal with these issues, suppose
the sample database were expanded to support a payroll and an accounting application,
in addition to the order-processing tasks it now supports.

Single-Database Architecture
Figure 13-9 shows a single-database architecture where the DBMS supports one
systemwide database. Mainframe and minicomputer databases (such as the mainframe
version of DB2 and Oracle) have historically tended to use this approach. Order processing,
accounting, and payroll data are all stored in tables within the database. The major
tables for each application are gathered together and owned by a single user, who is
probably the person in charge of that application on this computer.

An advantage of this architecture is that the tables in the various applications can easily
reference one another. The TIMECARDS table of the payroll application, for example, can
contain a foreign key that references the OFFICES table, and the applications can use that
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Figure 13-9. A single-database architecture
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relationship to calculate commissions. With proper permission, users can run queries that
combine data from the various applications.

A disadvantage of this architecture is that the database will grow huge over time as
more and more applications are added to it. A DB2 or Oracle database with several
hundred tables is common. The problems of managing a database of that size—performing
backups, recovering data, analyzing performance, and so on—usually require a full-time
database administrator.

In the single-database architecture, gaining access to the database is very
simple—there’s only one database, so no choices need to be made. For example, the
programmatic SQL statement that connects you to an Oracle database is CONNECT, and
users tend to speak in terms of connecting to Oracle, rather than connecting to a specific
database. (In fact, in this architecture, the database is usually associated with a single
running copy of the DBMS software, so in a very real sense, the user is connecting to
the DBMS.)

Oracle and DB2 installations frequently do run two separate databases, one for
production work and one for testing. Fundamentally, however, all production data is
collected into a single database.

Multidatabase Architecture
Figure 13-10 shows a multidatabase architecture where each database is assigned a
unique name. Sybase, Microsoft SQL Server, Ingres, and many others use this scheme.
As shown in the figure, each of the databases in this architecture is usually dedicated
to a particular application. When you add a new application, you will probably create
a new database.

The main advantage of the multidatabase architecture over the single-database
architecture is that it divides the data management tasks into smaller, more manageable
pieces. Each person responsible for an application can now be the database administrator
of his or her own database, with less worry about overall coordination. When it’s time
to add a new application, it can be developed in its own database, without disturbing
the existing databases. Users and programmers are also more likely to remember the
overall structure of their own databases.

The main disadvantage of the multidatabase architecture is that the individual
databases may become islands of information, unconnected to one another. Typically, a
table in one database cannot contain a foreign key reference to a table in a different
database. Often, the DBMS does not support queries across database boundaries, making
it impossible to relate data from two applications. If cross-database queries are supported,
they may impose substantial overhead or require the purchase of additional distributed
DBMS software from the DBMS vendor.

If a DBMS uses a multidatabase architecture and supports queries across databases,
it must extend the SQL table and column naming conventions. A qualified table name
must specify not only the owner of the table, but also which database contains the
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table. Typically, the DBMS extends the dot notation for table names by prefixing the
database name to the owner name, separated by a period (.). For example, in a Sybase
or SQL Server database, this table reference:

Figure 13-10. A multidatabase architecture
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OP.JOE.OFFICES

refers to the OFFICES table owned by the user JOE in the order-processing database
named OP, and the following query joins the SALESREPS table in the payroll database with
that OFFICES table:

SELECT OP.JOE.OFFICES.CITY, PAYROLL.GEORGE.SALESREPS.NAME

FROM OP.JOE.OFFICES, PAYROLL.GEORGE.SALESREPS

WHERE OP.JOE.OFFICES.MGR = PAYROLL.GEORGE.SALESREPS.EMPL_NUM

Fortunately, such cross-database queries are the exception rather than the rule, and
default database and user names can normally be used.

With a multidatabase architecture, gaining access to a database becomes slightly
more complex because you must tell the DBMS which database you want to use. The
DBMS’ interactive SQL program will often display a list of available databases or ask
you to enter the database name along with your user name and password to gain
access. For programmatic access, the DBMS generally extends the embedded SQL
language with a statement that connects the program to a particular database. The
Ingres form for connecting to the database named OP is:

CONNECT 'OP'

For Sybase and Microsoft SQL Server, the parallel statement is:

USE 'OP'

Multilocation Architecture
Figure 13-11 shows a multilocation architecture that supports multiple databases and
uses the computer system’s directory structure to organize them. Several of the earlier
minicomputer databases (including Rdb/VMS and Informix) used this scheme for
supporting multiple databases. As with the multidatabase architecture, each application
is typically assigned to its own database. As Figure 13-11 shows, each database has a
name, but it’s possible for two different databases in two different directories to have the
same name.

The major advantage of the multilocation architecture is flexibility. It is especially
appropriate in applications such as engineering and design, where many sophisticated
users of the computer system may all want to use several databases to structure their
own information. The disadvantages of the multilocation architecture are the same as
those of the multidatabase architecture. In addition, the DBMS typically doesn’t know
about all of the databases that have been created, which may be spread throughout the
system’s directory structure. There is no master database that keeps track of all the
databases, which makes centralized database administration very difficult.
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The multilocation architecture makes gaining access to a database more complex
once again, because both the name of the database and its location in the directory
hierarchy must be specified. The VAX SQL syntax for gaining access to an Rdb/VMS
database is the DECLARE DATABASE statement. For example, this DECLARE DATABASE
statement establishes a connection to the database named OP in the VAX/VMS directory
named SYS$ROOT:[DEVELOPMENT.TEST]:

DECLARE DATABASE

FILENAME 'SYS$ROOT:[DEVELOPMENT.TEST]OP'

If the database is in the user’s current directory (which is often the case), the statement
simplifies to:

DECLARE DATABASE

FILENAME 'OP'

Some of the DBMS brands that use this scheme allow you to have access to several
databases concurrently, even if they don’t support queries across database boundaries.
Again, the most common technique used to distinguish among the multiple databases
is with a superqualified table name. Since two databases in two different directories

Figure 13-11. A multilocation architecture
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can have the same name, it’s also necessary to introduce a database alias to eliminate
ambiguity. These VAX SQL statements open two different Rdb/VMS databases that
happen to have the same name:

DECLARE DATABASE OP1

FILENAME 'SYS$ROOT:[PRODUCTION\]OP'

DECLARE DATABASE OP2

FILENAME 'SYS$ROOT:[DEVELOPMENT.TEST]OP'

The statements assign the aliases OP1 and OP2 to the two databases, and these aliases
are used to qualify table names in subsequent VAX SQL statements.

As this discussion shows, there can be a tremendous variety in the way various
DBMS brands organize their databases and provide access to them. This area of SQL is
one of the most nonstandard, and yet it is often the first one that a user encounters when
trying to access a database for the first time. The inconsistencies also make it impossible
to transparently move programs developed for one DBMS to another, although the
conversion process is usually tedious rather than complex.

Databases on Multiple Servers
With the rise of database servers and local area networks, the notion of database location
embodied in the multilocation architecture is naturally extended to the notion of a physical
database server. In practice, most DBMS products today appear to be converging on a
multidatabase architecture, implemented within a physical server. At the highest level, a
database is associated with a named server on the network. Within the server, there can be
multiple named databases. The mapping of server names to physical server locations is
handled by the networking software. The mapping of database names to physical files or
file systems on a server is handled by the DBMS software.

Database Structure and the ANSI/ISO Standard
The ANSI/ISO SQL1 standard made a very strong distinction between the SQL Data
Manipulation Language and Data Definition Language, defining them effectively as two
separate languages. The standard did not require that the DDL statements be accepted by
the DBMS during its normal operation. One of the advantages of this separation of the
DML and DDL was that the standard permitted a static database structure like that used
by older hierarchical and network DBMS products, as shown in Figure 13-12.

The database structure specified by the SQL1 standard was fairly straightforward.
Collections of tables were defined in a database schema, associated with a specific user. In
Figure 13-12, the simple database has two schemas. One schema is associated with (the
common terminology is owned by) a user named Joe, and the other is owned by Mary.
Joe’s schema contains two tables, named PEOPLE and PLACES. Mary’s schema also
contains two tables, named THINGS and PLACES. Although the database contains two
tables named PLACES, it’s possible to tell them apart because they have different owners.
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The SQL2 standard significantly extended the SQL1 notion of database definition
and database schemas. As previously noted, the SQL2 standard requires that data
definition statements be executable by an interactive SQL user or by a SQL program.
With this capability, changes to the database structure can be made at any time, not just
when the database is created. In addition, the SQL1 concepts of schemas and users
(officially called authorization-ids in the standard) is significantly expanded. Figure 13-13
shows the high-level database structure specified by the SQL2 standard.

The highest-level database structure described by the SQL2 standard is the SQL-
environment. This is a conceptual collection of the database entities associated with a

Figure 13-12. A DBMS with static DDL
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DBMS implementation that conforms to the SQL2 standard. The standard doesn’t
specify how a SQL-environment is created; that depends on the particular DBMS
implementation. The standard defines these components of a SQL-environment:

� DBMS software that conforms to the SQL2 standard.

� Named users (called authorization-ids in the standard) who have the privileges
to perform specific actions on the data and structures within the database.

� Program modules that are used to access the database. The SQL2 standard
specifies the actual execution of SQL statements in terms of a module language,
which in practice is not used by most major commercial SQL products. No
matter how the SQL programs are actually created, however, the standard says
that, conceptually, the SQL-environment includes the program’s database
access code.

� Catalogs that describe the structure of the database. SQL1-style database schemas
are contained within these catalogs.

� Database data, which is managed by the DBMS software, accessed by the users
through the programs, and whose structure is described in the catalogs. Although
the standard conceptually describes the data as outside of the catalog structure,
it’s common to think of data as being contained in a table that is in a schema,
which is in a catalog.

Figure 13-13. SQL2 database structure
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SQL2 Catalogs
Within a SQL-environment, the database structure is defined by one or more named
catalogs. The word “catalog” in this case is used in the same way that it has historically
been used on mainframe systems—to describe a collection of objects (usually files). On
minicomputer and personal computer systems, the concept is roughly analogous to a
directory. In the case of a SQL2 database, the catalog is a collection of named database
schemas. The catalog also contains a set of system tables (confusingly, often called the
system catalog) that describe the structure of the database. The catalog is thus a self-
describing entity within the database. This characteristic of SQL2 catalogs (which is
provided by all major SQL products) is described in detail in Chapter 16.

The SQL2 standard describes the role of the catalog and specifies that a SQL-
environment may contain one or more (actually zero or more) catalogs, each of which
must have a distinct name. It explicitly says that the mechanism for creating and
destroying catalogs is implementation-defined. The standard also says that the extent
to which a DBMS allows access across catalogs is implementation defined. Specifically,
whether a single SQL statement can access data from multiple catalogs, whether a
single SQL transaction can span multiple catalogs, or even whether a single user
session with the DBMS can cross catalog boundaries are all implementation-defined
characteristics.

The standard says that when a user or program first establishes contact with a
SQL-environment, one of its catalogs is identified as the default catalog for the session.
(Again, the way in which this catalog is selected is implementation-defined.) During the
course of a session, the default catalog can be changed with the SET CATALOG statement.

SQL2 Schemas
The SQL2 schema is the key high-level container for objects in a SQL2 database structure.
A schema is a named entity within the database and includes the definitions for the
following:

� Tables. Along with their associated structures (columns, primary and foreign
keys, table constraints, and so on), tables remain the basic building blocks of a
database in a SQL2 schema.

� Views. These are virtual tables, derived from the actual tables defined in the
schema, as described in Chapter 14.

� Domains. Function like extended data types for defining columns within the
tables of the schema, as described in Chapter 11.

� Assertions. These database integrity constraints restrict the data relationships
across tables within the schema, as described earlier in the section “Assertions.”

� Privileges. Database privileges control the capabilities that are given to various
users to access and update data in the database and to modify the database
structure. The SQL security scheme created by these privileges is described in
Chapter 14.
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� Character sets. Databases support international languages and manage the
representation of non-Roman characters in those languages (for example, the
diacritical accent marks used by many European languages or the 2-byte
representations of the word-symbols used in many Asian languages) through
character sets defined by the schema.

� Collations. Work hand-in-hand with character sets, defining the sorting sequence
for a character set.

� Translations. Control how text data is converted from one character set to another
and how comparisons are made of text data from different character sets.

A schema is created with the CREATE SCHEMA statement, shown in Figure 13-14.
Here is a simple SQL2 schema definition for the simple two-table schema for the user
JOE shown in Figure 13-12:

CREATE SCHEMA JSCHEMA AUTHORIZATION JOE

CREATE TABLE PEOPLE

(NAME VARCHAR(30),

AGE INTEGER)

CREATE TABLE PLACES

(CITY VARCHAR(30),

STATE VARCHAR(30))

GRANT ALL PRIVILEGES

ON PEOPLE

TO PUBLIC

GRANT SELECT

ON PLACES

TO MARY

The schema defines the two tables and gives certain other users permission to
access them. It doesn’t define any additional structures, such as views or assertions.
Note that the CREATE TABLE statements within the CREATE SCHEMA statement are
legitimate SQL statements in their own right. If you type them into an interactive SQL
program, the DBMS will create the specified tables in the current default schema for your
interactive SQL session, according to the standard.

Note that in SQL2, the schema structure is related to, but independent of, the
user-id structure. A given user can be the owner of several different named schemas.
For backward compatibility with the SQL1 standard, however, the SQL2 standard
allows you to create a schema with:

� Both a schema name and a user-id (as in the last example).

� Only a schema name. In this case, the user who executes the CREATE SCHEMA
statement automatically becomes the owner of the schema.



406 S Q L : T h e C o m p l e t e R e f e r e n c e

� Only a user-id. In this case, the schema name becomes the user-id. This
conforms to the SQL1 standard, and to the practice of many commercial DBMS
products where there was conceptually one schema per user.

A SQL2 schema that is no longer needed can be dropped using the DROP SCHEMA
statement, shown in Figure 13-15. The statement requires that you specify one of the
drop rules previously described for dropping columns—either CASCADE or RESTRICT.
If you specify CASCADE, then all of the structures within the schema definition (tables,
views, assertions, and so on) are automatically dropped. If you specify RESTRICT, the
statement will not succeed if any of these structures are remaining within the schema.
Effectively, the RESTRICT rule forces you to first drop the individual tables, views, and
other structures within the schema before dropping the schema itself. This is a
protection against accidentally dropping a schema that contains data or database
definitions of value. No ALTER SCHEMA table is specified by the SQL2 standard.
Instead, you can individually alter the definitions of the structures within a schema,
using statements like ALTER TABLE.

Figure 13-14. CREATE SCHEMA statement syntax diagram
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At any time while a user or program is accessing a SQL2 database, one of its
schemas is identified as the default schema. Any DDL statements that you execute to
create, drop, or alter schema structures implicitly apply to this schema. In addition, all
tables named in SQL2 data manipulation statements are assumed to be tables defined
within this default schema. The schema name implicitly qualifies the names of all
tables used in the SQL statements. As noted in Chapter 5, you can use a qualified table
name to refer to tables from other schemas. According to the SQL2 standard, the name
used to qualify the table name is the schema name. For example, if the sample database
were created as part of a schema named SALES, the qualified table name for the
OFFICES table would be:

SALES.OFFICES

If a SQL2 schema is created with just a user-id as the schema name, then the table
qualification scheme becomes exactly the simple one described in Chapter 5. The schema
name is the user name, and the qualified table name specifies this name before the dot.

The SQL2 CREATE SCHEMA statement has one other nonobvious advantage. You
may recall from the earlier discussion of the CREATE TABLE statement that you could
not easily create a referential cycle (two or more tables that refer to one another using
foreign key/primary key relationships). Instead, one of the tables had to be created
first without its foreign key definition, and then the foreign key definition had to be
added (with the ALTER TABLE statement) after the other table(s) had been created. The
CREATE SCHEMA statement avoids this problem, since the DBMS does not check the
referential integrity constraints specified by the schema until all of the tables it defines
have been created. In practice, the CREATE SCHEMA statement is generally used to
create a new set of interrelated tables for the first time. Subsequently, individual tables
are added, dropped, or modified using the CREATE/DROP/ALTER TABLE capabilities.

Many of the major DBMS brands have moved to adopt some form of the CREATE
SCHEMA statement, although there are significant variations across the brands. Oracle’s
CREATE SCHEMA statement allows you to create tables, views, and privileges, but not
the other SQL2 structures, and it requires that the schema name and the user name be
one and the same. Informix Universal Server follows a similar pattern, requiring a
user-id as the schema name and extending the objects within the schema to include
indexes, triggers, and synonyms. Sybase provides similar capabilities. In each case, the
offered capabilities conform to the SQL2 Entry level implementation requirements.

Figure 13-15. DROP SCHEMA statement syntax diagram



Summary
This chapter described the SQL Data Definition Language features that define and
change the structure of a database:

� The CREATE TABLE statement creates a table and defines its columns, primary
key, and foreign keys.

� The DROP TABLE statement removes a previously created table from the database.

� The ALTER TABLE statement can be used to add a column to an existing table
and to change primary key and foreign key definitions.

� The CREATE INDEX and DROP INDEX statements define indexes, which speed
database queries but add overhead to database updates.

� Most DBMS brands support other CREATE, DROP, and ALTER statements used
with DBMS-specific objects.

� The SQL2 standard specifies a database schema containing a collection of tables,
and the database schema is manipulated with CREATE SCHEMA and DROP SCHEMA
statements.

� Various DBMS brands use very different approaches to organizing the one or
more databases that they manage, and these differences affect the way you
design your databases and gain access to them.
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T
he tables of a database define the structure and organization of its data. However,
SQL also lets you look at the stored data in other ways by defining alternative
views of the data. A view is a SQL query that is permanently stored in the

database and assigned a name. The results of the stored query are visible through
the view, and SQL lets you access these query results as if they were, in fact, a real
table in the database.

Views are an important part of SQL for several reasons:

� Views let you tailor the appearance of a database so that different users see it
from different perspectives.

� Views let you restrict access to data, allowing different users to see only certain
rows or certain columns of a table.

� Views simplify database access by presenting the structure of the stored data in
the way that is most natural for each user.

This chapter describes how to create views and how to use views to simplify
processing and enhance the security of a database.

What Is a View?
A view is a virtual table in the database whose contents are defined by a query, as
shown in Figure 14-1. To the database user, the view appears just like a real table, with
a set of named columns and rows of data. But unlike a real table, a view does not exist
in the database as a stored set of data values. Instead, the rows and columns of data
visible through the view are the query results produced by the query that defines the
view. SQL creates the illusion of the view by giving the view a name like a table name
and storing the definition of the view in the database.

The view shown in Figure 14-1 is typical. It has been given the name REPDATA and
is defined by this two-table query:

SELECT NAME, CITY, REGION, QUOTA, SALESREPS.SALES

FROM SALESREPS, OFFICES

WHERE REP_OFFICE = OFFICE

The data in the view comes from the SALESREPS and OFFICES tables. These
tables are called the source tables for the view because they are the source of the data
that is visible through the view. This view contains one row of information for each
salesperson, extended with the name of the city and region where the salesperson
works. As shown in the figure, the view appears as a table, and its contents look just
like the query results that you would obtain if you actually ran the query.
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Once a view is defined, you can use it in a SELECT statement, just like a real table,
as in this query:

List the salespeople who are over quota, showing the name, city, and region for each
salesperson.

SELECT NAME, CITY, REGION

FROM REPDATA

WHERE SALES > QUOTA

Figure 14-1. A typical view with two source tables
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NAME         CITY         REGION

------------ ------------ --------

Mary Jones   New York     Eastern

Sam Clark    New York     Eastern

Dan Roberts  Chicago      Eastern

Paul Cruz    Chicago      Eastern

Bill Adams   Atlanta      Eastern

Sue Smith    Los Angeles  Western

Larry Fitch  Los Angeles  Western

The name of the view, REPDATA, appears in the FROM clause just like a table name,
and the columns of the view are referenced in the SELECT statement just like the
columns of a real table. For some views, you can also use the INSERT, DELETE, and
UPDATE statements to modify the data visible through the view, as if it were a real
table. Thus, for all practical purposes, the view can be used in SQL statements as if it
were a real table.

How the DBMS Handles Views
When the DBMS encounters a reference to a view in a SQL statement, it finds the
definition of the view stored in the database. Then the DBMS translates the request that
references the view into an equivalent request against the source tables of the view and
carries out the equivalent request. In this way, the DBMS maintains the illusion of the
view while maintaining the integrity of the source tables.

For simple views, the DBMS may construct each row of the view on the fly, drawing
the data for the row from the source table(s). For more complex views, the DBMS must
actually materialize the view; that is, the DBMS must actually carry out the query that
defines the view and store its results in a temporary table. The DBMS fills your requests
for view access from this temporary table and discards the table when it is no longer
needed. Regardless of how the DBMS actually handles a particular view, the result is the
same for the user—the view can be referenced in SQL statements exactly as if it were a
real table in the database.

Advantages of Views
Views provide a variety of benefits and can be useful in many different types of
databases. In a personal computer database, views are usually a convenience, defined
to simplify database requests. In a production database installation, views play a
central role in defining the structure of the database for its users and enforcing its
security. Views provide these major benefits:

� Security. Each user can be given permission to access the database only
through a small set of views that contain the specific data the user is authorized
to see, thus restricting the user’s access to stored data.



� Query simplicity. A view can draw data from several different tables and
present it as a single table, turning multitable queries into single-table queries
against the view.

� Structural simplicity. Views can give a user a personalized view of the
database structure, presenting the database as a set of virtual tables that make
sense for that user.

� Insulation from change. A view can present a consistent, unchanged image
of the structure of the database, even if the underlying source tables are split,
restructured, or renamed.

� Data integrity. If data is accessed and entered through a view, the DBMS
can automatically check the data to ensure that it meets specified integrity
constraints.

Disadvantages of Views
While views provide substantial advantages, there are also two major disadvantages to
using a view instead of a real table:

� Performance. Views create the appearance of a table, but the DBMS must still
translate queries against the view into queries against the underlying source
tables. If the view is defined by a complex multitable query, then even a simple
query against the view becomes a complicated join, and it may take a long time
to complete.

� Update restrictions. When a user tries to update rows of a view, the DBMS
must translate the request into an update on rows of the underlying source
tables. This is possible for simple views, but more complex views cannot be
updated; they are read-only.

These disadvantages mean that you cannot indiscriminately define views and
use them instead of the source tables. Instead, you must in each case consider the
advantages provided by using a view and weigh them against the disadvantages.

Creating a View (CREATE VIEW)
The CREATE VIEW statement, shown in Figure 14-2, is used to create a view. The
statement assigns a name to the view and specifies the query that defines the view.
To create the view successfully, you must have permission to access all of the tables
referenced in the query.

The CREATE VIEW statement can optionally assign a name to each column in the
newly created view. If a list of column names is specified, it must have the same number
of items as the number of columns produced by the query. Note that only the column
names are specified; the data type, length, and other characteristics of each column are
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derived from the definition of the columns in the source tables. If the list of column
names is omitted from the CREATE VIEW statement, each column in the view takes the
name of the corresponding column in the query. The list of column names must be
specified if the query includes calculated columns or if it produces two columns with
identical names.

Although all views are created in the same way, in practice, different types of views
are typically used for different purposes. The next few sections examine these types of
views and give examples of the CREATE VIEW statement.

Horizontal Views
A common use of views is to restrict a user’s access to only selected rows of a table.
For example, in the sample database, you may want to let a sales manager see only
the SALESREPS rows for salespeople in the manager’s own region. To accomplish
this, you can define two views, as follows:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (11, 12, 13)

Create a view showing Western region salespeople.

CREATE VIEW WESTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (21, 22)

Now you can give each sales manager permission to access either the EASTREPS
or the WESTREPS view, denying them permission to access the other view and the

Figure 14-2. The CREATE VIEW statement syntax diagram
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SALESREPS table itself. This effectively gives the sales manager a customized view of
the SALESREPS table, showing only salespeople in the appropriate region.

A view like EASTREPS or WESTREPS is often called a horizontal view. As shown in
Figure 14-3, a horizontal view slices the source table horizontally to create the view.
All of the columns of the source table participate in the view, but only some of its rows
are visible through the view. Horizontal views are appropriate when the source table
contains data that relates to various organizations or users. They provide a private
table for each user, composed only of the rows needed by that user.

Here are some more examples of horizontal views:

Define a view containing only Eastern region offices.

CREATE VIEW EASTOFFICES AS

SELECT *

FROM OFFICES

WHERE REGION = 'Eastern'

Figure 14-3. Two horizontal views of the SALESREPS table
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Define a view for Sue Smith (employee number 102) containing only orders placed by
customers assigned to her.

CREATE VIEW SUEORDERS AS

SELECT *

FROM ORDERS

WHERE CUST IN (SELECT CUST_NUM

FROM CUSTOMERS

WHERE CUST_REP = 102)

Define a view showing only those customers who have more than $30,000 worth of orders
currently on the books.

CREATE VIEW BIGCUSTOMERS AS

SELECT *

FROM CUSTOMERS

WHERE 30000.00 < (SELECT SUM(AMOUNT)

FROM ORDERS

WHERE CUST = CUST_NUM)

In each of these examples, the view is derived from a single source table. The view
is defined by a SELECT * query and therefore has exactly the same columns as the
source table. The WHERE clause determines which rows of the source table are visible
in the view.

Vertical Views
Another common use of views is to restrict a user’s access to only certain columns of
a table. For example, in the sample database, the order-processing department may
need access to the employee number, name, and office assignment of each salesperson,
because this information may be needed to process an order correctly. However, there
is no need for the order-processing staff to see the salesperson’s year-to-date sales or
quota. This selective view of the SALESREPS table can be constructed with the
following view:

Create a view showing selected salesperson information.

CREATE VIEW REPINFO AS

SELECT EMPL_NUM, NAME, REP_OFFICE

FROM SALESREPS

By giving the order-processing staff access to this view and denying access to the
SALESREPS table itself, access to sensitive sales and quota data is effectively restricted.



A view like the REPINFO view is often called a vertical view. As shown in Figure 14-4,
a vertical view slices the source table vertically to create the view. Vertical views are
commonly found where the data stored in a table is used by various users or groups of
users. They provide a private table for each user, composed only of the columns needed
by that user.

Here are some more examples of vertical views:

Define a view of the OFFICES table for the order-processing staff that includes the office’s
city, office number, and region.

CREATE VIEW OFFICEINFO AS

SELECT OFFICE, CITY, REGION

FROM OFFICES

C h a p t e r 1 4 : V i e w s 417
D

A
T
A

B
A

S
E

S
T
R

U
C

T
U

R
E

Figure 14-4. A vertical view of the SALESREPS table
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Define a view of the CUSTOMERS table that includes only customer names and their
assignment to salespeople.

CREATE VIEW CUSTINFO AS

SELECT COMPANY, CUST_REP

FROM CUSTOMERS

In each of these examples, the view is derived from a single source table. The select
list in the view definition determines which columns of the source table are visible in
the view. Because these are vertical views, every row of the source table is represented
in the view, and the view definition does not include a WHERE clause.

Row/Column Subset Views
When you define a view, SQL does not restrict you to purely horizontal or vertical
slices of a table. In fact, the SQL language does not include the notion of horizontal and
vertical views. These concepts merely help you to visualize how the view presents the
information from the source table. It’s quite common to define a view that slices a
source table in both the horizontal and vertical dimensions, as in this example:

Define a view that contains the customer number, company name, and credit limit of all
customers assigned to Bill Adams (employee number 105).

CREATE VIEW BILLCUST AS

SELECT CUST_NUM, COMPANY, CREDIT_LIMIT

FROM CUSTOMERS

WHERE CUST_REP = 105

The data visible through this view is a row/column subset of the CUSTOMERS table.
Only the columns explicitly named in the select list of the view and the rows that meet
the search condition are visible through the view.

Grouped Views
The query specified in a view definition may include a GROUP BY clause. This type of
view is called a grouped view, because the data visible through the view is the result
of a grouped query. Grouped views perform the same function as grouped queries;
they group related rows of data and produce one row of query results for each group,
summarizing the data in that group. A grouped view makes these grouped query
results into a virtual table, allowing you to perform further queries on them.
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Here is an example of a grouped view:

Define a view that contains summary order data for each salesperson.

CREATE VIEW ORD_BY_REP (WHO, HOW_MANY, TOTAL, LOW, HIGH, AVERAGE) AS

SELECT REP, COUNT(*), SUM(AMOUNT), MIN(AMOUNT), MAX(AMOUNT),

AVG(AMOUNT)

FROM ORDERS

GROUP BY REP

As this example shows, the definition of a grouped view always includes a column
name list. The list assigns names to the columns in the grouped view, which are derived
from column functions such as SUM() and MIN(). It may also specify a modified name
for a grouping column. In this example, the REP column of the ORDERS table becomes
the WHO column in the ORD_BY_REP view.

Once this grouped view is defined, it can be used to simplify queries. For example,
this query generates a simple report that summarizes the orders for each salesperson:

Show the name, number of orders, total order amount, and average order size for
each salesperson.

SELECT NAME, HOW_MANY, TOTAL, AVERAGE

FROM SALESREPS, ORD_BY_REP

WHERE WHO = EMPL_NUM

ORDER BY TOTAL DESC

NAME            HOW_MANY       TOTAL     AVERAGE

-------------- --------- ----------- -----------

Larry Fitch            7  $58,633.00   $8,376.14

Bill Adams             5  $39,327.00   $7,865.40

Nancy Angelli          3  $34,432.00  $11,477.33

Sam Clark              2  $32,958.00  $16,479.00

Dan Roberts            3  $26,628.00   $8,876.00

Tom Snyder             2  $23,132.00  $11,566.00

Sue Smith              4  $22,776.00   $5,694.00

Mary Jones             2   $7,105.00   $3,552.50

Paul Cruz              2   $2,700.00   $1,350.00

Unlike a horizontal or vertical view, the rows in a grouped view do not have a
one-to-one correspondence with the rows in the source table. A grouped view is
not just a filter on its source table that screens out certain rows and columns. It is a
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summary of the source tables; therefore, a substantial amount of DBMS processing is
required to maintain the illusion of a virtual table for grouped views.

Grouped views can be used in queries just like other, simpler views. A grouped
view cannot be updated, however. The reason should be obvious from the example.
What would it mean to update the average order size for salesrep number 105? Because
each row in the grouped view corresponds to a group of rows from the source table,
and because the columns in the grouped view generally contain calculated data, there
is no way to translate the update request into an update against the rows of the source
table. Grouped views thus function as read-only views, which can participate in
queries but not in updates.

Grouped views are also subject to the SQL restrictions on nested column functions.
Recall from Chapter 8 that nested column functions, such as:

MIN(MIN(A))

are not legal in SQL expressions. Although the grouped view hides the column
functions in its select list from the user, the DBMS still knows about them and enforces
the restriction. Consider this example:

For each sales office, show the range of average order sizes for all salespeople who work in
the office.

SELECT REP_OFFICE, MIN(AVERAGE), MAX(AVERAGE)

FROM SALESREPS, ORD_BY_REP

WHERE EMPL_NUM = WHO

GROUP BY REP_OFFICE

Error: Nested column function reference

This query produces an error, even though it appears perfectly reasonable. It’s a
two-table query that groups the rows of the ORD_BY_REP view based on the office to
which the salesperson is assigned. But the column functions MIN() and MAX() in the
select list cause a problem. The argument to these column functions, the AVERAGE
column, is itself the result of a column function. The “actual” query being requested
from SQL is:

SELECT REP_OFFICE, MIN(AVG(AMOUNT)), MAX(AVG(AMOUNT))

FROM SALESREPS, ORDERS

WHERE EMPL_NUM = REP

GROUP BY REP

GROUP BY REP_OFFICE

This query is illegal because of the double GROUP BY and the nested column
functions. Unfortunately, as this example shows, a perfectly reasonable grouped



C h a p t e r 1 4 : V i e w s 421
D

A
T
A

B
A

S
E

S
T
R

U
C

T
U

R
E

SELECT statement may, in fact, cause an error if one of its source tables turns out to be
a grouped view. There’s no way to anticipate this situation; you must just understand
the cause of the error when SQL reports it to you.

Joined Views
One of the most frequent reasons for using views is to simplify multitable queries.
By specifying a two-table or three-table query in the view definition, you can create a
joined view that draws its data from two or three different tables and presents the query
results as a single virtual table. Once the view is defined, you can often use a simple
single-table query against the view for requests that would otherwise each require a
two-table or three-table join.

For example, suppose that Sam Clark, the vice president of sales, often runs queries
against the ORDERS table in the sample database. However, Sam doesn’t like to work
with customer and employee numbers. Instead, he’d like to be able to use a version of the
ORDERS table that has names instead of numbers. Here is a view that meets Sam’s needs:

Create a view of the ORDERS table with names instead of numbers.

CREATE VIEW ORDER_INFO (ORDER_NUM, COMPANY, REP_NAME, AMOUNT) AS

SELECT ORDER_NUM, COMPANY, NAME, AMOUNT

FROM ORDERS, CUSTOMERS, SALESREPS

WHERE CUST = CUST_NUM

AND REP = EMPL_NUM

This view is defined by a three-table join. As with a grouped view, the processing
required to create the illusion of a virtual table for this view is considerable. Each row
of the view is derived from a combination of one row from the ORDERS table, one row
from the CUSTOMERS table, and one row from the SALESREPS table.

Although it has a relatively complex definition, this view can provide some real
benefits. Here is a query against the view that generates a report of orders, grouped
by salesperson:

Show the total current orders for each company for each salesperson.

SELECT REP_NAME, COMPANY, SUM(AMOUNT)

FROM ORDER_INFO

GROUP BY REP_NAME, COMPANY

REP_NAME     COMPANY           SUM(AMOUNT)

------------ ---------------- ------------

Bill Adams   Acme Mfg.          $35,582.00

Bill Adams   JCP Inc.            $3,745.00

Dan Roberts  First Corp.         $3,978.00



Dan Roberts  Holm & Landis         $150.00

Dan Roberts  Ian & Schmidt      $22,500.00

Larry Fitch  Midwest Systems     $3,608.00

Larry Fitch  Orion Corp.         $7,100.00

Larry Fitch  Zetacorp           $47,925.00

.

.

.

Note that this query is a single-table SELECT statement, which is considerably
simpler than the equivalent three-table SELECT statement for the source tables:

SELECT NAME, COMPANY, SUM(AMOUNT)

FROM SALESREPS, ORDERS, CUSTOMERS

WHERE REP = EMPL_NUM

AND CUST = CUST_NUM

GROUP BY NAME, COMPANY

Similarly, it’s easy to generate a report of the largest orders, showing who placed
them and who received them, with this query against the view:

Show the largest current orders, sorted by amount.

SELECT COMPANY, AMOUNT, REP_NAME

FROM ORDER_INFO

WHERE AMOUNT > 20000.00

ORDER BY AMOUNT DESC

COMPANY                 AMOUNT REP_NAME

------------------ ----------- --------------

Zetacorp            $45,000.00 Larry Fitch

J.P. Sinclair       $31,500.00 Sam Clark

Chen Associates     $31,350.00 Nancy Angelli

Acme Mfg.           $27,500.00 Bill Adams

Ace International   $22,500.00 Tom Snyder

Ian & Schmidt       $22,500.00 Dan Roberts

The view makes it much easier to see what’s going on in the query than if it were
expressed as the equivalent three-table join. Of course, the DBMS must work just as
hard to generate the query results for the single-table query against the view as it
would to generate the query results for the equivalent three-table query. In fact,
the DBMS must perform slightly more work to handle the query against the view.
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However, for the human user of the database, it’s much easier to write and understand
the single-table query that references the view.

Updating a View
What does it mean to insert a row of data into a view, delete a row from a view, or
update a row of a view? For some views, these operations can obviously be translated
into equivalent operations against the source table(s) of the view. For example, consider
once again the EASTREPS view, defined earlier in this chapter:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (11, 12, 13)

This is a straightforward horizontal view, derived from a single source table. As
shown in Figure 14-5, it makes sense to talk about inserting a row into this view; it means
the new row should be inserted into the underlying SALESREPS table from which the
view is derived. It also makes sense to delete a row from the EASTREPS view; this
would delete the corresponding row from the SALESREPS table. Finally, updating a row
of the EASTREPS view makes sense; this would update the corresponding row of the
SALESREPS table. In each case, the action can be carried out against the corresponding
row of the source table, preserving the integrity of both the source table and the view.

However, consider the ORD_BY_REP grouped view, as it was defined earlier in
the section “Grouped Views”:
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Figure 14-5. Updating data through a view



Define a view that contains summary order data for each salesperson.

CREATE VIEW ORD_BY_REP (WHO, HOW_MANY, TOTAL, LOW, HIGH, AVERAGE) AS

SELECT REP, COUNT(*), SUM(AMOUNT), MIN(AMOUNT), MAX(AMOUNT),

AVG(AMOUNT)

FROM ORDERS

GROUP BY REP

There is no one-to-one correspondence between the rows of this view and the
rows of the underlying ORDERS table, so it makes no sense to talk about inserting,
deleting, or updating rows of this view. The ORD_BY_REP view is not updateable; it
is a read-only view.

The EASTREPS view and the ORD_BY_REP view are two extreme examples in terms
of the complexity of their definitions. There are views more complex than EASTREPS
where it still makes sense to update the view, and there are views less complex than
ORD_BY_REP where updates do not make sense. In fact, which views can be updated
and which cannot has been an important relational database research problem over
the years.

View Updates and the ANSI/ISO Standard
The ANSI/ISO SQL1 standard specifies the views that must be updateable in a database
that claims conformance to the standard. Under the standard, a view can be updated if
the query that defines the view meets all of these restrictions:

� DISTINCT must not be specified; that is, duplicate rows must not be eliminated
from the query results.

� The FROM clause must specify only one updateable table; that is, the view must
have a single source table for which the user has the required privileges. If the
source table is itself a view, then that view must meet these criteria.

� Each select item must be a simple column reference; the select list cannot contain
expressions, calculated columns, or column functions.

� The WHERE clause must not include a subquery; only simple row-by-row search
conditions may appear.

� The query must not include a GROUP BY or a HAVING clause.

The basic concept behind the restrictions is easier to remember than the rules
themselves.

For a view to be updateable, the DBMS must be able to trace any row of the view
back to its source row in the source table. Similarly, the DBMS must be able to trace
each individual column to be updated back to its source column in the source table.
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If the view meets this test, then it’s possible to define meaningful INSERT, DELETE,
and UPDATE operations for the view in terms of the source table(s).

View Updates in Commercial SQL Products
The SQL1 standard rules on view updates are very restrictive. Many views can be
theoretically updated but do not satisfy all of the restrictions. In addition, some views
can support some of the update operations but not others, and some views can support
updates on certain columns but not others. Most commercial SQL implementations
have view update rules that are considerably more permissive than the SQL1 standard.
For example, consider this view:

Create a view showing the sales, quota, and the difference between the two for
each salesperson.

CREATE VIEW SALESPERF (EMPL_NUM, SALES, QUOTA, DIFF) AS

SELECT EMPL_NUM, SALES, QUOTA, (SALES - QUOTA)

FROM SALESREPS

The SQL1 standard disallows all updates to this view because its fourth column is
a calculated column. However, note that each row in the view can be traced back to a
single row in the source table (SALESREPS). For this reason, DB2 (and several other
commercial SQL implementations) allows DELETE operations against this view. Further,
DB2 allows UPDATE operations on the EMPL_NUM, SALES, and QUOTA columns because
they are directly derived from the source table. Only the DIFF column cannot be
updated. DB2 does not allow the INSERT statement for the view because inserting a
value for the DIFF column would be meaningless.

The specific rules that determine whether a view can be updated vary from one
brand of DBMS to another, and they are usually fairly detailed. Some views, such as
those based on grouped queries, cannot be updated by any DBMS because the update
operations simply do not make sense. Other views may be updateable in one brand of
DBMS, partially updateable in another brand, and not updateable in a third brand. The
SQL2 standard recognized this and includes a broader definition of updateable views
along with considerable latitude for variation among DBMS brands. The best way to
find out about updateability of views in your particular DBMS is to consult the user’s
guide or experiment with different types of views.

Checking View Updates (CHECK OPTION)
If a view is defined by a query that includes a WHERE clause, only rows that meet the
search condition are visible in the view. Other rows may be present in the source
table(s) from which the view is derived, but they are not visible through the view. For
example, the EASTREPS view, described in the “Horizontal Views” section earlier in
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this chapter, contains only those rows of the SALESREPS table with specific values in
the REP_OFFICE column:

Create a view showing Eastern region salespeople.

CREATE VIEW EASTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (11, 12, 13)

This is an updateable view for most commercial SQL implementations. You can
add a new salesperson with this INSERT statement:

INSERT INTO EASTREPS (EMPL_NUM, NAME, REP_OFFICE, AGE, SALES)

VALUES (113, 'Jake Kimball', 11, 43, 0.00)

The DBMS will add the new row to the underlying SALESREPS table, and the row
will be visible through the EASTREPS view. But consider what happens when you add
a new salesperson with this INSERT statement:

INSERT INTO EASTREPS (EMPL_NUM, NAME, REP_OFFICE, AGE, SALES)

VALUES (114, 'Fred Roberts', 21, 47, 0.00)

This is a perfectly legal SQL statement, and the DBMS will insert a new row with
the specified column values into the SALESREPS table. However, the newly inserted
row doesn’t meet the search condition for the view. Its REP_OFFICE value (21)
specifies the Los Angeles office, which is in the Western region. As a result, if you
run this query immediately after the INSERT statement:

SELECT EMPL_NUM, NAME, REP_OFFICE

FROM EASTREPS

EMPL_NUM NAME          REP_OFFICE

--------- ------------ -----------

105 Bill Adams            13

109 Mary Jones            11

106 Sam Clark             11

104 Bob Smith             12

101 Dan Roberts           12

103 Paul Cruz             12
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the newly added row doesn’t show up in the view. The same thing happens if you
change the office assignment for one of the salespeople currently in the view. This
UPDATE statement:

UPDATE EASTREPS

SET REP_OFFICE = 21

WHERE EMPL_NUM = 104

modifies one of the columns for Bob Smith’s row and immediately causes it to
disappear from the view. Of course, both of the vanishing rows show up in a query
against the underlying table:

SELECT EMPL_NUM, NAME, REP_OFFICE

FROM SALESREPS

EMPL_NUM NAME            REP_OFFICE

--------- -------------- -----------

105 Bill Adams              13

109 Mary Jones              11

102 Sue Smith               21

106 Sam Clark               11

104 Bob Smith               21

101 Dan Roberts             12

110 Tom Snyder            NULL

108 Larry Fitch             21

103 Paul Cruz               12

107 Nancy Angelli           22

114 Fred Roberts            21

The fact that the rows vanish from the view as a result of an INSERT or UPDATE
statement is disconcerting, at best. You probably want the DBMS to detect and prevent
this type of INSERT or UPDATE from taking place through the view. SQL allows you
to specify this kind of integrity checking for views by creating the view with a check
option. The check option is specified in the CREATE VIEW statement, as shown in this
redefinition of the EASTREPS view:

CREATE VIEW EASTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (11, 12, 13)

WITH CHECK OPTION
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When the check option is requested for a view, SQL automatically checks each
INSERT and each UPDATE operation for the view to make sure that the resulting row(s)
meet the search criteria in the view definition. If an inserted or modified row would not
meet the condition, the INSERT or UPDATE statement fails, and the operation is not
carried out.

The SQL2 standard specifies one additional refinement to the check option: the
choice of CASCADED or LOCAL application of the check option. This choice applies
when a view is created, and its definition is based not on an underlying table, but on
one or more other views. The definitions of these underlying views might, in turn, be
based on still other views, and so on. Each of the underlying views might or might not
have the check option specified.

If the new view is created WITH CASCADED CHECK OPTION, any attempt to update
the view causes the DBMS to go down through the entire hierarchy of view definitions
on which it is based, processing the check option for each view where it is specified. If
the new view is created WITH LOCAL CHECK OPTION, then the DBMS checks only that
view; the underlying views are not checked. The SQL2 standard specifies CASCADED
as the default, if the WITH CHECK OPTION clause is used without specifying LOCAL
or CASCADED.

It’s probably clear from the discussion that the check option can add significant
overhead to the INSERT and UPDATE operations, especially if you are updating a view
that is defined based on several layers of underlying view definitions. However, the
check option plays an important role to ensure the integrity of the database. After all, if
the update was intended to apply to data not visible through the view or to effectively
switch a row of data from one view to another, then logically, the update should be
made through an underlying view or base table. When you create an updateable view
as part of a security scheme, it’s almost always a good idea to specify the check option.
It prevents modifications made through the view from affecting data that isn’t accessible
to the user in the first place.

Dropping a View (DROP VIEW)
Recall that the SQL1 standard treated the SQL Data Definition Language (DDL) as a
static specification of the structure of a database, including its tables and views. For
this reason, the SQL1 standard did not provide the ability to drop a view when it was
no longer needed. However, all major DBMS brands have provided this capability for
some time. Because views behave like tables and a view cannot have the same name
as a table, some DBMS brands used the DROP TABLE statement to drop views as well.
Other SQL implementations provided a separate DROP VIEW statement.

The SQL2 standard formalized support for dropping views through a DROP VIEW
statement. It also provides for detailed control over what happens when a user attempts
to drop a view when the definition of another view depends on it. For example, suppose
two views on the SALESREPS table have been created by these two CREATE VIEW
statements:



CREATE VIEW EASTREPS AS

SELECT *

FROM SALESREPS

WHERE REP_OFFICE IN (11, 12, 13)

CREATE VIEW NYREPS AS

SELECT *

FROM EASTREPS

WHERE REP_OFFICE = 11

For purposes of illustration, the NYREPS view is defined in terms of the EASTREPS
view, although it could just as easily have been defined in terms of the underlying
table. Under the SQL2 standard, the following DROP VIEW statement removes both of
the views from the database:

DROP VIEW EASTREPS CASCADE

The CASCADE option tells the DBMS to delete not only the named view, but also
any views that depend on its definition. In contrast, this DROP VIEW statement:

DROP VIEW EASTREPS RESTRICT

fails with an error, because the RESTRICT option tells the DBMS to remove the
view only if no other views depend on it. This provides an added precaution against
unintentional side-effects of a DROP VIEW statement. The SQL2 standard requires
that either RESTRICT or CASCADE be specified. But many commercial SQL products
support a version of the DROP VIEW statement without an explicitly specified option
for backward compatibility with earlier versions of their products released before the
publication of the SQL2 standard. The specific behavior of dependent views in this
case depends on the particular DBMS brand.

Materialized Views *
Conceptually, a view is a virtual table within a database. The row/column data in the
view is not physically stored in the database: it is derived from actual data in the
underlying source tables. If the view definition is relatively simple (for example, if the
view is a simple row/column subset of a single table, or a simple join based on foreign
key relationships), it is fairly easy for the DBMS to translate database operations on the
view into operations on the underlying tables. In this situation, the DBMS will perform
this translation on the fly, operation by operation as it processes database queries or
updates. In general, operations that update the database through a view (INSERT,
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UPDATE, or DELETE operations) will always be carried out in this way—by translating
the operation into one or more operations on the source tables.

If the view definition is more complicated, the DBMS may need to actually materialize
the view to carry out a query against it. That is, the DBMS will actually carry out the query
that defines the view and store the query results in a temporary table within the database.
Then the DBMS carries out the requested query against this temporary table to obtain
the requested results. When the query processing has finished, the DBMS discards the
temporary table. Figure 14-6 shows this materialization process. Clearly, materializing
the view contents can be a very high-overhead operation. If the typical database workload
contains many queries that require view materialization, the total throughput capacity of
the DBMS can be dramatically reduced.

To address this problem, some commercial DBMS products support materialized
views. When you define a view as a materialized view, the DBMS will carry out the query
that defines the view once (typically when the materialized view is defined), store the
results (i.e., the data that appears in the view) within the database, and then permanently
maintain this copy of the view data. To maintain the accuracy of the materialized view
data, the DBMS must automatically examine every change to the data in the underlying
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Figure 14-6. Materializing a view for query processing



source tables and make the corresponding changes in the materialized view data. When
the DBMS must process a query against the materialized view, it has the data already at
hand and can process the query very efficiently. Figure 14-7 shows DBMS operation with
a materialized view.

Materialized views provide a trade-off between the efficiency of updates on the data
contained in the view and the efficiency of queries on the view data. In a nonmaterialized
view, updates to the source tables for a view are unaffected by the view definition; they
proceed at normal DBMS processing speed. However, queries against a nonmaterialized
view are much less efficient than queries against ordinary database tables, since the DBMS
must do a great deal of on-the-fly work to process the queries.

Materialized views reverse this balance of work. When a materialized view is
defined, updates to the source tables for the view are much less efficient than updates
to ordinary database tables, since the DBMS must calculate the impact of the updates
and change the materialized view data accordingly. However, queries against a
materialized view can proceed at the same speed as queries against actual database
tables, since the materialized view is represented within the database in the same form
as a real table. Thus, a materialized view is most useful when the volume of updates to
the underlying data is relatively small, and the volume of queries against the view is
relatively high.
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Figure 14-7. Materialized view operation



Summary
Views allow you to redefine the structure of a database, giving each user a personalized
view of the database structure and contents:

� A view is a virtual table defined by a query. The view appears to contain
rows and columns of data, just like a real table, but the data visible through
the view is, in fact, the results of the query.

� A view can be a simple row/column subset of a single table, it can summarize
a table (a grouped view), or it can draw its data from two or more tables
(a joined view).

� A view can be referenced like a real table in a SELECT, INSERT, DELETE, or
UPDATE statement. However, more complex views cannot be updated; they
are read-only views.

� Views are commonly used to simplify the apparent structure of a database,
to simplify queries, and to protect certain rows and/or columns from
unauthorized access.

� Materialized views can improve the efficiency of database processing in
situations where there is a very high volume of query activity and relatively
low update activity.
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W
hen you entrust your data to a database management system, the security
of the stored data is a major concern. Security is especially important in an
SQL-based DBMS because interactive SQL makes database access very easy.

The security requirements of a typical production database are many and varied:

� The data in any given table should be accessible to some users, but access
by other users should be prevented.

� Some users should be allowed to update data in a particular table; others
should be allowed only to retrieve data.

� For some tables, access should be restricted on a column-by-column basis.

� Some users should be denied interactive SQL access to a table but should
be allowed to use application programs that update the table.

The SQL security scheme described in this chapter provides these types of protection
for data in a relational database.

SQL Security Concepts
Implementing a security scheme and enforcing security restrictions are the responsibility
of the DBMS software. The SQL language defines an overall framework for database
security, and SQL statements are used to specify security restrictions. The SQL security
scheme is based on three central concepts:

� Users. The actors in the database. Each time the DBMS retrieves, inserts,
deletes, or updates data, it does so on behalf of some user. The DBMS permits
or prohibits the action depending on which user is making the request.

� Database objects. The items to which SQL security protection can be applied.
Security is usually applied to tables and views, but other objects such as forms,
application programs, and entire databases can also be protected. Most users
will have permission to use certain database objects but will be prohibited from
using others.

� Privileges. The actions that a user is permitted to carry out for a given database
object. A user may have permission to SELECT and INSERT rows in a certain
table, for example, but may lack permission to DELETE or UPDATE rows of the
table. A different user may have a different set of privileges.

Figure 15-1 shows how these security concepts might be used in a security scheme
for the sample database.

To establish a security scheme for a database, you use the SQL GRANT statement to
specify which users have which privileges on which database objects. For example,
here is a GRANT statement that lets Sam Clark retrieve and insert data in the OFFICES
table of the sample database:
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Let Sam Clark retrieve and insert data in the OFFICES table.

GRANT SELECT, INSERT

ON OFFICES

TO SAM

The GRANT statement specifies a combination of a user-id (SAM), an object (the
OFFICES table), and privileges (SELECT and INSERT). Once granted, the privileges
can be rescinded later with this REVOKE statement:

Take away the privileges granted earlier to Sam Clark.

REVOKE SELECT, INSERT

ON OFFICES

FROM SAM

Figure 15-1. A security scheme for the sample database



The GRANT and REVOKE statements are described in detail later in this chapter, in
the sections “Granting Privileges” and “Revoking Privileges.”

User-Ids
Each user of a SQL-based database is typically assigned a user-id, a short name that
identifies the user to the DBMS software. The user-id is at the heart of SQL security.
Every SQL statement executed by the DBMS is carried out on behalf of a specific user-id.
The user-id determines whether the statement will be permitted or prohibited by the
DBMS. In a production database, user-ids are assigned by the database administrator.
A personal computer database may have only a single user-id, identifying the user who
created and who owns the database. In special-purpose databases (for example, those
designed to be embedded within an application or a special-purpose system), there may
be no need for the additional overhead associated with SQL security. These databases
typically operate as if there were a single user-id.

In practice, the restrictions on the names that can be chosen as user-ids vary from
implementation to implementation. The SQL1 standard permitted user-ids of up to 18
characters and required them to be valid SQL names. In some mainframe DBMS systems,
user-ids may have no more than eight characters. In Sybase and SQL Server, user-ids
may have up to 30 characters. If portability is a concern, it’s best to limit user-ids to eight
or fewer characters. Figure 15-2 shows various users who need access to the sample
database and typical user-ids assigned to them. Note that all of the users in the order-
processing department can be assigned the same user-id because they are to have
identical privileges in the database.
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Figure 15-2. User-id assignments for the sample database
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The ANSI/ISO SQL standard uses the term authorization-id instead of user-id, and
you will occasionally find this term used in other SQL documentation. Technically,
authorization-id is a more accurate term because the role of the ID is to determine
authorization or privileges in the database. There are situations, as in Figure 15-2, where
it makes sense to assign the same user-id to different users. In other situations, a single
person may use two or three different user-ids. In a production database, authorization-
ids may be associated with programs and groups of programs, rather than with human
users. In each of these situations, authorization-id is a more precise and less confusing
term than user-id. However, the most common practice is to assign a different user-id to
each person, and most SQL-based DBMS use the term user-id in their documentation.

User Authentication
The SQL standard specifies that user-ids provide database security; however, the specific
mechanism for associating a user-id with a SQL statement is outside the scope of the
standard because a database can be accessed in many different ways. For example, when
you type SQL statements into an interactive SQL utility, how does the DBMS determine
which user-id is associated with the statements? If you use a forms-based data entry or
query program, how does the DBMS determine your user-id? On a database server, a
report-generating program might be scheduled to run at a preset time every evening;
what is the user-id in this situation, where there is no human user? Finally, how are
user-ids handled when you access a database across a network, where your user-id
on the system where you are actively working might be different than the user-id
established on the system where the database resides?

Most commercial SQL implementations establish a user-id for each database session.
In interactive SQL, the session begins when you start the interactive SQL program, and
it lasts until you exit the program. In an application program using programmatic SQL,
the session begins when the application program connects to the DBMS, and it ends
when the application program terminates. All of the SQL statements used during the
session are associated with the user-id specified for the session.

Usually, you must supply both a user-id and an associated password at the
beginning of a session. The DBMS checks the password to verify that you are, in fact,
authorized to use the user-id that you supply. Although user-ids and passwords are
common across most SQL products, the specific techniques used to specify the user-id
and password vary from one product to another.

Some DBMS brands, especially those that are available on many different operating
system platforms, implement their own user-id/password security. For example, when
you use Oracle’s interactive SQL program, called SQLPLUS, you specify a user name
and associated password in the command that starts the program, like this:

SQLPLUS SCOTT/TIGER



The Sybase interactive SQL program, called ISQL, also accepts a user name and
password, using this command format:

ISQL /USER=SCOTT /PASSWORD=TIGER

In each case, the DBMS validates the user-id (SCOTT) and the password (TIGER)
before beginning the interactive SQL session.

Many other DBMS brands, including Ingres and Informix, use the user names of
the host computer’s operating system as database user-ids. For example, when you log
in to a UNIX-based computer system, you must supply a valid UNIX user name and
password to gain access. To start the Ingres interactive SQL utility, you simply give
the command:

ISQL SALESDB

where SALESDB is the name of the Ingres database you want to use. Ingres automatically
obtains your UNIX user name and makes it your Ingres user-id for the session. Thus, you
don’t have to specify a separate database user-id and password. DB2’s interactive SQL,
running under MVS/TSO, uses a similar technique. Your TSO login name automatically
becomes your DB2 user-id for the interactive SQL session.

SQL security also applies to programmatic access to a database, so the DBMS must
determine and authenticate the user-id for every application program that tries to
access the database. Again, the techniques and rules for establishing the user-id vary
from one brand of DBMS to another. For widely used utility programs, such as a data
entry or an inquiry program, it is common for the program to ask the user for a user-id
and password at the beginning of the session, via a screen dialog. For more specialized
or custom-written programs, the appropriate user-id may be obvious from the
application to be performed and hard-wired into the program.

The SQL2 standard also allows a program to use an authorization-id associated
with a specific set of SQL statements (called a module), rather than the user-id of the
particular person running the program. With this mechanism, a program may be
given the ability to perform very specific operations on a database on behalf of many
different users, even if those users are not otherwise authorized to access the target
data. This is a convenient capability that is finding its way into mainstream SQL
implementations. The specifics of SQL security for database access programs are
described in Chapter 17, which covers programmatic SQL.

User Groups
A large production database often has groups of users with similar needs. In the
sample database, for example, the three people in the order-processing department
form a natural user group, and the two people in the accounts receivable department
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form another natural group. Within each group, all of the users have identical needs
for data access and should have identical privileges.

Under the ANSI/ISO SQL security scheme, you can handle groups of users with
similar needs in one of two ways:

� You can assign the same user-id to every person in the group, as shown in
Figure 15-2. This scheme simplifies security administration because it allows
you to specify data access privileges once for the single user-id. However,
under this scheme, the people sharing the user-id cannot be distinguished
from one another in system operator displays and DBMS reports.

� You can assign a different user-id to every person in the group. This scheme lets
you differentiate between the users in reports produced by the DBMS, and it
lets you establish different privileges for the individual users later. However,
you must specify privileges for each user individually, making security
administration tedious and error-prone.

The scheme you choose depends on the trade-offs in your particular database and
application.

Several DBMS brands, including Sybase and SQL Server, offer a third alternative for
dealing with groups of similar users. They support group-ids, which identify groups of
related user-ids. Privileges can be granted both to individual user-ids and to group-ids,
and a user may carry out a database action if it is permitted by either the user-id or
group-id privileges. Group-ids thus simplify the administration of privileges given to
groups of users. However, they are nonstandard, and a database design using them
may not be portable to another DBMS brand.

DB2 also supports groups of users but takes a different approach. The DB2
database administrator can configure DB2 so that when you first connect to DB2 and
supply your user-id (known as your primary authorization-id), DB2 automatically looks
up a set of additional user-ids (known as secondary authorization-ids) that you may use.
When DB2 later checks your privileges, it checks the privileges for all of your
authorization-ids, primary and secondary. On an IBM mainframe system, the DB2
database administrator normally sets up the secondary authorization-ids so that they
are the same as the user group names used by ResourceAccess Control Facility (RACF),
the IBM mainframe security facility. Thus, the DB2 approach effectively provides
group-ids but does so without adding to the user-id mechanism.

Security Objects
SQL security protections apply to specific objects contained in a database. The SQL1
standard specified two types of security objects—tables and views. Thus, each table
and view can be individually protected. Access to a table or view can be permitted
for certain user-ids and prohibited for other user-ids. The SQL2 standard expanded
security protections to include other objects, including domains and user-defined
character sets, and added a new type of protection for table or view access.
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Most commercial SQL products support additional security objects. In a SQL Server
database, for example, a stored procedure is an important database object. The SQL
security scheme determines which users can create and drop stored procedures and
which users are allowed to execute them. In IBM’s DB2, the physical tablespaces where
tables are stored are treated as security objects. The database administrator can give
some user-ids permission to create new tables in a particular tablespace and deny
that permission to other user-ids. Other SQL implementations support other security
objects. However, the underlying SQL security scheme—of specific privileges applied
to specific objects, granted or revoked through the same SQL statements—is almost
universally applied.

Privileges
The set of actions that a user can carry out against a database object are called the privileges
for the object. The SQL1 standard specifies four basic privileges for tables and views:

� The SELECT privilege allows you to retrieve data from a table or view. With
this privilege, you can specify the table or view in the FROM clause of a SELECT
statement or subquery.

� The INSERT privilege allows you to insert new rows into a table or view. With
this privilege, you can specify the table or view in the INTO clause of an
INSERT statement.

� The DELETE privilege allows you to delete rows of data from a table or view.
With this privilege, you can specify the table or view in the FROM clause of a
DELETE statement.

� The UPDATE privilege allows you to modify rows of data in a table or view.
With this privilege, you can specify the table or view as the target table in an
UPDATE statement. The UPDATE privilege can be restricted to specific columns
of the table or view, allowing updates to these columns but disallowing updates
to any other columns.

These four privileges are supported by virtually all commercial SQL products.

SQL2 Extended Privileges
The SQL2 standard expanded the basic SQL1 privileges in several dimensions. It
added new capabilities to the SQL1 INSERT and UPDATE privileges. It added a new
REFERENCES privilege that restricts a user’s ability to create a reference to a table from
a foreign key in another table. It also added a new USAGE privilege that controls access
to the new SQL2 database structures of domains, character sets, collation sequences,
and translations.
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The SQL2 extensions to the INSERT and UPDATE privileges are straightforward.
These privileges may now be granted for a specific column or columns within a table,
instead of applying to the entire table. The sample database provides a simple example
of how this capability can be useful. Suppose you wanted to give your human resources
manager the responsibility to insert new employees into the SALESREPS table, once the
hiring paperwork is complete. The HR manager should supply the employee number,
name, and similar information. But it should be the responsibility of the sales VP to set
the QUOTA column for the new employee. Adjustments to the SALES column for existing
employees would be similarly restricted.

Using the new SQL2 capabilities, you could implement this scheme by giving the
HR manager INSERT privileges on the appropriate columns. The other columns (such
as SALES and QUOTA) for any newly inserted employees would initially have the NULL
value. With the UPDATE privilege on the other columns, the sales VP can then set the
appropriate quota. Without the ability to specify these privileges on specific columns,
you would have to either relax the restrictions on column access or define extraneous
views on the table simply to restrict access.

The SQL2 standard does not allow the SELECT privilege to be applied to specific
columns like the new INSERT and UPDATE capabilities; it must still be specified for an
entire table. Theoretically, this capability isn’t really needed, since you can achieve the
same effect by defining a view on the table, limiting the view to specific columns, and
then defining the appropriate privileges on the view. However, a column-specific
SELECT privilege can be a much more straightforward approach. It keeps the structure
of the database simpler (fewer view definitions) and concentrates the security scheme
more tightly in one place (the GRANT statements). Several major DBMS brands,
including Sybase and SQL Server, allow you to specify column-specific SELECT
privileges, using the same syntax as for the column-specific UPDATE and INSERT. The
SQL2 standard includes a note that this capability is also intended to be considered for
future updates of the standard.

The new SQL2 REFERENCES privilege deals with a more subtle SQL security issue
posed by the SQL2 capabilities of foreign keys and check constraints. Using the sample
database as an example, suppose an employee has the ability to create a new table in
the database (for example, a table containing new product information) but does not
have any access to the employee information in the SALESREPS table. You might assume,
given this security scheme, that there is no way for him to determine the employee
numbers being used or whether a new employee has been hired.

However, this isn’t strictly true. The employee could create a new table, with a
column that is defined as a foreign key to the SALESREPS table. (Recall that this means
the only legal values for this column are primary key values for the SALESREPS table—
that is, valid employee numbers.) With this new table, the employee can simply try
to insert new rows with different values in the foreign key column. The INSERT
statements that succeed tell the employee that that he has discovered a valid employee
number; those that fail represent invalid employee numbers.
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Even more serious problems can be created by a new table defined with a check
constraint on a column. For example, suppose the employee tries to execute this
CREATE TABLE statement:

CREATE TABLE XYZ (TRYIT MONEY,

CHECK ((SELECT QUOTA

FROM SALESREPS

WHERE TITLE = 'VP Sales')

BETWEEN 400000 AND 500000))

Because of the column constraint linked to a value from the SALESREPS table, if
this statement succeeds, it means the VP of sales has a quota in the specified range. If it
doesn’t, the employee can keep trying similar CREATE TABLE statements until he has
determined the appropriate quota.

To eliminate this backdoor access to data, the SQL2 standard specifies a new
REFERENCES privilege. Like the INSERT and UPDATE privileges, the REFERENCES
privilege is granted for specific columns of a table. Only if a user has the REFERENCES
privilege for a column is he or she allowed to create a new table that refers to that
existing column in any way (for example, as the target of a foreign key reference, or in
a check constraint, as in the previous examples). In databases that don’t yet implement
the REFERENCES privilege but do support foreign keys or check constraints, the SELECT
privilege is sometimes used in this role.

Finally, the SQL2 standard specifies the USAGE privilege to control access to domains
(sets of legal column values), user-defined character sets, collating sequences, and
translations. The USAGE privilege is a simple on/off switch that either allows or disallows
the use of these SQL2 database objects, by name, for individual user-ids. For example, with
the USAGE privilege on a domain, you can define a new table with a column whose data
type is defined as that domain. Without the privilege, you cannot create such a column
definition. These privileges are directed mostly toward simplifying administration of large
corporate databases that are used and modified by many different development teams.
They typically do not present the same kinds of security issues as the table and column
access privileges.

Ownership Privileges
When you create a table with the CREATE TABLE statement, you become its owner and
receive full privileges for the table (SELECT, INSERT, DELETE, UPDATE, and any other
privileges supported by the DBMS). Other users initially have no privileges on the
newly created table. If they are to be given access to the table, you must explicitly grant
privileges to them, using the GRANT statement.

When you create a view with the CREATE VIEW statement, you become the owner
of the view, but you do not necessarily receive full privileges on it. To create the view
successfully, you must already have the SELECT privilege on each of the source tables
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for the view; therefore, the DBMS gives you the SELECT privilege for the view
automatically. For each of the other privileges (INSERT, DELETE, and UPDATE), the
DBMS gives you the privilege on the view only if you hold that same privilege on
every source table for the view.

Other Privileges
Many commercial DBMS products offer additional table and view privileges beyond
the basic SELECT, INSERT, DELETE, and UPDATE privileges. For example, Oracle and
the IBM mainframe databases support an ALTER and an INDEX privilege for tables. A
user with the ALTER privilege on a particular table can use the ALTER TABLE statement
to modify the definition of the table; a user with the INDEX privilege can create an
index for the table with the CREATE INDEX statement. In DBMS brands that do not
support the ALTER and INDEX privileges, only the owner may use the ALTER TABLE
and CREATE INDEX statements.

Additional privileges are frequently supported for DBMS security objects other
than tables and views. For example, Sybase and SQL Server support an EXECUTE
privilege for stored procedures, which determines whether a user is allowed to execute
a stored procedure. DB2 supports a USE privilege for tablespaces, which determines
whether a user can create tables in a specific tablespace.

Views and SQL Security
In addition to the restrictions on table access provided by the SQL privileges, views
also play a key role in SQL security. By carefully defining a view and giving a user
permission to access the view but not its source tables, you can effectively restrict the
user’s access to only selected columns and rows. Views thus offer a way to exercise
very precise control over what data is made visible to which users.

For example, suppose you wanted to enforce this security rule in the sample
database:

Accounts receivable personnel should be able to retrieve employee numbers, names, and
office numbers from the SALESREPS table, but data about sales and quotas should not
be available to them.

You can implement this security rule by defining a view as follows:

CREATE VIEW REPINFO AS

SELECT EMPL_NUM, NAME, REP_OFFICE

FROM SALESREPS

and giving the SELECT privilege for the view to the ARUSER user-id, as shown in
Figure 15-3. This example uses a vertical view to restrict access to specific columns.
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Horizontal views are also effective for enforcing security rules such as this one:

The sales managers in each region should have full access to SALESREPS data for the
salespeople assigned to that region.

As shown in Figure 15-4, you can define two views, EASTVIEWS and WESTVIEWS,
containing SALESREPS data for each of the two regions, and then grant each office
manager access to the appropriate view.

Figure 15-3. Using a view to restrict column access
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Of course, views can be much more complex than the simple row and column
subsets of a single table shown in these examples. By defining a view with a grouped
query, you can give a user access to summary data but not to the detailed rows in the
underlying table. A view can also combine data from two or more tables, providing
precisely the data needed by a particular user and denying access to all other data. The
usefulness of views for implementing SQL security is limited by the two fundamental
restrictions described earlier in Chapter 14:

� Update restrictions. The SELECT privilege can be used with read-only views
to limit data retrieval, but the INSERT, DELETE, and UPDATE privileges are
meaningless for these views. If a user must update the data visible in a read-only
view, the user must be given permission to update the underlying tables and
must use INSERT, DELETE, and UPDATE statements that reference those tables.

� Performance. Because the DBMS translates every access to a view into a
corresponding access to its source tables, views can add significant overhead to
database operations. Views cannot be used indiscriminately to restrict database
access without causing overall database performance to suffer.

Figure 15-4. Using views to restrict row access
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Granting Privileges (GRANT)
The basic GRANT statement, shown in Figure 15-5, is used to grant security privileges
on database objects to specific users. Normally, the GRANT statement is used by the
owner of a table or view to give other users access to the data. As shown in the figure,
the GRANT statement includes a specific list of the privileges to be granted, the name
of the table to which the privileges apply, and the user-id to which the privileges
are granted.

The GRANT statement shown in the syntax diagram conforms to the ANSI/ISO SQL
standard. Many DBMS brands follow the DB2 GRANT statement syntax, which is more
flexible. The DB2 syntax allows you to specify a list of user-ids and a list of tables,
making it simpler to grant many privileges at once. Here are some examples of simple
GRANT statements for the sample database:

Give order-processing users full access to the ORDERS table.

GRANT SELECT, INSERT, DELETE, UPDATE

ON ORDERS

TO OPUSER

Figure 15-5. The GRANT statement syntax diagram



Let accounts receivable users retrieve customer data and add new customers to the
CUSTOMERS table, but give order-processing users read-only access.

GRANT SELECT, INSERT

ON CUSTOMERS

TO ARUSER

GRANT SELECT

ON CUSTOMERS

TO OPUSER

Allow Sam Clark to insert or delete an office.

GRANT INSERT, DELETE

ON OFFICES

TO SAM

For convenience, the GRANT statement provides two shortcuts that you can use when
granting many privileges or when granting them to many users. Instead of specifically
listing all of the privileges available for a particular object, you can use the keywords ALL
PRIVILEGES. This GRANT statement gives Sam Clark, the vice president of sales, full
access to the SALESREPS table:

Give all privileges on the SALESREPS table to Sam Clark.

GRANT ALL PRIVILEGES

ON SALESREPS

TO SAM

Instead of giving privileges to every user of the database one-by-one, you can use
the keyword PUBLIC to grant a privilege to every authorized database user. This
GRANT statement lets anyone retrieve data from the OFFICES table:

Give all users SELECT acces to the OFFICES table.

GRANT SELECT

ON OFFICES

TO PUBLIC

Note that this GRANT statement grants access to all present and future authorized
users, not just to the user-ids currently known to the DBMS. This eliminates the need
for you to explicitly grant privileges to new users as they are authorized.
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Column Privileges
The SQL1 standard allows you to grant the UPDATE privilege for individual columns of a
table or view, and the SQL2 standard allows a column list for INSERT and REFERENCES
privileges as well. The columns are listed after the UPDATE, INSERT, or REFERENCES
keyword and enclosed in parentheses. Here is a GRANT statement that allows the order-
processing department to update only the company name and assigned salesperson
columns of the CUSTOMERS table:

Let order-processing users change company names and salesperson assignments.

GRANT UPDATE (COMPANY, CUST_REP)

ON CUSTOMERS

TO OPUSER

If the column list is omitted, the privilege applies to all columns of the table or
view, as in this example:

Let accounts receivable users change any customer information.

GRANT UPDATE

ON CUSTOMERS

TO ARUSER

The ANSI/ISO standard does not permit a column list for the SELECT privilege;
it requires that the SELECT privilege apply to all of the columns of a table or view. In
practice, this isn’t a serious restriction. To grant access to specific columns, you first
define a view on the table that includes only those columns and then grant the SELECT
privilege only for the view. However, views defined solely for security purposes can
clog the structure of an otherwise simple database. For this reason, some DBMS brands
allow a column list for the SELECT privilege. For example, the following GRANT
statement is legal for the Sybase, SQL Server, and Informix DBMS brands:

Give accounts receivable users read-only access to the employee number, name, and sales
office columns of the SALESREPS table.

GRANT SELECT (EMPL_NUM, NAME, REP_OFFICE)

ON SALESREPS

TO ARUSER

This GRANT statement eliminates the need for the REPINFO view defined in
Figure 15-3, and in practice, it can eliminate the need for many views in a production
database. However, the use of a column list for the SELECT privilege is unique to certain
SQL dialects, and it is not permitted by the ANSI/ISO standard or by the IBM SQL products.
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Passing Privileges (GRANT OPTION)
When you create a database object and become its owner, you are the only person who
can grant privileges to use the object. When you grant privileges to other users, they are
allowed to use the object, but they cannot pass those privileges on to other users. In this
way, the owner of an object maintains very tight control both over who has permission to
use the object and over which forms of access are allowed.

Occasionally, you may want to allow other users to grant privileges on an object
that you own. For example, consider again the EASTREPS and WESTREPS views in the
sample database. Sam Clark, the vice president of sales, created these views and owns
them. He can give the Los Angeles office manager, Larry Fitch, permission to use the
WESTREPS view with this GRANT statement:

GRANT SELECT

ON WESTREPS

TO LARRY

What happens if Larry wants to give Sue Smith (user-id SUE) permission to access
the WESTREPS data because she is doing some sales forecasting for the Los Angeles
office? With the preceding GRANT statement, he cannot give her the required privilege.
Only Sam Clark can grant the privilege, because he owns the view.

If Sam wants to give Larry discretion over who may use the WESTREPS view, he
can use this variation of the previous GRANT statement:

GRANT SELECT

ON WESTREPS

TO LARRY

WITH GRANT OPTION

Because of the WITH GRANT OPTION clause, this GRANT statement conveys, along
with the specified privileges, the right to grant those privileges to other users.

Larry can now issue this GRANT statement:

GRANT SELECT

ON WESTREPS

TO SUE

which allows Sue Smith to retrieve data from the WESTREPS view. Figure 15-6
graphically illustrates the flow of privileges, first from Sam to Larry, and then from
Larry to Sue. Because the GRANT statement issued by Larry did not include the WITH
GRANT OPTION clause, the chain of permissions ends with Sue; she can retrieve the
WESTREPS data but cannot grant access to another user. However, if Larry’s grant of



privileges to Sue had included the GRANT OPTION, the chain could continue to another
level, allowing Sue to grant access to other users.

Alternatively, Larry might construct a view for Sue including only the salespeople
in the Los Angeles office and give her access to that view:

CREATE VIEW LAREPS AS

SELECT *

FROM WESTREPS

WHERE OFFICE = 21

GRANT ALL PRIVILEGES

ON LAREPS

TO SUE

Larry is the owner of the LAREPS view, but he does not own the WESTREPS
view from which this new view is derived. To maintain effective security, the DBMS
requires that Larry not only have the SELECT privilege on WESTREPS, but also requires
that he have the GRANT OPTION for that privilege before allowing him to grant the
SELECT privilege on LAREPS to Sue.

Once a user has been granted certain privileges with the GRANT OPTION, that user
may grant those privileges and the GRANT OPTION to other users. Those other users
can, in turn, continue to grant both the privileges and the GRANT OPTION. For this
reason, you should use great care when giving other users the GRANT OPTION. Note
that the GRANT OPTION applies only to the specific privileges named in the GRANT
statement. If you want to grant certain privileges with the GRANT OPTION and grant
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Figure 15-6. Using the GRANT OPTION



other privileges without it, you must use two separate GRANT statements, as in
this example:

Let Larry Fitch retrieve, insert, update, and delete data from the WESTREPS table,
and let him grant retrieval permission to other users.

GRANT SELECT

ON WESTREPS

TO LARRY

WITH GRANT OPTION

GRANT INSERT, DELETE, UPDATE

ON WESTREPS

TO LARRY

Revoking Privileges (REVOKE)
In most SQL-based databases, the privileges that you have granted with the GRANT
statement can be taken away with the REVOKE statement, shown in Figure 15-7.
The REVOKE statement has a structure that closely parallels the GRANT statement,
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Figure 15-7. The REVOKE statement syntax diagram
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specifying a specific set of privileges to be taken away, for a specific database object,
from one or more user-ids.

A REVOKE statement may take away all or some of the privileges that you
previously granted to a user-id. For example, consider this statement sequence:

Grant and then revoke some SALESREPS table privileges.

GRANT SELECT, INSERT, UPDATE

ON SALESREPS

TO ARUSER, OPUSER

REVOKE INSERT, UPDATE

ON SALESREPS

FROM OPUSER

The INSERT and UPDATE privileges on the SALESREPS table are first given to the
two users and then revoked from one of them. However, the SELECT privilege remains
for both user-ids. Here are some other examples of the REVOKE statement:

Take away all privileges granted earlier on the OFFICES table.

REVOKE ALL PRIVILEGES

ON OFFICES

FROM ARUSER

Take away UPDATE and DELETE privileges for two user-ids.

REVOKE UPDATE, DELETE

ON OFFICES

FROM ARUSER, OPUSER

Take away all privileges on the OFFICES that were formerly granted to all users.

REVOKE ALL PRIVILEGES

ON OFFICES

FROM PUBLIC

When you issue a REVOKE statement, you can take away only those privileges that
you previously granted to another user. That user may also have privileges that were
granted by other users; those privileges are not affected by your REVOKE statement.
Note specifically that if two different users grant the same privilege on the same object
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to a user and one of them later revokes the privilege, the second user’s grant will still
allow the user to access the object. This handling of overlapping grants of privileges
is illustrated in the following example sequence.

Suppose that Sam Clark, the sales vice president, gives Larry Fitch SELECT
privileges for the SALESREPS table and SELECT and UPDATE privileges for the
ORDERS table, using the following statements:

GRANT SELECT

ON SALESREPS

TO LARRY

GRANT SELECT, UPDATE

ON ORDERS

TO LARRY

A few days later George Watkins, the marketing vice president, gives Larry the
SELECT and DELETE privileges for the ORDERS table and the SELECT privilege for the
CUSTOMERS table, using these statements:

GRANT SELECT, DELETE

ON ORDERS

TO LARRY

GRANT SELECT

ON CUSTOMERS

TO LARRY

Note that Larry has received privileges on the ORDERS table from two different
sources. In fact, the SELECT privilege on the ORDERS table has been granted by both
sources. A few days later, Sam revokes the privileges he previously granted to Larry
for the ORDERS table:

REVOKE SELECT, UPDATE

ON ORDERS

FROM LARRY

After the DBMS processes the REVOKE statement, Larry still retains the SELECT
privilege on the SALESREPS table, the SELECT and DELETE privileges on the ORDERS
table, and the SELECT privilege on the CUSTOMERS table, but he has lost the UPDATE
privilege on the ORDERS table.



REVOKE and the GRANT OPTION
When you grant privileges with the GRANT OPTION and later revoke these privileges,
most DBMS brands will automatically revoke all privileges derived from the original
grant. Consider again the chain of privileges in Figure 15-6, from Sam Clark, the sales
vice president, to Larry Fitch, the Los Angeles office manager, and then to Sue Smith.
If Sam now revokes Larry’s privileges for the WESTREPS view, Sue’s privilege is
automatically revoked as well.

The situation gets more complicated if two or more users have granted privileges
and one of them later revokes the privileges. Consider Figure 15-8, a slight variation on
the last example. Here, Larry receives the SELECT privilege with the GRANT OPTION
from both Sam (the sales vice president) and George (the marketing vice president) and
then grants privileges to Sue. This time when Sam revokes Larry’s privileges, the grant
of privileges from George remains. Furthermore, Sue’s privileges also remain because
they can be derived from George’s grant.

However, consider another variation on the chain of privileges, with the events
slightly rearranged, as shown in Figure 15-9. Here, Larry receives the privilege with
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Figure 15-8. Revoking privileges granted by two users



the GRANT OPTION from Sam, grants the privilege to Sue, and then receives the grant,
with the GRANT OPTION, from George. This time when Sam revokes Larry’s privileges,
the results are slightly different, and they may vary from one DBMS to another. As in
Figure 15-8, Larry retains the SELECT privilege on the WESTREPS view because the
grant from George is still intact. But in a DB2 or SQL/DS database, Sue automatically
loses her SELECT privilege on the table. Why? Because the grant from Larry to Sue was
clearly derived from the grant from Sam to Larry, which has just been revoked. It could
not have been derived from George’s grant to Larry because that grant had not yet
taken place when the grant from Larry to Sue was made.

In a different brand of DBMS, Sue’s privileges might remain intact because the
grant from George to Larry remains intact. Thus, the time sequence of GRANT and
REVOKE statements, rather than just the privileges themselves, can determine how far
the effects of a REVOKE statement will cascade. Granting and revoking privileges with
the GRANT OPTION must be handled very carefully, to ensure that the results are those
you intend.
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Figure 15-9. Revoking privileges in a different sequence



REVOKE and the ANSI/ISO Standard
The SQL1 standard specified the GRANT statement as part of the SQL Data Definition
Language (DDL). Recall from Chapter 13 that the SQL1 standard treated the DDL as
a separate, static definition of a database and did not require that the DBMS permit
dynamic changes to database structure. This approach applies to database security as
well. Under the SQL1 standard, accessibility to tables and views in the database is
determined by a series of GRANT statements included in the database schema. There is
no mechanism for changing the security scheme once the database structure is defined.
The REVOKE statement is therefore absent from the SQL1 standard, just as the DROP
TABLE statement is missing from the standard.

Despite its absence from the SQL1 standard, the REVOKE statement was provided
by virtually all commercial SQL-based DBMS products since their earliest versions. As
with the DROP and ALTER statements, the DB2 dialect of SQL has effectively set the
standard for the REVOKE statement. The SQL2 standard includes a specification for
the REVOKE statement based on the DB2 statement with some extensions. One of the
extensions gives the user more explicit control over how privileges are revoked when
the privileges have, in turn, been granted to others. The other provides a way to revoke
the GRANT OPTION without revoking the privileges themselves.

To specify how the DBMS should handle the revoking of privileges that have been
in turn granted to others, the SQL2 standard requires that a CASCADE or RESTRICT
option be specified in a REVOKE statement. (A similar requirement applies to many of
the DROP statements in the SQL2 standard, as described in Chapter 13.) Suppose that
SELECT and UPDATE privileges have previously been granted to Larry on the ORDERS
table, with the GRANT OPTION, and that Larry has further granted these options to Bill.
Then this REVOKE statement:

REVOKE SELECT, UPDATE

ON ORDERS

FROM LARRY CASCADE

revokes not only Larry’s privileges, but Bill’s as well. The effect of the REVOKE statement
thus cascades to all other users whose privileges have flowed from the original GRANT.

Now, assume the same circumstances and this REVOKE statement:

REVOKE SELECT, UPDATE

ON ORDERS

FROM LARRY RESTRICT

In this case, the REVOKE fails. The RESTRICT option tells the DBMS not to execute
the statement if it will affect any other privileges in the database. The resulting error
calls the user’s attention to the fact that there are (possibly unintentional) side-effects of
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the REVOKE statement and allows the user to reconsider the action. If the user wants to
go ahead and revoke the privileges, the CASCADE option can be specified.

The SQL2 version of the REVOKE statement also gives a user more explicit, separate
control over privileges and the GRANT OPTION for those privileges. Suppose again that
Larry has been granted privileges on the ORDERS table, with the GRANT OPTION for
those privileges. The usual REVOKE statement for those privileges:

REVOKE SELECT, UPDATE

ON ORDERS

FROM LARRY

takes away both the privileges and the ability to grant those privileges to others. The
SQL2 standard permits this version of the REVOKE statement:

REVOKE GRANT OPTION FOR SELECT, UPDATE

ON ORDERS

FROM LARRY CASCADE

If the statement is successful, Larry will lose the ability to grant these privileges to
other users, but he will not lose the privileges themselves. As before, the SQL2 standard
requires the CASCADE or the RESTRICT option to specify how the DBMS should handle
the statement if Larry has, in turn, granted the GRANT OPTION to other users.

Summary
The SQL language is used to specify the security restrictions for a SQL-based database:

� The SQL security scheme is built around privileges (permitted actions) that can
be granted on specific database objects (such as tables and views) to specific
user-ids (users or groups of users).

� Views also play a key role in SQL security because they can be used to restrict
access to specific rows or specific columns of a table.

� The GRANT statement is used to grant privileges; privileges that you grant to a
user with the GRANT OPTION can in turn be granted by that user to others.

� The REVOKE statement is used to revoke privileges previously granted with the
GRANT statement.
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A
database management system must keep track of a great deal of information
about the structure of a database to perform its data management functions.
In a relational database, this information is typically stored in the system catalog,

a collection of system tables that the DBMS maintains for its own use. The information
in the system catalog describes the tables, views, columns, privileges, and other structural
features of the database.

Although the DBMS maintains the system catalog primarily for its own internal
purposes, the system tables or views based on them are usually accessible to database
users as well, through standard SQL queries. A relational database is thus self-describing;
using queries against the system tables, you can ask the database to describe its own
structure. General-purpose database front-ends, such as query tools and report writers,
use this self-describing feature to generate lists of tables and columns for user selection,
simplifying database access.

This chapter describes the system catalogs provided by several popular SQL-based
DBMS products and the information that the catalogs contain. It also describes the system
catalog capabilities specified by the ANSI/ISO SQL2 standard.

What Is the System Catalog?
The system catalog is a collection of special tables in a database that are owned, created,
and maintained by the DBMS itself. These system tables contain data that describes the
structure of the database. The tables in the system catalog are automatically created
when the database is created. They are usually gathered under a special system user-id
with a name like SYSTEM, SYSIBM, MASTER, or DBA.

The DBMS constantly refers to the data in the system catalog while processing SQL
statements. For example, to process a two-table SELECT statement, the DBMS must:

� Verify that the two named tables actually exist.

� Ensure that the user has permission to access them.

� Check whether the columns referenced in the query exist.

� Resolve any unqualified column names to one of the tables.

� Determine the data type of each column.

By storing structural information in system tables, the DBMS can use its own access
methods and logic to rapidly and efficiently retrieve the information it needs to perform
these tasks.

If the system tables were used only internally to the DBMS, they would be of little
interest to database users. However, the DBMS generally makes the system tables
available for user access as well. If the system tables themselves are not made available,
the DBMS generally provides views based on the system tables that offer a set of
user-retrievable catalog information. User queries against the system catalogs or views
are almost always permitted by personal computer and workgroup class databases.
These queries are also supported by mainframe and enterprise DBMS products, but
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the database administrator may restrict system catalog access to provide an additional
measure of database security. By querying the system catalogs, you can discover
information about the structure of a database, even if you have never used it before.

User access to the system catalog is read-only. The DBMS prevents users
from directly updating or modifying the system tables because such modifications
would destroy the integrity of the database. Instead, the DBMS itself takes care of
inserting, deleting, and updating rows of the system tables as it modifies the structure
of a database. Data Definition Language (DDL) statements such as CREATE, ALTER,
DROP, GRANT, and REVOKE produce changes in the system tables as a byproduct of
their actions. In some DBMS products, even DML statements that modify the database,
such as INSERT and DELETE, may produce changes in the system tables, which
keep track of how many rows are in each table.

The Catalog and Query Tools
One of the most important benefits of the system catalog is that it makes possible
user-friendly query tools, as shown in Figure 16-1. The objective of such tools is to
let users simply and transparently access the database without learning the SQL
language. Typically, a tool leads the user through a series of steps like this one:

1. The user gives a name and password for database access.

2. The query tool displays a list of available tables.

3. The user chooses a table, causing the query tool to display a list of the columns
it contains.

4. The user chooses columns of interest, perhaps by clicking their names as they
appear on a PC screen.

5. The user chooses columns from other tables or restricts the data to be retrieved
with a search condition.

6. The query tool retrieves the requested data and displays it on the user’s screen.

A general-purpose query tool like the one in Figure 16-1 will be used by many
different users, and it will be used to access many different databases. The tool cannot
possibly know in advance the structure of the database that it will access during any
given session. Thus, it must be able to dynamically learn about the tables and columns
of a database. The tool uses system catalog queries for this purpose.

The Catalog and the ANSI/ISO Standard
The ANSI/ISO SQL1 standard did not specify the structure and contents of the system
catalog. In fact, the SQL1 standard does not require a system catalog at all. However,
all of the major SQL-based DBMS products provide a system catalog in one form or
another. The structure of the catalog and the tables it contains vary considerably from
one brand of DBMS to another.



Because of the growing importance of general-purpose database tools that must
access the system catalog, the SQL2 standard includes a specification of a set of views
that provide standardized access to information typically found in the system catalog.
A DBMS system that conforms to the SQL2 standard must support these views, which
are collectively called the INFORMATION_SCHEMA. Because this schema is more complex
than the actual system catalogs used by commercial DBMS products, and is only slowly
being supported, it is described in a separate section near the end of this chapter titled
“The SQL2 Information Schema.”

Catalog Contents
Each table in the system catalog contains information about a single kind of structural
element in the database. Although the details vary, almost all commercial SQL products
include system tables that describe each of these five entities:

� Tables. The catalog describes each table in the database, identifying its table
name, its owner, the number of columns it contains, its size, and so on.
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Figure 16-1. A user-friendly query tool



� Columns. The catalog describes each column in the database, giving the
column’s name, the table to which it belongs, its data type, its size, whether
NULLs are allowed, and so on.

� Users. The catalog describes each authorized database user, including the
user’s name, an encrypted form of the user’s password, and other data.

� Views. The catalog describes each view defined in the database, including
its name, the name of its owner, the query that defines the view, and so on.

� Privileges. The catalog describes each set of privileges granted in the database,
including the names of the grantor and grantee, the privileges granted, the object
on which the privileges have been granted, and so on.

Table 16-1 shows the names of the system tables that provide this information in
each of the major SQL-based DBMS products. The remainder of this chapter describes
some typical system tables in more detail and gives examples of system catalog access.
Because of the wide variations in system catalogs among DBMS brands, a complete
description of the system catalogs and complete examples for all of the major DBMS
brands is beyond the scope of this book. With the information provided here, you should
be able to consult the system documentation for your DBMS brand and construct the
appropriate system catalog queries.
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DBMS Tables Columns Users Views Privileges

DB21 SCHEMATA
TABLES
REFERENCES
KEYCOLUSE

COLUMNS DBAUTH VIEWS
VIEWDEP

SCHEMAAUTH
TABAUTH
COLAUTH

Oracle USER_
CATALOG
USER_TABLES
ALL_TABLES
USER_
SYNONYMS

USER_TAB_
COLUMNS
ALL_TAB_
COLUMNS

ALL_USERS USER_VIEWS
ALL_VIEWS

USER_TAB_
PRIVS
USER_COL_
PRIVS
USER_SYS_
PRIVS

Informix SYSTABLES
SYSREFER
ENCES
SYSSYNONYMS

SYSCOLUMNS SYSUSERS SYSVIEWS
SYSDEPEND

SYSTABAUTH
SYSCOLAUTH

Table 16-1. Selected System Tables in Popular SQL-Based Products



Table Information
Each of the major SQL products has a system table or view that keeps track of the
tables in the database. In DB2, for example, this information is provided by a system
catalog view named SYSCAT.TABLES. (All of the DB2 system catalog views are part
of a schema named SYSCAT, so they all have qualified table/view names of the form
SYSCAT.xxx.)

Table 16-2 shows some of the columns of the SYSCAT.TABLES view. It contains
one row for each table, view, or alias defined in the database. The information in this
view is typical of that provided by the corresponding views in other major DBMS
products.
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DBMS Tables Columns Users Views Privileges

Sybase SYSDATA-
BASES
SYSOBJECTS
SYSKEYS

SYSCOLUMNS SYSUSERS SYSOBJECTS
SYSCOMMENTS

SQL
Server

SYSDATA-
BASES
SYSOBJECTS
SYSFOREIGN-
KEYS
SYSREFERENCES

SYSCOLUMNS SYSUSERS
SYSLOGINS
SYSMEMBERS

SYSOBJECTS
SYSDEPENDS
SYSCOMMENTS

SYSPROTECTS

1 DB2 tables have the qualifier SYSCAT (e.g., SYSCAT.TABLES).

Table 16-1. Selected System Tables in Popular SQL-Based Products (continued)

Column Name Data Type Information

TABSCHEMA CHAR(8) Schema containing the table, view, or alias

TABNAME VARCHAR(18) Name of the table, view, or alias

DEFINER CHAR(8) User-id of table/view/alias creator

TYPE CHAR(1) T = table, V = view, A = alias

Table 16-2. The SYSCAT.TABLES View (DB2)
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Column Name Data Type Information

STATUS CHAR(1) Status of object (system use)

BASE_TABSCHEMA CHAR(8) Schema of base table for an alias

BASE_TABNAME VARCHAR(18) Name of base table for an alias

CREATE_TIME TIMESTAMP Time of object creation

STATS_TIME TIMESTAMP Time when last statistics computed

COLCOUNT SMALLINT Number of columns in table

TABLEID SMALLINT Internal table-id number

TBSPACEID SMALLINT ID of primary tablespace for this table

CARD INTEGER Number of rows in table (cardinality)

NPAGES INTEGER Number of disk pages containing
table data

FPAGES INTEGER Total number of disk pages for table

OVERFLOW INTEGER Number of overflow records for table

TBSPACE VARCHAR(18) Primary tablespace for storing table data

INDEX_TBSPACE VARCHAR(18) Tablespace for storing table indexes

LONG_TBSPACE VARCHAR(18) Tablespace for storing large object data

PARENTS SMALLINT Number of parent tables for this table

CHILDREN SMALLINT Number of child tables for this table

SELFREFS SMALLINT Number of self-references for this table

KEYCOLUMNS SMALLINT Number of columns in table’s primary key

KEYINDEXID SMALLINT Internal ID for primary key index

KEYUNIQUE SMALLINT Number of unique constraints for table

CHECKCOUNT SMALLINT Number of check constraints for table

DATACAPTURE CHAR(1) Table is replicated? (Yes/No)

CONST_CHECKED CHAR(32) Constraint-checking flags

PMAP_ID SMALLINT Internal ID for table’s partitioning map

PARTITION_MODE CHAR(1) Mode for partitioned database tables

Table 16-2. The SYSCAT.TABLES View (DB2) (continued)



You can use queries like the following examples to find out information about the
tables in a DB2 database. Similar queries, using different table and column names, can
be used to obtain the same information from other DBMS brands.

List the names and owners of all tables in the database.

SELECT DEFINER, TABNAME

FROM SYSCAT.TABLES

WHERE TYPE = 'T'

List the names of all tables, views, and aliases in the database.

SELECT TABNAME

FROM SYSCAT.TABLES

List the names and creation times of only my tables.

SELECT TABNAME, CREATE_TIME

FROM SYSCAT.TABLES

WHERE TYPE = 'T'

AND DEFINER = USER

In an Oracle database, a pair of system views named USER_TABLES and
ALL_TABLES perform a similar function to the DB2 SYSCAT.TABLES view. The
USER_TABLES view contains one row for each database table that is owned by the
current user. The ALL_TABLES view contains one row for each table to which the
current user has access. The ALL_TABLES view thus will include all of the rows from
USER_TABLES, plus additional rows representing tables owned by other users to
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Column Name Data Type Information

LOG_ATTRIBUTE CHAR(1) Whether logging is initially enabled
for table

PCTFREE SMALLINT Percentage of page to reserve for
future data

REMARKS VARCHAR(254) User-provided comments for table

Table 16-2. The SYSCAT.TABLES View (DB2) (continued)



which the current user has been granted at least one of the access privileges. Here is a
typical query against these Oracle system catalog views:

List the names and owners of all tables to which I have access.

SELECT TABLE_NAME, OWNER

FROM ALL_TABLES

The SQL Server equivalent of the DB2 SYSCAT.TABLES view is a system table
named SYSOBJECTS, described in Table 16-3. The SYSOBJECTS table stores information
about SQL Server tables and views and other SQL Server objects such as stored procedures,
rules, and triggers. Note also how the SYSOBJECTS table uses an internal ID number
instead of a name to identify the table owner.

The Informix Universal Server system table that gives information about tables is
named SYSTABLES. Like the DB2 catalog, it contains information only about tables,
views, and aliases; other database objects are described in other system tables. Here is
a typical query against this Informix system table:

List the name, owner, and creation date of all tables in the database.

SELECT TABNAME, OWNER, CREATED

FROM SYSTABLES

WHERE TABTYPE = 'T'
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Column Name Data Type Information

Name SYSNAME Name of the object

Id INT Internal object ID number

Uid SMALLINT User-id of object owner

Type CHAR(2) Object type code1

crdate DATETIME Date/time object was created

deltrig INT Procedure ID of DELETE trigger

instrig INT Procedure ID of INSERT trigger

updtrig INT Procedure ID of UPDATE trigger

1 S = system table, U = user table, V = view, L = log, P = stored procedure, TR = trigger, and so on

Table 16-3. Selected Columns of the SYSOBJECTS Table (SQL Server)



As these examples show, the queries to obtain table information have a similar
structure across DBMS brands. However, the specific names of the system table(s) or
view(s) containing the information, and the relevant columns, vary considerably across
brands.

Column Information
All of the major SQL products have a system table that keeps track of the columns in
the database. There is one row in this table for each column in each table or view in the
database. Most DBMS brands restrict access to this base system table, but provide user
column information through a view that shows only columns in tables owned by, or
accessible to, the current user. In an Oracle database, two system catalog views provide
this information—USER_TAB_COLUMNS, which includes one row for each column in
each table owned by the current user, and ALL_TAB_COLUMNS, which contains one row
for each column in each table accessible to the current user.

Most of the information in the system columns table or view stores the definition of
a column—its name, its data type, its length, whether it can take NULL values, and so
on. In addition, the table sometimes includes information about the distribution of data
values found in each column. This statistical information helps the DBMS decide how
to carry out a query in the optimal way.

Here is a typical query you could use to find out about the columns in an Oracle
database:

List the names and data types of the columns in my OFFICES table.

SELECT COLUMN_NAME, DATA_TYPE

FROM USER_TAB_COLUMNS

WHERE TABLE_NAME = 'OFFICES'

Like the table information in the system catalog, the column information varies
across DBMS brands. Table 16-4 shows the contents of the SYSCAT.COLUMNS system
table, which contains column information in the DB2 catalog. Here are some queries
that apply to this DBMS brand:

Find all columns in the database with a DATE data type.

SELECT TABSCHEMA, TABNAME, COLNAME

FROM SYSCAT.COLUMNS

WHERE TYPESCHEMA = 'SYSIBMD' AND TYPENAME = 'DATE'

List the owner, view name, column name, data type, and length for all text columns longer
than ten characters defined in views.
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SELECT DEFINER, COLS.TABNAME, COLNAME, TYPENAME, LENGTH

FROM SYSCAT.COLUMNS COLS, SYSCAT.TABLES TBLS

WHERE TBLS.TABSCHEMA = COLS.TABSCHEMA

AND TBLS.TBLNAME = COLS.TBLNAME

AND (TYPENAME = 'VARCHAR' OR TYPENAME = 'CHARACTER')

AND LENGTH > 10

AND TYPE = 'V'
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Column Name Data Type Information

TABSCHEMA CHAR(8) Schema of table containing the column

TABNAME VARCHAR(18) Name of table containing the column

COLNAME VARCHAR(18) Name of the column

COLNO SMALLINT Position of column in table
(first column = 0)

TYPESCHEMA CHAR(8) Schema of column’s domain (or SYSIBM)

TYPENAME VARCHAR(18) Name of data type or domain for column

LENGTH INTEGER Maximum data length for variable-length
types

SCALE SMALLINT Scale for DECIMAL data types

DEFAULT VARCHAR(254) Default value for column

NULLS CHAR(1) Whether NULLs are allowed (Y/N)

CODEPAGE SMALLINT Code page for extended character types

LOGGED CHAR(1) Whether logging is enabled (Y/N) for
large object columns

COMPACT CHAR(1) Whether large object column is compacted
(Y/N)

COLCARD INTEGER Number of distinct data values
(cardinality)

HIGH2KEY VARCHAR(33) Second-highest column value in table

LOW2KEY VARCHAR(33) Second-lowest column value in table

Table 16-4. The SYSCAT.COLUMNS View (DB2)



There is considerable variation in the way that the column definition is provided
by the system catalogs of various DBMS brands. For comparison, Table 16-5 shows the
definition of the Informix Universal Server SYSCOLUMNS table. Some of the differences
between the column information in the tables are simply matters of style:

� The names of the columns in the two tables are completely different, even
when they contain similar data.

� The DB2 catalog uses a combination of the schema name and table name to
identify the table containing a given column; the Informix catalog uses an
internal table-id number, which is a foreign key to its SYSTABLES table.

� The DB2 specifies data types in text form (for example, CHARACTER); the
Informix catalog uses integer data type codes.

Other differences reflect the different capabilities provided by the two DBMS brands:

� DB2 allows you to specify up to 254 characters of remarks about each column;
Informix does not provide this feature.

� The Informix system table keeps track of the minimum and maximum length
of actual data values stored in a variable-length column; this information is not
available directly from the DB2 system catalog.
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Column Name Data Type Information

AVGCOLLEN INTEGER Average data length for variable-length
types

KEYSEQ SMALLINT Column position within primary key (or 0)

PARTKEYSEQ SMALLINT Column position within partitioning key
(or 0)

NQUANTILES SMALLINT Number of quantiles in column statistics

NMOSTFREQ SMALLINT Number of frequent values in column
statistics

REMARKS VARCHAR(254) User-supplied comments for column

Table 16-4. The SYSCAT.COLUMNS View (DB2) (continued)
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View Information
The definitions of the views in a database are usually stored by the DBMS in the system
catalog. The DB2 catalog contains two system tables that keep track of views. The
SYSCAT.VIEWS table, described in Table 16-6, contains the SQL text definition of
each view. If the definition exceeds 3600 characters, it is stored in multiple rows,
with sequence numbers 1, 2, 3, and so on.

The DB2 SYSCAT.VIEWDEP table, described in Table 16-7, shows how each view
depends on other tables or views. There is one row in the table for each dependency,
so a view with three source tables will be represented by three rows.

Using these two tables, you can see the definitions of the views in the database and
quickly determine which tables in the database serve as the source tables for a view. As
with many mainstream DBMS products, information about views is tightly linked to
the information about tables in the DB2 catalog. This means there is often more than
one way to find the answer to a catalog inquiry. For example, here is a direct query

Column Name Data Type Information

COLNAME CHAR(18) Name of the column

TABID INTEGER Internal table-id of table containing column

COLNO SMALLINT Position of column in table

COLTYPE SMALLINT Data type of column and whether NULLs
are allowed

COLLENGTH SMALLINT Column length

COLMIN INTEGER Second smallest column data value

COLMAX INTEGER Second largest column data value

MINLEN INTEGER Minimum actual data length

MAXLEN INTEGER Maximum actual data length

EXTENDED_ID INTEGER Internal ID of extended data type

Table 16-5. The SYSCOLUMNS Table (Informix)



472 S Q L : T h e C o m p l e t e R e f e r e n c e

Column Name Data Type Information

VIEWSCHEMA CHAR(8) Schema containing the view

VIEWNAME VARCHAR(18) Name of the view

DEFINER CHAR(8) User-id of person who created the view

SEQNO SMALLINT Sequence number for this row of SQL text

VIEWCHECK CHAR(1) Type of view checking

READONLY CHAR(1) Whether view is read-only (Y/N)

VALID CHAR(1) Whether view definition is valid (Y/N)

FUNC_PATH VARCHAR(254) Path for resolving function calls in view

TEXT VARCHAR(3600) SQL text of view definition (“SELECT…”)

Table 16-6. The SYSCAT.VIEWS View (DB2)

Column Name Data Type Information

VIEWSCHEMA CHAR(8) Schema containing the view

VIEWNAME VARCHAR(18) Name of the view

DEFINER CHAR(8) User-id of person who created the view

BTYPE CHAR(1) Type of object on which view depends
(T = table, V = view, A = alias, and so on)

BSCHEMA CHAR(8) Schema containing the object on which
view depends

TABAUTH SMALLINT Flags indicating privileges on the object
on which view depends

Table 16-7. The SYSCAT.VIEWDEP View (DB2)
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against the DB2 VIEWS system table to obtain the names and creators of all views
defined in the database:

List the views defined in the database.

SELECT DISTINCT VIEWSCHAME, VIEWNAME, DEFINER

FROM SYSCAT.VIEWS

Note the use of DISTINCT to eliminate duplicate rows that would be present for
views with long text definitions. Perhaps an easier way to obtain the same information
is to query the DB2 TABLES system table directly, selecting only rows representing
views, as indicated by the TYPE value:

List the views defined in the database.

SELECT TABSCHEMA, TABNAME, DEFINER

FROM SYSCAT.TABLES

WHERE TYPE = 'V'

Most of the major DBMS products treat views in this same way within their system
catalog structure. Informix Universal Server, for example, has a system table named
SYSVIEWS that contains view definitions. Each of its rows holds a 64-character chunk
of the SQL SELECT statement that defines a view. View definitions that span multiple
rows are handled by sequence numbers, as with DB2. The Informix SYSVIEWS table
includes only one other column—the table-id that links the SYSVIEWS table to the
corresponding row in the SYSTABLES table. Thus, Informix duplicates less information
between the SYSTABLES and SYSVIEWS tables, but you must explicitly join the tables
for the most common view information requests.

Oracle takes a similar approach by making the SQL text that defines a view available
via system views. As with table and column information, there are two system views
of interest: USER_VIEWS, which contains information about all views created and
owned by the current user, and ALL_VIEWS, which also includes information about
views accessible to the current user but created by other users. Unlike the DB2 and
Informix approaches, which split the SQL text defining the view into multiple rows
with sequence numbers if it is lengthy, Oracle’s system views contain only one row
per view. The SQL text defining the view is held in a LONG (large object) column and
can conceivably run to thousands of characters. A length column tells the length of
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the stored SQL text definition of the view. Here is a query to obtain Oracle view
information:

List the current user’s views and their definitions.

SELECT VIEW_NAME, TEXT_LENGTH, TEXT

FROM USER_VIEWS

Note that most interactive SQL products (including Oracle’s) truncate the text
containing the view definition if it is too long to be displayed effectively. The actual
text stored in the database is complete.

Remarks
IBM’s DB2 products allow you to associate up to 254 characters of remarks with each
table, view, and column defined in the database. The remarks allow you to store a brief
description of the table or data item in the system catalog. The remarks are stored in
the SYSCAT.TABLES and SYSCAT.COLUMNS system tables of the system catalog.
Unlike the other elements of table and column definitions, the remarks and labels are
not specified by the CREATE TABLE statement. Instead, the COMMENT statement is used.
Its syntax is shown in Figure 16-2. Here are some examples:

Define remarks for the OFFICES table.

COMMENT ON TABLE OFFICES

IS 'This table stores data about our sales offices'

Associate some remarks with the TARGET and SALES columns of the OFFICES table.

COMMENT ON OFFICES

(TARGET IS 'This is the annual sales target for the office',

SALES IS 'This is the year-to-date sales for the office')

Because this is a capability carried forward from some of the earliest IBM SQL
products, Oracle also supports the COMMENT ON statement for attaching comments
to tables and columns. The comments are not stored inline with other table and
column information, however. They are accessible via the Oracle system views
USER_TAB_COMMENTS and USER_COL_COMMENTS. The DB2 COMMENT capability
has been expanded over the years to allow comments on constraints, stored procedures,
schemas, tablespaces, triggers, and other DB2 database objects. This capability is
not part of the SQL standard and has generally not been adopted by other major
DBMS products.
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Relationship Information
With the introduction of referential integrity into the major enterprise DBMS products
during the mid-1990s, system catalogs were expanded to describe primary keys, foreign
keys, and the parent/child relationships that they create. In DB2, which was among
the first to support referential integrity, the description is provided by the SYSCAT.
REFERENCES system catalog table, described in Table 16-8. Every parent/child
relationship between two tables in the database is represented by a single row in the
SYSCAT.REFERENCES table. The row identifies the names of the parent and child
tables, the name of the relationship, and the delete and update rules for the relationship.
You can query it to find out about the relationships in the database:

List all of the parent/child relationships among my tables, showing the name of the relationship,
the name of the parent table, the name of the child table, and the delete rule for each one.

SELECT CONSTNAME, REFTABNAME, TABNAME, DELETERULE

FROM SYSCAT.REFERENCES

WHERE DEFINER = USER

Figure 16-2. The DB2 COMMENT statement syntax diagrams
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List all of the tables related to the SALESREPS table as either a parent or a child.

SELECT REFTABNAME

FROM SYSCAT.REFERENCES

WHERE TABNAME = 'SALESREPS'

UNION

SELECT TABNAME

FROM SYSCAT.REFERENCES

WHERE REFTABNAME = 'SALESREPS'

Column Name Data Type Information

CONSTNAME VARCHAR(18) Name of constraint described by this row

TABSCHEMA CHAR(8) Schema containing the constraint

TABNAME VARCHAR(18) Table to which constraint applies

DEFINER CHAR(8) Creator of table to which constraint
applies

REFKEYNAME VARCHAR(18) Name of parent key

REFTABSCHEMA CHAR(8) Schema containing parent table

REFTABNAME VARCHAR(18) Name of parent table

COLCOUNT SMALLINT Number of columns in the foreign key

DELETERULE CHAR(1) Delete rule for foreign key constraint
(A = no action, C = cascade,
R = restrict, and so on)

UPDATERULE CHAR(1) Update rule for foreign key constraint
(A = no action, R = restrict)

CREATE_TIME TIMESTAMP Creation time of constraint

FK_COLNAMES VARCHAR(320) Names of foreign key columns

PK_COLNAMES VARCHAR(320) Names of primary key columns

Table 16-8. The SYSCAT.REFERENCES View (DB2)
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The names of the foreign key columns and the corresponding primary key
columns are listed (as text) in the FK_COLNAMES and PK_COLNAMES columns of the
REFERENCES system table. A second system table, SYSCAT.KEYCOLUSE, shown
in Table 16-9, provides a somewhat more useful form of the information. There is
one row in this system table for each column in each foreign key, primary key, or
uniqueness constraint defined in the database. A sequence number defines the
order of the columns in a compound key. You can use this system table to find
out the names of the columns that link a table to its parent, using a query like
this one:

List the columns that link ORDERS to PRODUCTS in the relationship named ISFOR.

SELECT COLNAME, COLSEQ

FROM SYSCAT.KEYCOLUSE

WHERE CONSTNAME = 'ISFOR'

ORDER BY COLSEQ

The primary key of a table and the parent/child relationships in which it
participates are also summarized in the SYSCAT.TABLES and SYSCAT.COLUMNS
system tables, shown previously in Tables 16-2 and 16-4. If a table has a primary key,
the KEYCOLUMNS column in its row of the SYSCAT.TABLES system table is nonzero,
and tells how many columns make up the primary key (one for a simple key; two or
more for a composite key). In the SYSCAT.COLUMNS system table, the rows for the
columns that make up the primary key have a nonzero value in their KEYSEQ column.

Column Name Data Type Information

CONSTNAME VARCHAR(18) Name of constraint (unique, primary key,
or foreign key) described by this row

TABSCHEMA CHAR(8) Schema containing the constraint

TABNAME VARCHAR(18) Table to which constraint applies

COLNAME VARCHAR(18) Name of column in the constraint

COLSEQ SMALLINT Position of column within the constraint

Table 16-9. The SYSCAT.KEYCOLUSE View (DB2)
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The value in this column indicates the position (1, 2, and so on) of the primary key
column within the primary key.

You can query the SYSCAT.COLUMNS table to find a table’s primary key:

List the columns that form the primary key of the PRODUCTS table.

SELECT COLNAME, KEYSEQ, TYPENAME, REMARKS

FROM SYSCAT.COLUMNS

WHERE TABNAME = 'PRODUCTS'

AND KEYSEQ > 0

ORDER BY KEYSEQ

The DB2 catalog support for primary and foreign keys is typical of that found in
other major SQL products. The Oracle system view USER_CONSTRAINTS, for example,
provides the same information as the DB2 SYSCAT.REFERENCES system table.
Information about the specific columns that make up a foreign key or primary key
appears in the Oracle USER_CONS_COLUMNS system view, which is analogous to the
DB2 SYSCAT.KEYCOLUSE system table. Microsoft SQL Server has a similar system
catalog structure, with foreign key information divided between the
SYSFOREIGNKEYS and SYSREFERENCES system tables.

Informix Universal Server takes a similar approach to the DB2 catalog, but with
the same types of differences previously illustrated in its table information and column
information support. Each constraint defined within the database generates one row in
the Informix SYSCONSTRAINTS system table, which defines the name of the constraint
and its type (check constraint, primary key, referential, and so on). This system table
also assigns an internal constraint-id number to identify the constraint within the catalog.
The table to which the constraint applies is also identified by table-id (which serves as a
foreign key to the SYSTABLES system table).

Further information about the referential constraints (foreign keys) is contained in
a SYSREFERENCES system table. Again in this table, the constraint, the primary key,
and the parent table are identified by internal IDs that link the foreign key information
to the SYSCONSTRAINTS and SYSTABLES system tables. The SYSREFERENCES table
contains information about the delete rule and update rule that apply to the foreign
key relationship and similar information.

User Information
The system catalog generally contains a table that identifies the users who are authorized
to access the database. The DBMS may use this system table to validate the user name
and password when a user first attempts to connect to the database. The table may also
store other data about the user.
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SQL Server stores user information in its SYSUSERS system table, shown in
Table 16-10. Each row of this table describes a single user or user group in the SQL
Server security scheme. Informix takes a similar approach, with a system table that is
also called SYSUSERS. The corresponding Oracle table is called ALL_USERS. Following
are two equivalent queries that list the authorized users for SQL Server and Oracle:

List all the user-ids known to SQL Server.

SELECT NAME

FROM SYSUSERS

WHERE UID <> GID

List all the user-ids known to Oracle.

SELECT USERNAME

FROM ALL_USERS

The DB2 system catalog table that contains user names also contains the information
about their roles and privileges within the database (that is, whether they are a database
administrator, whether they can create tables, whether they can create programs that
access the database). Here is the equivalent query to the preceding queries for retrieving
user names from the DB2 catalog:

List all the user-ids known to DB2.

SELECT DISTINCT GRANTEE

FROM SYSCAT.DBAUTH

WHERE GRANTEETYPE = 'U'

Column Name Data Type Information

uid SMALLINT Internal user-id number in this database

gid SMALLINT Internal user group-id number in this
database

name SYSNAME User or group name

Table 16-10. Selected Columns of the SYSUSERS Table (SQL Server)



Privileges Information
In addition to storing database structure information, the system catalog generally
stores the information required by the DBMS to enforce database security. As described
in Chapter 15, various DBMS products offer different variations on the basic SQL
privileges scheme. These variations are reflected in the structure of the system catalogs
for the various DBMS brands.

DB2 has one of the most comprehensive schemes for user privileges, extending
down to the individual columns of a table. Table 16-11 shows the DB2 system catalogs
that store information about privileges and briefly describes the role of each one.

The authorization scheme used by SQL Server is more fundamental and streamlined
than that of DB2. It treats databases, tables, stored procedures, triggers, and other
entities uniformly as objects to which privileges apply. This streamlined structure is
reflected in the system table, SYSPROTECTS, shown in Table 16-12, which implements
the entire privileges scheme for SQL Server. Each row in the table represents a single
GRANT or REVOKE statement that has been issued.
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System Table Role

TABAUTH Implements table-level privileges by telling which users have
permissions to access which tables, for which operations
(SELECT, INSERT, DELETE, UPDATE, ALTER, and INDEX)

COLAUTH Implements column-level privileges by telling which users
have permission to update or to reference which columns of
which tables

DBAUTH Determines which users have permission to connect to the
database, to create tables, and to perform various database
administration functions

SCHEMAAUTH Implements schema-level privileges by telling which users
have permission to create, drop, or alter objects (tables, views,
domains, and so on) within a schema

INDEXAUTH Implements index-level privileges by telling which users have
control privileges over various indexes

PACKAGEAUTH Implements programmatic access privileges by telling which
users have the ability to control, bind (create), and execute
various database access programs (“packages”)

Table 16-11. DB2 System Catalog Views that Implement Permissions



The SQL2 Information Schema
The SQL2 standard does not directly specify the structure of a system catalog that must
be supported by DBMS implementations. In practice, given the widely differing features
supported by different DBMS brands and the major differences in the system catalogs
that were already being used by commercial SQL products when the SQL2 standard
was adopted, it would have been impossible to reach an agreement on a standard catalog
definition. Instead, the writers of the SQL2 standard defined an idealized system catalog
that a DBMS vendor might design if he or she were building a DBMS to support the
SQL2 standard from scratch. The tables in this idealized system catalog (called the
definition schema in the standard) are summarized in Table 16-13.
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Column Name Data Type Information

id INT Internal ID of protected object

uid SMALLINT Internal ID of user or group with
privilege

action TINYINT Numerical privilege code

protecttype TINYINT Numerical code for grant or revoke

columns VARBINARY(32) Bitmap for column-level update
privileges

Table 16-12. Selected Columns of the SYSPROTECTS Table (SQL Server)

System Table Contents

USERS One row for each user (“authorization-id”) in the
catalog cluster

SCHEMATA One row for each schema in the catalog cluster

DATA_TYPE_DESCRIPTOR One row for each domain or column defined with
a data type

DOMAINS One row for each domain

DOMAIN_CONSTRAINTS One row for each domain constraint

Table 16-13. Idealized System Catalog Used by the SQL2 Standard
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System Table Contents

TABLES One row for each table or view

VIEWS One row for each table or view

COLUMNS One row for each column in each table or view
definition

VIEW_TABLE_USAGE One row for each table referenced in each view
definition (if a view is defined by a query on
multiple tables, there will be a row for each table)

VIEW_COLUMN_USAGE One row for each column referenced by a view

TABLE_CONSTRAINTS One row for each table constraint specified in a
table definition

KEY_COLUMN_USAGE One row for each column specified in each primary
key, each foreign key, and each uniqueness
constraint (if multiple columns are specified in a
key definition or uniqueness constraint, there will
be multiple rows representing that constraint)

REFERENTIAL_
CONSTRAINTS

One row for each foreign key definition specified
in a table definition

CHECK_CONSTRAINTS One row for each check constraint specified in a
table definition

CHECK_TABLE_USAGE One row for each table referenced in each check
constraint, domain constraint, or assertion

CHECK_COLUMN_USAGE One row for each column referenced in each check
constraint, domain constraint, or assertion

ASSERTIONS One row for each assertion defined

TABLE_PRIVILEGES One row for each privilege granted on each table

COLUMN_PRIVILEGES One row for each privilege granted on each column

CHARACTER_SETS One row for each character set defined

COLLATIONS One row for each collation defined

TRANSLATIONS One row for each translation defined

SQL_LANGUAGES One row for each language (e.g., COBOL, C, and
so on) supported by this DBMS brand

Table 16-13. Idealized System Catalog Used by the SQL2 Standard (continued)
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The SQL2 standard does not require a DBMS to actually support the system catalog
tables in Table 16-13, or any system catalog at all. Instead, it defines a series of views on
these catalog tables that identify database objects that are accessible to the current user.
(These catalog views are called an Information Schema in the standard.) Any DBMS that
claims the Intermediate or Full conformance level to the SQL2 standard must support
these views. This effectively gives a user a standardized way to find out about the
objects in the database that are available to him or her by issuing standard SQL against
the catalog views. Note that support for the catalog views is not required for the Entry
conformance level to the SQL2 standard.

In practice, major commercial SQL implementations have been slowly moving to
support the SQL2 Information Schema, typically by defining corresponding views on
the tables in their own system catalogs. In most cases, the information in the DBMS’
own system catalogs is similar enough to that required by the standard that the first 90
percent of the conformance to the SQL2 standard is relatively easy. The last 10 percent
has proven to be much more difficult, given the variations among DBMS brands and
the degree to which even the SQL2 catalog views expose the specific features and
capabilities of the underlying DBMS.

As a result, full support for the SQL2 catalog views has usually been implemented
in conjunction with a major new version of a DBMS product, accompanied by underlying
changes in the core of the DBMS software. The catalog views required by the SQL2
standard are summarized in Table 16-14, along with a brief description of the information
contained in each view. Here are some sample queries that can be used to extract
information about database structure from the SQL2-defined system catalog views:

List the names of all tables and views owned by the current user.

SELECT TABLE_NAME

FROM TABLES

List the name, position, and data type of all columns in all views.

SELECT TABLE_NAME, C.COLUMN_NAME, ORDINAL_POSITION, DATA_TYPE

FROM COLUMNS

WHERE (COLUMNS.TABLE_NAME IN (SELECT TABLE_NAME FROM VIEWS))

Determine how many columns are in the table named OFFICES.

SELECT COUNT(*)

FROM COLUMNS

WHERE (TABLE_NAME = 'OFFICES')
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System Catalog View Contents

INFORMATION_SCHEMA_
CATALOG_NAME

A single row specifying the name of the database
for each user (“catalog” in the language of the SQL2
standard) described by this Information Schema

SCHEMATA One row for each schema in the database that is
owned by the current user specifying the schema
name, default character set, and so on

DOMAINS One row for each domain accessible by the current
user specifying the name of the domain, the
underlying data type, character set, maximum
length, scale, precision, and so on

DOMAIN_CONSTRAINTS One row for each domain constraint specifying
the name of the constraint and its deferability
characteristics

TABLES One row for each table or view accessible to the
current user specifying its name and type (table
or view)

VIEWS One row for each view accessible to the current user
specifying its name, check option, and updateability

COLUMNS One row for each column accessible to the current
user specifying its name, the table or view that
contains it, its data type, precision, scale, character
set, and so on

TABLE_PRIVILEGES One row for each privilege on a table granted to or
by the current user specifying the table type, the type
of privilege, the grantor and grantee, and whether
the privilege is grantable by the current user

COLUMN_PRIVILEGES One row for each privilege on a column granted
to or by the current user specifying the table and
the column, the type of privilege, the grantor and
grantee, and whether the privilege is grantable by
the current user

USAGE_PRIVILEGES One row for each usage granted to or by the
current user

Table 16-14. Catalog Views Mandated by the SQL2 Standard
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System Catalog View Contents

TABLE_CONSTRAINTS One row for each table constraint (primary key,
foreign key, uniqueness constraint, or check constraint)
specified on a table owned by the current user,
specifying the name of the constraint, the table,
the type of constraint, and its deferability

REFERENTIAL_
CONSTRAINTS

One row for each referential constraint (foreign key
definition) for a table owned by the current user
specifying the names of the constraint and the child
and parent tables

CHECK_CONSTRAINTS One row for each check constraint for a table owned
by the current user

KEY_COLUMN_USAGE One row for each column specified in each primary
key, each foreign key, and each uniqueness
constraint in a table owned by the current user,
specifying the column and table names, and the
position of the column in the key

ASSERTIONS One row for each assertion owned by the current
user, specifying its name and its deferability

CHARACTER_SETS One row for each character set definition accessible
to the current user

COLLATIONS One row for each collation definition accessible to
the current user

TRANSLATIONS One row for each translation definition accessible
to the current user

VIEW_TABLE_USAGE One row for each table referenced in each view
definition owned by the current user, specifying
the name of the table

VIEW_COLUMN_USAGE One row for each column referenced by a view
owned by the current user, specifying its name
and the table containing it

CONSTRAINT_TABLE_
USAGE

One row for each table referenced in each check
constraint, uniqueness constraint, foreign key
definition, and assertion owned by the current user

Table 16-14. Catalog Views Mandated by the SQL2 Standard (continued)



The standard also defines three domains that are used by the catalog views and are
also available to users. These domains are summarized in Table 16-15. Appendix E
contains a complete summary of the major SQL2 catalog views and their contents.
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System Catalog View Contents

CONSTRAINT_COLUMN_
USAGE

One row for each column referenced in each check
constraint, uniqueness constraint, foreign key
definition, and assertion owned by the current user

SQL_LANGUAGES One row for each language (i.e., COBOL, C, and so
on) supported by this DBMS brand, specifying its
level of conformance to the SQL2 standard, the type
of SQL supported, and so on

Table 16-14. Catalog Views Mandated by the SQL2 Standard (continued)

System Domain Values

SQL_INDENTIFIER The domain of all variable-length character strings
that are legal SQL identifiers under the SQL2
standard. A value drawn from this domain is a
legal table name, column name, and so forth

CHARACTER_DATA The domain of all variable-length character strings
with a length between zero and the maximum length
supported by this DBMS. A value drawn from this
domain is a legal character string.

CARDINAL_NUMBER The domain of all non-negative numbers, from zero
up to the maximum number represented by an
INTEGER for this DBMS. A value drawn from this
is zero or a legal positive number.

Table 16-15. Domains Defined by the SQL2 Standard
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Other Catalog Information
The system catalog is a reflection of the capabilities and features of the DBMS that uses
it. Because of the many SQL extensions and additional features offered by popular
DBMS products, their system catalogs always contain several tables unique to the
DBMS. Here are just a few examples:

� DB2 and Oracle support aliases and synonyms (alternate names for tables). DB2
stores alias information with other table information in the SYSCAT.TABLES
system table. Oracle makes synonym information available through its
USER_SYNONYMS system view.

� SQL Server supports multiple named databases. It has a system table called
SYSDATABASES that identifies the databases managed by a single server.

� Many DBMS brands now support stored procedures, and the catalog contains
one or more tables that describes them. Sybase stores information about stored
procedures in its SYSPROCEDURES system table.

� Ingres supports tables that are distributed across several disk volumes. Its
IIMULTI_LOCATIONS system table keeps track of the locations of
multivolume tables.

Summary
The system catalog is a collection of system tables that describe the structure of a
relational database:

� The DBMS maintains the data in the system tables, updating it as the structure
of the database changes.

� A user can query the system tables to find out information about tables, columns,
and privileges in the database.

� Front-end query tools use the system tables to help users navigate their way
through the database in a user-friendly way.

� The names and organization of the system tables differ widely from one brand
of DBMS to another; and there are even differences among different DBMS
products from the same vendor, reflecting the different internal structures and
capabilities of the products.

� The SQL2 standard does not require that a DBMS actually have a set of system
catalog tables, but it does define a set of standard catalog views for products
that claim higher levels of SQL2 conformance.
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Part V
Programming with SQL

In addition to its role as an interactive data access language, SQL

supports database access by application programs. Chapters 17–19

describe the special SQL features and techniques that apply to

programmatic SQL. Chapter 17 describes embedded SQL, the oldest

programmatic SQL technique, and one still supported by many

SQL products. Dynamic SQL, an advanced form of embedded SQL

that isused to build general-purpose database tools, is described in

Chapter 18. Chapter 19 describes an alternative to embedded SQL—the

function call interface provided by several popular DBMS products,

which has been gaining in popularity.
Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.
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S
QL is a dual-mode language. It is both an interactive database language used
for ad hoc queries and updates and a programmatic database language used by
application programs for database access. For the most part, the SQL language

is identical in both modes. The dual-mode nature of SQL has several advantages:

� It is relatively easy for programmers to learn how to write programs that
access the database.

� Capabilities available through the interactive query language are also
automatically available to application programs.

� The SQL statements to be used in a program can be tried out first using
interactive SQL and then coded into the program.

� Programs can work with tables of data and query results instead of navigating
their way through the database.

This chapter summarizes the types of programmatic SQL offered by the leading
SQL-based products and then describes the programmatic SQL used by the IBM SQL
products, which is called embedded SQL.

Programmatic SQL Techniques
SQL is a language and can be used programmatically, but it would be incorrect to
call SQL a programming language. SQL lacks even the most primitive features of real
programming languages. It has no provision for declaring variables, no GOTO statement,
no IF statement for testing conditions, no FOR, DO, or WHILE statements to construct
loops, no block structure, and so on. SQL is a database sublanguage that handles special-
purpose database management tasks. To write a program that accesses a database, you
must start with a conventional programming language, such as COBOL, PL/I, FORTRAN,
Pascal, or C and then add SQL to the program.

The initial ANSI/ISO SQL standard was concerned exclusively with this
programmatic use of SQL. In fact, the standard did not even include the interactive
SELECT statement described in Chapters 6 through 9. It only specified the programmatic
SELECT statement described later in the section “Data Retrieval in Embedded SQL.” The
SQL2 standard, published in 1992, expanded its focus to include interactive SQL (called
direct invocation of SQL in the standard) and more advanced forms of programmatic SQL
(the dynamic SQL capabilities described in Chapter 20).

Commercial SQL database vendors offer two basic techniques for using SQL within
an application program:

� Embedded SQL. In this approach, SQL statements are embedded directly into
the program’s source code, intermixed with the other programming language
statements. Special embedded SQL statements are used to retrieve data into the
program. A special SQL precompiler accepts the combined source code and,
along with other programming tools, converts it into an executable program.
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� Application program interface. In this approach, the program communicates
with the DBMS through a set of function calls called an application program
interface, or API. The program passes SQL statements to the DBMS through the
API calls and uses API calls to retrieve query results. This approach does not
require a special precompiler.

The initial IBM SQL products used an embedded SQL approach, and most
commercial SQL products adopted it in the 1980s. The original ANSI/ISO SQL standard
specified only an awkward module language for programmatic SQL, but commercial
SQL products continued to follow the IBM de facto standard. In 1989, the ANSI/ISO
standard was extended to include a definition of how to embed SQL statements within
the Ada, C, COBOL, FORTRAN, Pascal, and PL/I programming languages, this time
following the IBM approach. The SQL2 standard continued this specification.

In parallel with this evolution of embedded SQL, several DBMS vendors who were
focused on minicomputer systems introduced callable database APIs in the 1980s. When
the Sybase DBMS was introduced, it offered only a callable API. Microsoft’s SQL Server,
derived from the Sybase DBMS, also used the API approach exclusively. Soon after the
debut of SQL Server, Microsoft introduced Open Database Connectivity (ODBC), another
callable API. ODBC is roughly based on the SQL Server API, but with the additional
goals of being database independent and permitting concurrent access to two or more
different DBMS brands through a common API.

More recently, Java Database Connectivity (JDBC) has emerged as an important
API for accessing a relational database from within programs written in Java. With the
growing popularity of callable APIs, the callable and embedded approaches are both in
active use today. In general, programmers using older languages, such as COBOL and
Assembler, will tend to favor the embedded SQL approach. Programmers using newer
languages, such as C++ and Java, will tend to favor the callable API approach.

The following table summarizes the programmatic interfaces offered by some of the
leading SQL-based DBMS products:

DBMS Callable API

Embedded SQL

Language Support

DB2 ODBC, JDBC APL, Assembler, BASIC,
COBOL, FORTRAN,
Java, PL/I

Informix ODBC, JDBC C, COBOL

Microsoft SQL Server DB Library (dblib), ODBC C
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DBMS Callable API

Embedded SQL

Language Support

MySQL C-api (proprietary), ODBC,
JDBC, Perl, PHP, Tcl…

None

Oracle Oracle Call Interface (OCI),
ODBC, JDBC

C, COBOL, FORTRAN,
Pascal, PL/I, Java

Sybase DB Library (dblib), ODBC,
JDBC

C, COBOL

The basic techniques of embedded SQL, called static SQL, are described in this
chapter. Some advanced features of embedded SQL, called dynamic SQL, are discussed
in Chapter 20. Callable SQL APIs, including the Sybase/SQL Server API, ODBC, and
JDBC, are discussed in Chapter 21.

DBMS Statement Processing
To understand any of the programmatic SQL techniques, it helps to understand a little
bit more about how the DBMS processes SQL statements. To process a SQL statement,
the DBMS goes through a series of five steps, shown in Figure 17-1:

1. The DBMS begins by parsing the SQL statement. It breaks the statement up into
individual words, makes sure that the statement has a valid verb, legal clauses,
and so on. Syntax errors and misspellings can be detected in this step.

2. The DBMS validates the statement. It checks the statement against the system
catalog. Do all the tables named in the statement exist in the database? Do all of
the columns exist, and are the column names unambiguous? Does the user have
the required privileges to execute the statement? Semantic errors are detected in
this step.

3. The DBMS optimizes the statement. It explores various ways to carry out the
statement. Can an index be used to speed a search? Should the DBMS first
apply a search condition to Table A and then join it to Table B, or should it
begin with the join and use the search condition afterward? Can a sequential
search through a table be avoided or reduced to a subset of the table? After
exploring alternatives, the DBMS chooses one of them.

4. The DBMS then generates an application plan for the statement. The application
plan is a binary representation of the steps that are required to carry out the
statement; it is the DBMS equivalent of executable code.

5. Finally, the DBMS carries out the statement by executing the application plan.

Note that the steps in Figure 17-1 vary in the amount of database access they require
and the amount of CPU time they take. Parsing a SQL statement does not require access



to the database and typically can be done very quickly. Optimization, on the other hand,
is a very CPU-intensive process and requires access to the database’s system catalog. For
a complex, multitable query, the optimizer may explore more than a dozen different
ways of carrying out the query. However, the cost in computer processing time of doing
the query the wrong way is usually so high compared to the cost of doing it the right
way (or at least a better way) that the time spent in optimization is more than gained
back in increased query execution speed.

When you type a SQL statement to interactive SQL, the DBMS goes through all five
steps while you wait for its response. The DBMS has little choice in the matter—it doesn’t
know which statement you are going to type until you type it, so none of the processing
can be done ahead of time. In programmatic SQL, however, the situation is quite
different. Some of the early steps can be done at compile-time, when the programmer is
developing the program. This leaves only the later steps to be done at runtime, when the
program is executed by a user. When you use programmatic SQL, all DBMS products try
to move as much processing as possible to compile-time, because once the final version
of the program is developed, it may be executed thousands of times by users in a
production application. In particular, the goal is to move optimization to compile-time if
at all possible.
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Figure 17-1. How the DBMS processes a SQL statement
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Embedded SQL Concepts
The central idea of embedded SQL is to blend SQL language statements directly
into a program written in a host programming language, such as C, Pascal, COBOL,
FORTRAN, PL/I, or Assembler. Embedded SQL uses the following techniques to
embed the SQL statements:

� SQL statements are intermixed with statements of the host language in the
source program. This embedded SQL source program is submitted to a SQL
precompiler, which processes the SQL statements.

� Variables of the host programming language can be referenced in the
embedded SQL statements, allowing values calculated by the program to be
used by the SQL statements.

� Program language variables are also used by the embedded SQL statements to
receive the results of SQL queries, allowing the program to use and process the
retrieved values.

� Special program variables are used to assign NULL values to database columns
and to support the retrieval of NULL values from the database.

� Several new SQL statements that are unique to embedded SQL are added to the
interactive SQL language, to provide for row-by-row processing of query results.

Figure 17-2 shows a simple embedded SQL program, written in C. The program
illustrates many, but not all, of the embedded SQL techniques. The program prompts
the user for an office number, retrieves the city, region, sales, and target for the office,
and displays them on the screen.

Don’t worry if the program appears strange, or if you can’t understand all of
the statements that it contains before reading the rest of this chapter. One of the
disadvantages of the embedded SQL approach is that the source code for a program
becomes an impure blend of two different languages, making the program hard to
understand without training in both SQL and the programming language. Another
disadvantage is that embedded SQL uses SQL language constructs not used in
interactive SQL, such as the WHENEVER statement and the INTO clause of the SELECT
statement—both used in this program.

Developing an Embedded SQL Program
An embedded SQL program contains a mix of SQL and programming language
statements, so it can’t be submitted directly to a compiler for the programming
language. Instead, it moves through a multistep development process, shown in
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main()

{

exec sql include sqlca;

exec sql begin declare section;

int officenum; /* office number (from user) */

char cityname[16]; /* retrieved city name */

char regionname[11]; /* retrieved region name */

float targetval; /* retrieved target and sales */

float salesval; /* retrieved target and sales */

exec sql end declare section;

/* Set up error processing */

exec sql whenever sqlerror goto query_error;

exec sql whenever not found goto bad_number;

/* Prompt the user for the employee number */

printf("Enter office number:");

scanf("%d", &officenum);

/* Execute the SQL query */

exec sql select city, region, target, sales

from offices

where office = :officenum

into :cityname, :regionname, :targetval, :salesval;

/* Display the results */

printf("City: %s\n", cityname);

printf("Region: %s\n", regionname);

printf("Target: %f\n", targetval);

printf("Sales: %f\n", salesval);

exit();

query_error:

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

bad_number:

printf("Invalid office number.\n");

exit();

}

Figure 17-2. A typical embedded SQL program



Figure 17-3. The steps in the figure are actually those used by the IBM mainframe
databases (DB2, SQL/DS), but all products that support embedded SQL use a
similar process:

1. The embedded SQL source program is submitted to the SQL precompiler, a
programming tool. The precompiler scans the program, finds the embedded
SQL statements, and processes them. A different precompiler is required for
each programming language supported by the DBMS. Commercial SQL
products typically offer precompilers for one or more languages, including C,
Pascal, COBOL, FORTRAN, Ada, PL/I, RPG, and various assembly languages.

2. The precompiler produces two files as its output. The first file is the source
program, stripped of its embedded SQL statements. In their place, the
precompiler substitutes calls to the private DBMS routines that provide the
runtime link between the program and the DBMS. Typically, the names and
calling sequences of these routines are known only to the precompiler and the
DBMS; they are not a public interface to the DBMS. The second file is a copy of
all the embedded SQL statements used in the program. This file is sometimes
called a database request module, or DBRM.

3. The source file output from the precompiler is submitted to the standard
compiler for the host programming language (such as a C or COBOL compiler).
The compiler processes the source code and produces object code as its output.
Note that this step has nothing in particular to do with the DBMS or with SQL.

4. The linker accepts the object modules generated by the compiler, links them
with various library routines, and produces an executable program. The library
routines linked into the executable program include the private DBMS routines
described in Step 2.

5. The database request module generated by the precompiler is submitted to a
special BIND program. This program examines the SQL statements, parses,
validates, and optimizes them, and produces an application plan for each
statement. The result is a combined application plan for the entire program,
representing a DBMS-executable version of its embedded SQL statements. The
BIND program stores the plan in the database, usually assigning it the name of
the application program that created it.

The program development steps in Figure 17-3 correlate with the DBMS statement
processing steps in Figure 17-1. In particular, the precompiler usually handles statement
parsing (the first step), and the BIND utility handles verification, optimization, and plan
generation (the second, third, and fourth steps). Thus, the first four steps of Figure 17-1
all take place at compile-time when you use embedded SQL. Only the fifth step, the
actual execution of the application plan, remains to be done at runtime.

The embedded SQL development process turns the original embedded SQL source
program into two executable parts:
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� An executable program. Stored in a file on the computer in the same format
as any executable program

� An executable application plan. Stored within the database in the format
expected by the DBMS

The embedded SQL development cycle may seem cumbersome, and it is more
awkward than developing a standard C or COBOL program. In most cases, all of the
steps in Figure 17-3 are automated by a single command procedure, so the individual
steps are made invisible to the application programmer. The process does have several
major advantages from a DBMS point of view, shown next.
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Figure 17-3. The embedded SQL development process



� The blending of SQL and programming language statements in the embedded
SQL source program is an effective way to merge the two languages. The host
programming language provides flow of control, variables, block structure, and
input/output functions; SQL handles database access and does not have to
provide these other constructs.

� The use of a precompiler means that the compute-intensive work of parsing
and optimization can take place during the development cycle. The resulting
executable program is very efficient in its use of CPU resources.

� The database request module produced by the precompiler provides portability
of applications. An application program can be written and tested on one
system, and then its executable program and DBRM can be moved to another
system. After the BIND program on the new system creates the application plan
and installs it in the database, the application program can use it without being
recompiled itself.

� The program’s actual runtime interface to the private DBMS routines is
completely hidden from the application programmer. The programmer works
with embedded SQL at the source-code level and does not have to worry about
other, more complex interfaces.

Running an Embedded SQL Program
Recall from Figure 17-3 that the embedded SQL development process produces two
executable components, the executable program itself and the program’s application
plan, stored in the database. When you run an embedded SQL program, these two
components are brought together to do the work of the application:

1. When you ask the computer system to run the program, the computer loads the
executable program in the usual way and begins to execute its instructions.

2. One of the first calls generated by the precompiler is a call to a DBMS routine
that finds and loads the application plan for the program.

3. For each embedded SQL statement, the program calls one or more private
DBMS routines, requesting execution of the corresponding statement in the
application plan. The DBMS finds the statement, executes that part of the plan,
and then returns control to the program.

4. Execution continues in this way, with the executable program and the DBMS
cooperating to carry out the task defined by the original embedded SQL source
program.

Runtime Security
When you use interactive SQL, the DBMS enforces its security based on the user-id you
supply to the interactive SQL program. You can type any SQL statement you want, but
the privileges granted to your user-id determine whether the DBMS will or will not
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execute the statement you type. When you run a program that uses embedded SQL,
there are two user-ids to consider:

� The user-id of the person who developed the program, or more specifically,
the person who ran the BIND program to create the application plan

� The user-id of the person who is now executing the program and the
corresponding application plan

It may seem strange to consider the user-id of the person who ran the BIND
program (or more generally, the person who developed the application program or
installed it on the computer system), but in fact, DB2 and several other commercial
SQL products use both user-ids in their security scheme. To understand how the
security scheme works, suppose that user JOE runs the ORDMAINT order maintenance
program, which updates the ORDERS, SALES, and OFFICES tables. The application
plan for the ORDMAINT program was originally bound by user-id OPADMIN, which
belongs to the order-processing administrator.

In the DB2 scheme, each application plan is a database object, protected by DB2
security. To execute a plan, JOE must have the EXECUTE privilege for it. If he does not,
execution fails immediately. As the ORDMAINT program executes, its embedded INSERT,
UPDATE, and DELETE statements update the database. The privileges of the OPADMIN
user determine whether the plan will be allowed to perform these updates. Note that the
plan may update the tables even if JOE does not have the required privileges. However,
the updates that can be performed are only those that have been explicitly coded into the
embedded SQL statements of the program. Thus, DB2 provides very fine control over
database security. The privileges of users to access tables can be very limited, without
diminishing their ability to use canned programs.

Not all DBMS products provide security protection for application plans. For those
that do not, the privileges of the user executing an embedded SQL program determine
the privileges of the program’s application plan. Under this scheme, the user must have
privileges to perform all of the actions performed by the plan, or the program will fail.
If the user is not to have these same permissions in an interactive SQL environment,
access to the interactive SQL program itself must be restricted, which is a disadvantage
of this approach.

Automatic Rebinding
Note that an application plan is optimized for the database structure as it exists at the
time the plan is placed in the database by the BIND program. If the structure changes
later (for example, if an index is dropped or a column is deleted from a table), any
application plan that references the changed structures may become invalid. To handle
this situation, the DBMS usually stores, along with the application plan, a copy of the
original SQL statements that produced it.

The DBMS also keeps track of all the database objects upon which each application
plan depends. If any of these objects are modified by a DDL statement, the DBMS can
find the plans that depend on it and automatically marks those plans as invalid. The
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next time the program tries to use the plan, the DBMS can detect the situation, and in
most cases, it will automatically rebind the statements to produce a new bind image.
Because the DBMS has maintained a great deal of information about the application
plan, it can make this automatic rebinding completely transparent to the application
program. However, a SQL statement may take much longer to execute when its plan is
rebound than when the plan is simply executed.

Although the DBMS can automatically rebind a plan when one of the structures
upon which it depends is changed, the DBMS will usually not automatically detect
changes in the database that may make a better plan possible. For example, suppose a
plan uses a sequential scan of a table to locate particular rows because no appropriate
index existed when it was bound. It’s possible that a subsequent CREATE INDEX
statement will create an appropriate index. To take advantage of the new structure,
you must explicitly run the BIND program to rebind the plan.

Simple Embedded SQL Statements
The simplest SQL statements to embed in a program are those that are self-contained
and do not produce any query results. For example, consider this interactive SQL
statement:

Delete all salespeople with sales under $150,000.

DELETE FROM SALESREPS

WHERE SALES < 150000.00

Figures 17-4, 17-5, and 17-6 show three programs that perform the same task as this
interactive SQL statement, using embedded SQL. The program in Figure 17-4 is written
in C, the program in Figure 17-5 is written in COBOL, and the program in Figure 17-6
is written in FORTRAN. Although the programs are extremely simple, they illustrate
the most basic features of embedded SQL:

� The embedded SQL statements appear in the midst of host programming
language statements. It usually doesn’t matter whether the SQL statement is
written in uppercase or lowercase; the most common practice is to follow the
style of the host language.

� Every embedded SQL statement begins with an introducer that flags it as a
SQL statement. The IBM SQL products use the introducer EXEC SQL for most
host languages, and the ANSI/ISO SQL2 standard specifies it as well. Some
embedded SQL products still support other introducers, for backward
compatibility with their earlier versions.
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� If an embedded SQL statement extends over multiple lines, the host language
strategy for statement continuation is used. For COBOL, PL/I, and C programs,
no special continuation character is required. For FORTRAN programs, the
second and subsequent lines of the statement must have a continuation
character in column 6.

� Every embedded SQL statement ends with a terminator that signals the end of
the SQL statement. The terminator varies with the style of the host language.
In COBOL, the terminator is the string END-EXEC., which ends in a period like
other COBOL statements. For PL/I and C, the terminator is a semicolon (;),
which is also the statement termination character in those languages. In
FORTRAN, the embedded SQL statement ends when no more continuation
lines are indicated.

main()

{

exec sql include sqlca;

exec sql declare salesreps table

(empl_num integer not null,

name varchar(15) not null,

age integer

rep_office integer,

title varchar(10),

hire_date date not null,

manager integer,

quota money,

sales money not null);

/* Display a message for the user */

printf("Deleting salesreps with low quota.\n");

/*Execute the SQL statement */

exec sql delete from salesreps

where sales < 150000.00;

/* Display another message */

printf("Finished deleting.\n");

exit();

}

Figure 17-4. An embedded SQL program written in C



504 S Q L : T h e C o m p l e t e R e f e r e n c e

The embedding technique shown in the three figures works for any SQL statement
that (a) does not depend on the values of host language variables for its execution and
(b) does not retrieve data from the database. For example, the C program in Figure 17-7
creates a new REGIONS table and inserts two rows into it, using exactly the same
embedded SQL features as the program in Figure 17-4. For consistency, all of the
remaining program examples in the book will use the C programming language,
except when a particular host language feature is being illustrated.

IDENTIFICATION DIVISION.

PROGRAM-ID. SAMPLE.

ENVIRONMENT DIVISION.

DATA DIVISION.

FILE SECTION.

WORKING-STORAGE SECTION.

EXEC SQL INCLUDE SQLCA.

EXEC SQL DECLARE SALESREPS TABLE

(EMPL_NUM INTEGER NOT NULL,

NAME VARCHAR(15) NOT NULL,

AGE INTEGER,

REP_OFFICE INTEGER,

TITLE VARCHAR(10),

HIRE_DATE DATE NOT NULL,

MANAGER INTEGER,

QUOTA MONEY,

SALES MONEY NOT NULL)

END-EXEC.

PROCEDURE DIVISION.

*

*        DISPLAY A MESSAGE FOR THE USER

DISPLAY "Deleting salesreps with low quota.".

*

*        EXECUTE THE SQL STATEMENT

EXEC SQL DELETE FROM SALESREPS

WHERE QUOTA < 150000

END EXEC.

*

*        DISPLAY ANOTHER MESSAGE

DISPLAY "Finished deleting.".

Figure 17-5. An embedded SQL program written in COBOL
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Declaring Tables
In the IBM SQL products, the embedded DECLARE TABLE statement, shown in
Figure 17-8, declares a table that will be referenced by one or more embedded SQL
statements in your program. This is an optional statement that aids the precompiler
in its task of parsing and validating the embedded SQL statements. By using the
DECLARE TABLE statement, your program explicitly specifies its assumptions about
the columns in the table and their data types and sizes. The precompiler checks the
table and column references in your program to make sure they conform to your table
declaration.

The programs in Figures 17-4, 17-5, and 17-6 all use the DECLARE TABLE statement.
It’s important to note that the statement appears purely for documentation purposes
and for the use of the precompiler. It is not an executable statement, and you do not
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PROGRAM SAMPLE

100 FORMAT (' ',A35)

EXEC SQL INCLUDE SQLCA

EXEC SQL DECLARE SALESREPS TABLE

C                 (EMPL_NUM INTEGER NOT NULL,

C                      NAME VARCHAR(15) NOT NULL,

C                       AGE INTEGER,

C                REP_OFFICE INTEGER,

C                     TITLE VARCHAR(10),

C                 HIRE_DATE DATE NOT NULL,

C                   MANAGER INTEGER,

C                     QUOTA MONEY,

C                     SALES MONEY NOT NULL)

*

*      DISPLAY A MESSAGE FOR THE USER

WRITE (6,100) 'Deleting salesreps with low quota.'

*

*      EXECUTE THE SQL STATEMENT

EXEC SQL DELETE FROM REPS

C          WHERE QUOTA < 150000

*

*      DISPLAY ANOTHER MESSAGE

WRITE (6,100) 'Finished deleting.'

RETURN

END

Figure 17-6. An embedded SQL program written in FORTRAN
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need to explicitly declare tables before referring to them in embedded DML or DDL
statements. However, using the DECLARE TABLE statement does make your program
more self-documenting and simpler to maintain. The IBM-developed SQL products all
support the DECLARE TABLE statement, but most other SQL products do not support
it, and their precompilers will generate an error message if you use it.

Error Handling
When you type an interactive SQL statement that causes an error, the interactive SQL
program displays an error message, aborts the statement, and prompts you to type a
new statement. In embedded SQL, error handling becomes the responsibility of the
application program. Actually, embedded SQL statements can produce two distinct
types of errors:

main()

{

exec sql include sqlca;

/* Create a new REGIONS table */

exec sql create table regions

(name char(15),

hq_city char(15),

manager integer,

target money,

sales money,

primary key name,

foreign key manager

references salesreps);

printf("Table created.\n");

/* Insert two rows; one for each region */

exec sql insert into regions

values ('Eastern', 'New York', 106, 0.00, 0.00);

exec sql insert into regions

values ('Western', 'Los Angeles', 108, 0.00, 0.00);

printf("Table populated.\n");

exit();

}

Figure 17-7. Using embedded SQL to create a table



� Compile-time errors. Misplaced commas, misspelled SQL keywords, and similar
errors in embedded SQL statements are detected by the SQL precompiler and
reported to the programmer. The programmer can fix the errors and recompile
the application program.

� Runtime errors. An attempt to insert an invalid data value or lack of permission
to update a table can be detected only at runtime. Errors such as these must be
detected and handled by the application program.

In embedded SQL programs, the DBMS reports runtime errors to the application
program through a returned error code. If an error is detected, a further description of
the error and other information about the statement just executed is available through
additional diagnostic information. The earliest IBM-embedded SQL implementations
defined an error-reporting mechanism that was adopted, with variations, by most of
the major DBMS vendors. The central part of this scheme—an error status variable
named SQLCODE—was also defined in the original ANSI/ISO SQL standard. The
SQL2 standard, published in 1992, defined an entirely new, parallel error-reporting
mechanism, built around an error status variable named SQLSTATE. These
mechanisms are described in the next two sections.

Error Handling with SQLCODE
Under this scheme, pioneered by the earliest IBM products, the DBMS communicates
status information to the embedded SQL program through an area of program storage
called the SQL Communications Area, or SQLCA. The SQLCA is a data structure that
contains error variables and status indicators. By examining the SQLCA, the application
program can determine the success or failure of its embedded SQL statements and act
accordingly.
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Figure 17-8. The DECLARE TABLE statement syntax diagram
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Notice in Figures 17-4, 17-5, 17-6, and 17-7 that the first embedded SQL statement in
the program is INCLUDE SQLCA. This statement tells the SQL precompiler to include a
SQL Communications Area in this program. The specific contents of the SQLCA vary
slightly from one brand of DBMS to another, but the SQLCA always provides the same
type of information. Figure 17-9 shows the definition of the SQLCA used by the IBM
databases. The most important part of the SQLCA, the SQLCODE variable, is supported
by all of the major embedded SQL products and was specified by the ANSI/ISO SQL1
standard.

As the DBMS executes each embedded SQL statement, it sets the value of the
variable SQLCODE in the SQLCA to indicate the completion status of the statement:

struct sqlca {

unsigned char sqlcaid[8]; /* the string "SQLCA " */

long sqlcabc; /* length of SQLCA, in bytes */

long sqlcode; /* SQL status code */

short sqlerrml; /* length of sqlerrmc array data */

unsigned char sqlerrmc[70]; /* name(s) of object(s) causing error */

unsigned char sqlerrp[8]; /* diagnostic information */

long sqlerrd[6]; /* various counts and error code */

unsigned char sqlwarn[8]; /* warning flag array */

unsigned char sqlext[8]; /* extension to sqlwarn array */

}

#define SQLCODE sqlca.sqlcode /* SQL status code */

/* A 'W' in any of the SQLWARN fields signals a warning condition;

otherwise these fields each contain a blank */

#define SQLWARN0 sqlca.sqlwarn[0] /* master warning flag */

#define SQLWARN1 sqlca.sqlwarn[1] /* string truncated */

#define SQLWARN2 sqlca.sqlwarn[2] /* NULLs eliminated from column function */

#define SQLWARN3 sqlca.sqlwarn[3] /* too few/too many host variables */

#define SQLWARN4 sqlca.sqlwarn[4] /* prepared UPDATE/DELETE without WHERE */

#define SQLWARN5 sqlca.sqlwarn[5] /* SQL/DS vs DB2 incompatibility */

#define SQLWARN6 sqlca.sqlwarn[6] /* invalid date in arithmetic expr */

#define SQLWARN7 sqlca.sqlwarn[7] /* reserved */

`

Figure 17-9. The SQL Communications Area (SQLCA) for IBM databases
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� A SQLCODE of zero indicates successful completion of the statement, without
any errors or warnings.

� A negative SQLCODE value indicates a serious error that prevented the statement
from executing correctly. For example, an attempt to update a read-only view
would produce a negative SQLCODE value. A separate negative value is assigned
to each runtime error that can occur.

� A positive SQLCODE value indicates a warning condition. For example, truncation
or rounding of a data item retrieved by the program would produce a warning.
A separate positive value is assigned to each runtime warning that can occur. The
most common warning, with a value of +100 in most implementations and in the
SQL1 standard, is the out-of-data warning returned when a program tries to
retrieve the next row of query results and no more rows are left to retrieve.

Because every executable embedded SQL statement can potentially generate an
error, a well-written program will check the SQLCODE value after every executable
embedded SQL statement. Figure 17-10 shows a C program excerpt that checks the
SQLCODE value. Figure 17-11 shows a similar excerpt from a COBOL program.

.

.

.

exec sql delete from salesreps

where quota < 150000;

if (sqlca.sqlcode < 0)

goto error_routine;

.

.

.

error_routine:

printf("SQL error: %ld\n, sqlca.sqlcode);

exit();

.

.

.

Figure 17-10. A C program excerpt with SQLCODE error checking



Error Handling with SQLSTATE
By the time the SQL2 standard was being written, virtually all commercial SQL
products were using the SQLCODE variable to report error conditions in an embedded
SQL program. However, there was no standardization of the error numbers used by
the different products to report the same or similar error conditions. Further, because
of the significant differences among SQL implementations permitted by the SQL1
standard, considerable differences in the errors could occur from one implementation
to another. Finally, the definition of the SQLCA varied in significant ways from one
DBMS brand to another, and all of the major brands had a large installed base of
applications that would be broken by any change to their SQLCA structure.

Instead of tackling the impossible task of getting all of the DBMS vendors to agree
to change their SQLCODE values to some standard, the writers of the SQL2 standard
took a different approach. They included the SQLCODE error value, but identified it as
a deprecated feature, meaning that it was considered obsolete and would be removed
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.

.

.

01   PRINT_MESSAGE.

02   FILLER     PIC X(11) VALUE 'SQL error:'.

02   PRINT-CODE PIC SZ(9).

.

.

.

EXEC SQL DELETE FROM SALESREPS

WHERE QUOTA < 150000

END EXEC.

IF SQLCODE NOT = ZERO GOTO ERROR-ROUTINE.

.

.

.

ERROR-ROUTINE.

MOVE SQLCODE TO PRINT-CODE.

DISPLAY PRINT_MESSAGE.

.

.

.

Figure 17-11. A COBOL program excerpt with SQLCODE error checking



from the standard at some future time. To take its place, they introduced a new error
variable, called SQLSTATE. The standard also specifies, in detail, the error conditions
that can be reported through the SQLSTATE variable, and the error code assigned to
each error. To conform to the SQL2 standard, a SQL product must report errors using
both the SQLCODE and SQLSTATE error variables. In this way, existing programs that
use SQLCODE will still function, but new programs can be written to use the
standardized SQLSTATE error codes.

The SQLSTATE variable consists of two parts:

� A two-character error class that identifies the general classification of the error
(such as a connection error, an invalid data error, or a warning).

� A three-character error subclass that identifies a specific type of error within a
general error class. For example, within the invalid data class, the error subclass
might identify a divide by zero error, an invalid numeric value error, or invalid
datetime data.

Errors specified in the SQL2 standard have an error class code that begins with a
digit from zero to four (inclusive) or a letter between A and H (inclusive). For example,
data errors are indicated by error class 22. A violation of an integrity constraint (such
as a foreign key definition) is indicated by error class 23. A transaction rollback is
indicated by error class 40. Within each error class, the standard subclass codes also
follow the same initial number/letter restrictions. For example, within error class 40
(transaction rollback), the subclass codes are 001 for serialization failure (that is, your
program was chosen as the loser in a deadlock), 002 for an integrity constraint violation,
and 003 for errors where the completion status of the SQL statement is unknown (for
example, when a network connection breaks or a server crashes before the statement
completes). Figure 17-12 shows the same C program as Figure 17-10, but uses the
SQLSTATE variable for error checking instead of SQLCODE.

The standard specifically reserves error class codes that begin with digits from five
to nine (inclusive) and letters between I and Z (inclusive) as implementation-specific
errors that are not standardized. While this allows differences among DBMS brands to
continue, all of the most common errors caused by SQL statements are included in the
standardized error class codes. As commercial DBMS implementations move to support
the SQLSTATE variable, one of the most troublesome incompatibilities between different
SQL products is gradually being eliminated.

The SQL2 standard provides additional error and diagnostics information through
a new GET DIAGNOSTICS statement, shown in Figure 17-13. The statement allows an
embedded SQL program to retrieve one or more items of information about the SQL
statement just executed, or about an error condition that was just raised. Support for
the GET DIAGNOSTICS statement is required for Intermediate SQL or Full SQL
conformance to the standard but is not required or allowed in Entry SQL. Figure 17-14
shows a C program excerpt like that in Figure 17-12, extended to include the GET
DIAGNOSTICS statement.
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The WHENEVER Statement
It quickly becomes tedious for a programmer to write programs that explicitly check
the SQLCODE value after each embedded SQL statement. To simplify error handling,
embedded SQL supports the WHENEVER statement, shown in Figure 17-15. The
WHENEVER statement is a directive to the SQL precompiler, not an executable
statement. It tells the precompiler to automatically generate error-handling code
following every executable embedded SQL statement and specifies what the generated
code should do.

You can use the WHENEVER statement to tell the precompiler how to handle three
different exception conditions:

� WHENEVER SQLERROR tells the precompiler to generate code to handle errors
(negative SQLCODEs).

� WHENEVER SQLWARNING tells the precompiler to generate code to handle
warnings (positive SQLCODEs).

� WHENEVER NOT FOUND tells the precompiler to generate code that handles a
particular warning—the warning generated by the DBMS when your program
tries to retrieve query results when no more are remaining. This use of the
WHENEVER statement is specific to the singleton SELECT and the FETCH
statements, and is described in the section “Single-Row Queries.”

.

.

.

exec sql delete from salesreps

where quota < 150000;

if (strcmp(sqlca.sqlstate,"00000"))

goto error_routine;

.

.

.

error_routine:

printf("SQL error: %s\n",sqlca.sqlstate);

exit();

.

.

.

Figure 17-12. A C program excerpt with SQLSTATE error checking
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Note that the SQL2 standard does not specify the SQLWARNING form of the
WHENEVER statement, but most commercial SQL products support it.

To retrieve statement-level information and determine how many diagnostic errors:

GET DIAGNOSTICS hostvar =       NUMBER �

MORE

COMMAND_FUNCTION

DYNAMIC_FUNCTION

ROW_COUNT

,

To retrieve information about an individual diagnostic error:

GET DIAGNOSTICS EXCEPTION err_number

hostvar =       CONDITION_NUMBER �

RETURNED_SQLSTATE

CLASS_ORIGIN

SUBCLASS_ORIGIN

SERVER_NAME

CONNECTION_NAME

CONSTRAINT_CATALOG

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

CATALOG_NAME

SCHEMA_NAME

TABLE_NAME

COLUMN_NAME

CURSOR_NAME

MESSAGE_TEXT

MESSAGE_LENGTH

MESSAGE_OCTET_LENGTH

,

Figure 17-13. The GET DIAGNOSTICS statement syntax diagram



For any of these three conditions, you can tell the precompiler to generate code that
takes one of two actions:

� WHENEVER/GOTO tells the precompiler to generate a branch to the specified
label, which must be a statement label or statement number in the program.

� WHENEVER/CONTINUE tells the precompiler to let the program’s flow of control
proceed to the next host language statement.
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.

.

.

/* execute the DELETE statement & check for errors */

exec sql delete from salesreps

where quota < 150000;

if (strcmp(sqlca.sqlstate,"00000"))

goto error_routine;

/* DELETE successful; check how many rows deleted */

exec sql get diagnostics :numrows = ROW_COUNT;

printf("%ld rows deleted\n",numrows);

.

.

.

error_routine:

/* Determine how many errors reported */

exec sql get diagnostics :count = NUMBER;

for (i=1; i<count; i++) {

exec sql get diagnostics EXCEPTION :I

:err = RETURNED_SQLSTATE,

:msg = MESSAGE_TEXT;

printf("SQL error # %d: code: %s message: %s\n",

i, err, msg);

}

exit();

.

.

.

Figure 17-14. A C program excerpt with GET DIAGNOSTICS error checking



The WHENEVER statement is a directive to the precompiler, and its effect can be
superseded by another WHENEVER statement appearing later in the program text.
Figure 17-16 shows a program excerpt with three WHENEVER statements and four
executable SQL statements. In this program, an error in either of the two DELETE
statements results in a branch to error1 because of the first WHENEVER statement. An
error in the embedded UPDATE statement flows directly into the following statements
of the program. An error in the embedded INSERT statement results in a branch to
error2. As this example shows, the main use of the WHENEVER/CONTINUE form of
the statement is to cancel the effect of a previous WHENEVER statement.

The WHENEVER statement makes embedded SQL error handling much simpler,
and it is more common for an application program to use it than to check SQLCODE
or SQLSTATE directly. Remember, however, that after a WHENEVER/GOTO statement
appears, the precompiler will generate a test and a branch to the specified label for
every embedded SQL statement that follows it. You must arrange your program so that
the specified label is a valid target for branching from these embedded SQL statements,
or use another WHENEVER statement to specify a different destination or cancel the
effects of the WHENEVER/GOTO.

Using Host Variables
The embedded SQL programs in the previous figures don’t provide any real interaction
between the programming statements and the embedded SQL statements. In most
applications, you will want to use the value of one or more program variables in the
embedded SQL statements. For example, suppose you wanted to write a program to
adjust all sales quotas up or down by some dollar amount. The program should prompt
the user for the amount and then use an embedded UPDATE statement to change the
QUOTA column in the SALESREPS table.

Embedded SQL supports this capability through the use of host variables. A host
variable is a program variable declared in the host language (for example, a COBOL or C
variable) that is referenced in an embedded SQL statement. To identify the host variable,
the variable name is prefixed by a colon (:) when it appears in an embedded SQL
statement. The colon allows the precompiler to distinguish easily between host variables
and database objects (such as tables or columns) that may have the same name.
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Figure 17-15. The WHENEVER statement syntax diagram
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Figure 17-17 shows a C program that implements the quota adjustment application
using a host variable. The program prompts the user for the adjustment amount and
stores the entered value in the variable named amount. This host variable is referenced

.

.

.

exec sql whenever sqlerror goto error1;

exec sql delete from salesreps

where quota < 150000;

exec sql delete from customers

where credit_limit < 20000;

exec sql whenever sqlerror continue;

exec sql update salesreps

set quota = quota * 1.05;

exec sql whenever sqlerror goto error2;

exec sql insert into salesreps (empl_num, name, quota)

values (116, 'Jan Hamilton', 100000.00);

.

.

.

error1:

printf("SQL DELETE error: %dl\n", sqlca.sqlcode);

exit();

error2:

printf("SQL INSERT error: %ld\n", sqlca.sqlcode);

exit();

.

.

.

Figure 17-16. Using the WHENEVER statement



in the embedded UPDATE statement. Conceptually, when the UPDATE statement is
executed, the value of the amount variable is obtained, and that value is substituted
for the host variable in the SQL statement. For example, if you enter the amount 500
in response to the prompt, the DBMS effectively executes this UPDATE statement:

exec sql update salesreps

set quota = quota + 500;

A host variable can appear in an embedded SQL statement wherever a constant can
appear. In particular, a host variable can be used in an assignment expression:

exec sql update salesreps

set quota = quota + :amount;

A host variable can appear in a search condition:

exec sql delete from salesreps

where quota < :amount;

A host variable can also be used in the VALUES clause of an INSERT statement:

exec sql insert into salesreps (empl_num, name, quota)

values (116, 'Bill Roberts', :amount);

In each case, note that the host variable is part of the program’s input to the DBMS;
it forms part of the SQL statement submitted to the DBMS for execution. Later, in the
section “Data Retrieval in Embedded SQL,” you will see how host variables are also
used to receive output from the DBMS; they receive query results returned from the
DBMS to the program.

Note that a host variable cannot be used instead of a SQL identifier. This attempted
use of the host variable colname is illegal:

char *colname = "quota";

exec sql insert into salesreps (empl_num, name, :colname)

values (116, 'Bill Roberts', 0.00);

Declaring Host Variables
When you use a host variable in an embedded SQL statement, you must declare the
variable using the normal method for declaring variables in the host programming
language. For example, in Figure 17-17, the host variable amount is declared using the
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normal C language syntax (float amount;). When the precompiler processes the
source code for the program, it notes the name of each variable it encounters, along with
its data type and size. The precompiler uses this information to generate correct code
later when it encounters a use of the variable as a host variable in a SQL statement.

The two embedded SQL statements BEGIN DECLARE SECTION and END DECLARE
SECTION bracket the host variable declarations, as shown in Figure 17-17. These two
statements are unique to embedded SQL, and they are not executable. They are directives
to the precompiler, telling it when it must pay attention to variable declarations and
when it can ignore them.

In a simple embedded SQL program, it may be possible to gather together all of the
host variable declarations in one declare section. Usually, however, the host variables
must be declared at various points within the program, especially in block-structured

main()

{

exec sql include sqlca;

exec sql begin declare section;

float amount; /* amount (from user) */

exec sql end declare section;

/* Prompt the user for the amount of quota increase/decrease */

printf("Raise/lower quotas by how much:");

scanf("%f", &amount);

/* Update the QUOTA column in the SALESREPS table */

exec sql update salesreps

set quota = quota + :amount;

/* Check results of statement execution */

if (sqlqa.sqlcode != 0)

printf("Error during update.\n");

else

printf("Update successful.\n");

exit();

}

Figure 17-17. Using host variables



languages such as C, Pascal, and PL/I. In this case, each declaration of host variables
must be bracketed with a BEGIN DECLARE SECTION/END DECLARE SECTION
statement pair.

The BEGIN DECLARE SECTION and END DECLARE SECTION statements are relatively
new to the embedded SQL language. They are specified in the ANSI/ISO SQL standard,
and DB2 requires them in its newer embedded SQL implementations. However, DB2 and
many other DBMS brands did not historically require declare sections, and some SQL
precompilers do not yet support the BEGIN DECLARE SECTION and END DECLARE
SECTION statements. In this case, the precompiler scans and processes all variable
declarations in the host program.

When you use a host variable, the precompiler may limit your flexibility in
declaring the variable in the host programming language. For example, consider the
following C language source code:

#define BIGBUFSIZE 256

.

.

.

exec sql begin declare section;

char bigbuffer[BIGBUFSIZE+1];

exec sql end declare section;

This is a valid C declaration of the variable bigbuffer. However, if you try to use
bigbuffer as a host variable in an embedded SQL statement like this:

exec sql update salesreps

set quota = 300000

where name = :bigbuffer;

many precompilers will generate an error message, complaining about an illegal
declaration of bigbuffer. The problem is that some precompilers don’t recognize
symbolic constants like BIGBUFSIZE. This is just one example of the special
considerations that apply when using embedded SQL and a precompiler. Fortunately,
the precompilers offered by the major DBMS vendors are being improved steadily, and
the number of special case problems like this one is decreasing.

Host Variables and Data Types
The data types supported by a SQL-based DBMS and the data types supported by
a programming language such as C or FORTRAN are often quite different. These
differences impact host variables because they play a dual role. On the one hand, a
host variable is a program variable, declared using the data types of the programming
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language and manipulated by programming language statements. On the other hand,
a host variable is used in embedded SQL statements to contain database data.

Consider the four embedded UPDATE statements in Figure 17-18. In the first UPDATE
statement, the MANAGER column has an INTEGER data type, so hostvar1 should be
declared as a C integer variable. In the second statement, the NAME column has a
VARCHAR data type, so hostvar2 should contain string data. The program should
declare hostvar2 as an array of C character data, and most DBMS products will expect
the data in the array to be terminated by a null character (0). In the third UPDATE
statement, the QUOTA column has a MONEY data type. There is no corresponding data
type in C, and C does not support a packed decimal data type. For most DBMS brands,
you can declare hostvar3 as a C floating point variable, and the DBMS will
automatically translate the floating point value into the DBMS MONEY format. Finally,
in the fourth UPDATE statement, the HIRE_DATE column has a DATE data type in the
database. For most DBMS brands, you should declare hostvar4 as an array of C
character data and fill the array with a text form of the date acceptable to the DBMS.

As Figure 17-18 shows, the data types of host variables must be chosen carefully to
match their intended use in embedded SQL statements. Table 17-1 shows the SQL data
types specified in the ANSI/ISO SQL2 standard and the corresponding data types used
in four of the most popular embedded SQL programming languages, as specified in the
standard. The standard specifies data type correspondences and embedded SQL rules
for the Ada, C, COBOL, FORTRAN, MUMPS, Pascal, and PL/I languages.

Note, however, that in many cases, there is not a one-to-one correspondence between
data types. In addition, each brand of DBMS has its own data type idiosyncrasies and
its own rules for data type conversion when using host variables. Before counting on a
specific data conversion behavior, consult the documentation for your particular DBMS
brand and carefully read the description for the particular programming language you
are using.

Host Variables and NULL Values
Most programming languages do not provide SQL-style support for unknown or
missing values. A variable in COBOL, C, or FORTRAN, for example, always has a
value. There is no concept of the value being NULL or missing. This causes a problem
when you want to store NULL values in the database or retrieve NULL values from the
database using programmatic SQL. Embedded SQL solves this problem by allowing
each host variable to have a companion host indicator variable. In an embedded SQL
statement, the host variable and the indicator variable together specify a single
SQL-style value, as follows:

� An indicator value of zero means that the host variable contains a valid value
and that this value is to be used.

� A negative indicator value means that the host variable should be assumed to
have a NULL value; the actual value of the host variable is irrelevant and should
be disregarded.
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� A positive indicator value means that the host variable contains a valid value,
which may have been rounded off or truncated. This situation occurs only
when data is retrieved from the database, and is described later in the section
“Retrieving NULL Values.”

SQL Type C Type COBOL Type FORTRAN Type PL/I Type

SMALLINT short PIC S9 (4)
COMP

INTEGER*2 FIXED BIN(15)

INTEGER long PIC S9 (9) COMP INTEGER*4 FIXED BIN(31)

REAL float COMP-1 REAL*4 BIN FLOAT(21)

DOUBLE
PRECISION

double COMP-2 REAL*8 BIN FLOAT(53)

NUMERIC(p,s)
DECIMAL(p,s)

double1 PIC S9 (p-s)
V9(s) COMP-3

REAL*81 FIXED
DEC(p,s)

CHAR(n) char x[n+1]2 PIC X (n) CHARACTER*n CHAR(n)

VARCHAR(n) char x[n+1]2 Req. conv.4 Req. conv.4 CHAR(n) VAR

BIT(n) char x[1]3 PIC X (l) CHARACTER*L3 BIT(n)

BIT
VARYING(n)

char x[1]3 Req. conv.4 Req. conv.4 BIT(n) VAR

DATE Req. conv.5 Req. conv.5 Req. conv.5 Req. conv.5

TIME Req. conv.5 Req. conv.5 Req. conv.5 Req. conv.5

TIMESTAMP Req. conv.5 Req. conv.5 Req. conv.5 Req. conv.5

INTERVAL Req. conv.5 Req. conv.5 Req. conv.5 Req. conv.5

Notes:
1 Host language does not support packed decimal data; conversion to or from floating point data may

cause truncation or round-off errors.

2 The SQL standard specifies a C string with a null terminator; older DBMS implementations returned
a separate length value in a data structure.

3 The length of the host character string (l) is the number of bits (n), divided by the bits-per-character
for the host language (typically 8), rounded up.

4 Host language does not support variable-length strings; most DBMS brands will convert to
fixed-length strings.

5 Host languages do not support native date/time data types; requires conversion to/from host
language character string data types with text date, time, and interval representations.

Table 17-1. SQL Data Types



When you specify a host variable in an embedded SQL statement, you can follow
it immediately with the name of the corresponding indicator variable. Both variable
names are preceded by a colon. Here is an embedded UPDATE statement that uses the
host variable amount with the companion indicator variable amount_ind:

exec sql update salesreps

set quota = :amount :amount_ind, sales = :amount2

where quota < 20000.00;
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.

.

.

exec sql begin declare section;

int    hostvar1  = 106;

char  *hostvar2 = "Joe Smith";

float  hostvar3  = 150000.00;

char  *hostvar4 = "01-JUN-1990";

exec sql end declare section;

exec sql update salesreps

set manager = :hostvar1

where empl_num = 102;

exec sql update salesreps

set name = :hostvar2

where empl_num = 102:

exec sql update salesreps

set quota = :hostvar3

where empl_num = 102;

exec sql update salesreps

set hire_date = :hostvar4

where empl_num = 102;

.

.

.

Figure 17-18. Host variables and data types



If amount_ind has a nonnegative value when the UPDATE statement is executed,
the DBMS treats the statement as if it read:

exec sql update salesreps

set quota = :amount, sales = :amount2

where quota < 20000.00;

If amount_ind has a negative value when the UPDATE statement is executed, the
DBMS treats the statement as if it read:

exec sql update salesreps

set quota = NULL, sales = :amount2

where quota < 20000.00;

A host variable/indicator variable pair can appear in the assignment clause of an
embedded UPDATE statement (as shown here) or in the values clause of an embedded
INSERT statement. You cannot use an indicator variable in a search condition, so this
embedded SQL statement is illegal:

exec sql delete from salesreps

where quota = :amount :amount_ind;

This prohibition exists for the same reason that the NULL keyword is not allowed
in the search condition—it makes no sense to test whether QUOTA and NULL are equal,
because the answer will always be NULL (unknown). Instead of using the indicator
variable, you must use an explicit IS NULL test. This pair of embedded SQL statements
accomplishes the intended task of the preceding illegal statement:

if (amount_ind < 0) {

exec sql delete from salesreps

where quota is null;

}

else {

exec sql delete from salesreps

where quota = :amount;

}

Indicator variables are especially useful when you are retrieving data from the
database into your program and the retrieved data values may be NULL. This use
of indicator variables is described later in the section “Retrieving NULL Values.”
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Data Retrieval in Embedded SQL
Using the embedded SQL features described thus far, you can embed any interactive
SQL statement except the SELECT statement in an application program. Retrieving
data with an embedded SQL program requires some special extensions to the SELECT
statement. The reason for these extensions is that there is a fundamental mismatch
between the SQL language and programming languages such as C and COBOL: a SQL
query produces an entire table of query results, but most programming languages can
manipulate only individual data items or individual records (rows) of data.

Embedded SQL must build a bridge between the table-level logic of the SQL SELECT
statement and the row-by-row processing of C, COBOL, and other host programming
languages. For this reason, embedded SQL divides SQL queries into two groups:

� Single-row queries. You expect the query results to contain a single row of
data. Looking up a customer’s credit limit or retrieving the sales and quota for
a particular salesperson are examples of this type of query.

� Multirow queries. You expect that the query results may contain zero, one, or
many rows of data. Listing the orders with amounts over $20,000 or retrieving
the names of all salespeople who are over quota are examples of this type
of query.

Interactive SQL does not distinguish between these two types of queries; the same
interactive SELECT statement handles them both. In embedded SQL, however, the two
types of queries are handled very differently. Single-row queries are simpler to handle
and are discussed in the next section. Multirow queries are discussed shortly.

Single-Row Queries
Many useful SQL queries return a single row of query results. Single-row queries are
especially common in transaction-processing programs, where a user enters a customer
number or an order number and the program retrieves relevant data about the customer
or order. In embedded SQL, single-row queries are handled by the singleton SELECT
statement, shown in Figure 17-19. The singleton SELECT statement has a syntax much
like that of the interactive SELECT statement. It has a SELECT clause, a FROM clause, and
an optional WHERE clause. Because the singleton SELECT statement returns a single row
of data, there is no need for a GROUP BY, HAVING, or ORDER BY clause. The INTO clause
specifies the host variables that are to receive the data retrieved by the statement.

Figure 17-20 shows a simple program with a singleton SELECT statement. The
program prompts the user for an employee number and then retrieves the name,
quota, and sales of the corresponding salesperson. The DBMS places the three retrieved
data items into the host variables repname, repquota, and repsales, respectively.



Recall that the host variables used in the INSERT, DELETE, and UPDATE statements
in the previous examples were input host variables. In contrast, the host variables
specified in the INTO clause of the singleton SELECT statement are output host
variables. Each host variable named in the INTO clause receives a single column from
the row of query results. The select list items and the corresponding host variables are
paired in sequence, as they appear in their respective clauses, and the number of query
results columns must be the same as the number of host variables. In addition, the data
type of each host variable must be compatible with the data type of the corresponding
column of query results.

Most DBMS brands will automatically handle reasonable conversions between
DBMS data types and the data types supported by the programming language. For
example, most DBMS products will convert MONEY data retrieved from the database
into packed decimal (COMP-3) data before storing it in a COBOL variable, or into
floating point data before storing it in a C variable. The precompiler uses its knowledge
of the host variable’s data type to handle the conversion correctly.

Variable-length text data must also be converted before being stored in a host
variable. Typically, a DBMS converts VARCHAR data into a null-terminated string for C
programs and into a variable-length string (with a leading character count) for Pascal
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Figure 17-19. The singleton SELECT statement syntax diagram



programs. For COBOL and FORTRAN programs, the host variable must generally be
declared as a data structure with an integer count field and a character array. The
DBMS returns the actual characters of data in the character array, and it returns the
length of the data in the count field of the data structure.
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main()

{

exec sql begin declare section;

int repnum; /* employee number (from user) */

char repname[16]; /* retrieved salesperson name */

float repquota; /* retrieved quota */

float repsales; /* retrieved sales */

exec sql end declare section;

/* Prompt the user for the employee number */

printf("Enter salesrep number: ");

scanf("%d", &repnum);

/* Execute the SQL query */

exec sql select name, quota, sales

from salesreps

where empl_num = :repnum

into :repname, :repquota, :repsales;

/* Display the retrieved data */

if (sqlca.sqlcode = = 0) {

printf("Name: %s\n", repname);

printf("Quota: %f\n", repquota);

printf("Sales: %f\n", repsales);

}

else if (sqlca.sqlcode = = 100)

printf("No salesperson with that employee number.\n");

else

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

}

Figure 17-20. Using the singleton SELECT statement
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If a DBMS supports date/time data or other data types, other conversions are
necessary. Some DBMS products return their internal date/time representations into
an integer host variable. Others convert the date/time data to text format and return it
into a string host variable. Table 17-1 summarized the data type conversions typically
provided by DBMS products, but you must consult the embedded SQL documentation
for your particular DBMS brand for specific information.

The NOT FOUND Condition
Like all embedded SQL statements, the singleton SELECT statement sets the values of
the SQLCODE and SQLSTATE variables to indicate its completion status:

� If a single row of query results is successfully retrieved, SQLCODE is set to zero
and SQLSTATE is set to 00000; the host variables named in the INTO clause
contain the retrieved values.

� If the query produced an error, SQLCODE is set to a negative value and
SQLSTATE is set to a nonzero error class (the first two characters of the
five-digit SQLSTATE string); the host variables do not contain retrieved values.

� If the query produced no rows of query results, a special NOT FOUND warning
value is returned in SQLCODE, and SQLSTATE returns a NO DATA error class.

� If the query produced more than one row of query results, it is treated as an
error, and a negative SQLCODE is returned.

The SQL1 standard specifies the NOT FOUND warning condition, but it does not
specify a particular value to be returned. DB2 uses the value +100, and most other SQL
products follow this convention, including the other IBM SQL products, Ingres, and
SQLBase. This value is also specified in the SQL2 standard, but as noted previously,
SQL2 strongly encourages the use of the new SQLSTATE error variable instead of the
older SQLCODE values.

Retrieving NULL Values
If the data to be retrieved from a database may contain NULL values, the singleton
SELECT statement must provide a way for the DBMS to communicate the NULL values
to the application program. To handle NULL values, embedded SQL uses indicator
variables in the INTO clause, just as they are used in the VALUES clause of the INSERT
statement and the SET clause of the UPDATE statement.

When you specify a host variable in the INTO clause, you can follow it immediately
with the name of a companion host indicator variable. Figure 17-21 shows a revised
version of the program in Figure 17-20 that uses the indicator variable repquota_ind
with the host variable repquota. Because the NAME and SALES columns are declared
NOT NULL in the definition of the SALESREPS table, they cannot produce NULL output
values, and no indicator variable is needed for those columns.
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main()

{

exec sql include sqlca;

exec sql begin declare section;

int repnum; /* employee number (from user) */

char repname[16]; /* retrieved salesperson name */

float repquota; /* retrieved quota */

float repsales; /* retrieved sales */

short repquota_ind; /* null quota indicator */

exec sql end declare section;

/* Prompt the user for the employee number */

printf("Enter salesrep number: ");

scanf("%d", &repnum);

/* Execute the SQL query */

exec sql select name, quota, sales

from salesreps

where empl_num = :repnum

into :repname, :repquota, :repquota_ind, :repsales;

/* Display the retrieved data */

if (sqlca.sqlcode = = 0) {

printf("Name: %s\n", repname);

if (repquota_ind < 0)

printf("quota is NULL\n");

else

printf("Quota: %f\n", repquota);

printf("Sales: %f\n", repsales);

}

else if (sqlca.sqlcode = = 100)

printf("No salesperson with that employee number.\n");

else

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

}

Figure 17-21. Using singleton SELECT with indicator variables
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After the SELECT statement has been executed, the value of the indicator variable
tells the program how to interpret the returned data:

� An indicator value of zero means the host variable has been assigned a
retrieved value by the DBMS. The application program can use the value of
the host variable in its processing.

� A negative indicator value means the retrieved value was NULL. The value
of the host variable is irrelevant and should not be used by the application
program.

� A positive indicator value indicates a warning condition of some kind, such
as a rounding error or string truncation.

Because you cannot tell in advance when a NULL value will be retrieved, you should
always specify an indicator variable in the INTO clause for any column of query results
that may contain a NULL value. If the SELECT statement produces a column containing a
NULL value and you have not specified an indicator variable for the column, the DBMS
will treat the statement as an error and return a negative SQLCODE. Thus, indicator
variables must be used to successfully retrieve rows containing NULL data.

Although the major use of indicator variables is for handling NULL values, the
DBMS also uses indicator variables to signal warning conditions. For example, if an
arithmetic overflow or division by zero makes one of the query results columns
invalid, DB2 returns a warning SQLCODE of +802 and sets the indicator variable for
the affected column to -2. The application program can respond to the SQLCODE and
examine the indicator variables to determine which column contains invalid data.

DB2 also uses indicator variables to signal string truncation. If the query results
contain a column of character data that is too large for the corresponding host variable,
DB2 copies the first part of the character string into the host variable and sets the
corresponding indicator variable to the full length of the string. The application
program can examine the indicator variable and may want to retry the SELECT
statement with a different host variable that can hold a larger string.

These additional uses of indicator variables are fairly common in commercial SQL
products, but the specific warning code values vary from one product to another. They
are not specified by the ANSI/ISO SQL standard. Instead, the SQL2 standard specifies
error classes and subclasses to indicate these and similar conditions, and the program
must use the GET DIAGNOSTICS statement to determine more specific information
about the host variable causing the error.

Retrieval Using Data Structures
Some programming languages support data structures, which are named collections of
variables. For these languages, a SQL precompiler may allow you to treat the entire data
structure as a single, composite host variable in the INTO clause. Instead of specifying a
separate host variable as the destination for each column of query results, you can specify
a data structure as the destination for the entire row. Figure 17-22 shows the program
from Figure 17-21, rewritten to use a C data structure.
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main()

{

exec sql include sqlca;

exec sql begin declare section;

int repnum; /* employee number (from user) */

struct {

char name[16]; /* retrieved salesperson name */

float quota; /* retrieved quota */

float sales; /* retrieved sales */

} repinfo;

short rep_ind[3]; /* null indicator array */

exec sql end declare section;

/* Prompt the user for the employee number */

printf("Enter salesrep number: ");

scanf("%d", &repnum);

/* Execute the SQL query */

exec sql select name, quota, sales

from salesreps

where empl_num = :repnum

into :repinfo :rep_ind;

/* Display the retrieved data */

if (sqlca.sqlcode = = 0) {

printf("Name: %s\n", repinfo.name);

if (rep_ind[1] < 0)

printf("quota is NULL\n");

else

printf("Quota: %f\n", repinfo.quota);

printf("Sales: %f\n", repinfo.sales);

}

else if (sqlca.sqlcode = = 100)

printf("No salesperson with that employee number.\n");

else

printf("SQL error: %ld\n", sqlca.sqlcode);

exit();

}

Figure 17-22. Using a data structure as a host variable
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When the precompiler encounters a data structure reference in the INTO clause, it
replaces the structure reference with a list of the individual variables in the structure,
in the order they are declared within the structure. Thus, the number of items in the
structure and their data types must correspond to the columns of query results. The
use of data structures in the INTO clause is, in effect, a shortcut. It does not
fundamentally change the way the INTO clause works.

Support for the use of data structures as host variables varies widely among DBMS
brands. It is also restricted to certain programming languages. DB2 supports C and
PL/I structures but does not support COBOL or assembly language structures, for
example.

Input and Output Host Variables
Host variables provide two-way communication between the program and the DBMS.
In the program shown in Figure 17-21, the host variables repnum and repname
illustrate the two different roles played by host variables:

� The repnum host variable is an input host variable, used to pass data from
the program to the DBMS. The program assigns a value to the variable before
executing the embedded statement, and that value becomes part of the SELECT
statement to be executed by the DBMS. The DBMS does nothing to alter the
value of the variable.

� The repname host variable is an output host variable, used to pass data back
from the DBMS to the program. The DBMS assigns a value to this variable as
it executes the embedded SELECT statement. After the statement has been
executed, the program can use the resulting value.

Input and output host variables are declared the same way and are specified using
the same colon notation within an embedded SQL statement. However, it’s often useful
to think in terms of input and output host variables when you’re actually coding an
embedded SQL program. Input host variables can be used in any SQL statement where
a constant can appear. Output host variables are used only with the singleton SELECT
statement and with the FETCH statement, described in the next section of this chapter.

Multirow Queries
When a query produces an entire table of query results, embedded SQL must provide
a way for the application program to process the query results one row at a time.
Embedded SQL supports this capability by defining a new SQL concept, called a cursor,
and adding several statements to the interactive SQL language. Here is an overview of
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embedded SQL techniques for multirow query processing and the new statements
it requires:

1. The DECLARE CURSOR statement specifies the query to be performed and
associates a cursor name with the query.

2. The OPEN statement asks the DBMS to start executing the query and generating
query results. It positions the cursor before the first row of query results.

3. The FETCH statement advances the cursor to the first row of query results
and retrieves its data into host variables for use by the application program.
Subsequent FETCH statements move through the query results row by row,
advancing the cursor to the next row of query results and retrieving its data
into the host variables.

4. The CLOSE statement ends access to the query results and breaks the
association between the cursor and the query results.

Figure 17-23 shows a program that uses embedded SQL to perform a simple
multirow query. The numbered callouts in the figure correspond to the numbers in
the preceding steps. The program retrieves and displays, in alphabetical order, the
name, quota, and year-to-date sales of each salesperson whose sales exceed quota.
The interactive SQL query that prints this information is:

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE SALES > QUOTA

ORDER BY NAME

Notice that this query appears, word for word, in the embedded DECLARE CURSOR
statement in Figure 17-23. The statement also associates the cursor name repcurs with
the query. This cursor name is used later in the OPEN CURSOR statement to start the
query and position the cursor before the first row of query results.

The FETCH statement inside the for loop fetches the next row of query results each
time the loop is executed. The INTO clause of the FETCH statement works just like the
INTO clause of the singleton SELECT statement. It specifies the host variables that are
to receive the fetched data items—one host variable for each column of query results.
As in previous examples, a host indicator variable (repquota_ind) is used when a
fetched data item may contain NULL values.

When no more rows of query results are to be fetched, the DBMS returns the NOT
FOUND warning in response to the FETCH statement. This is exactly the same warning
code that is returned when the singleton SELECT statement does not retrieve a row of
data. In this program, the WHENEVER NOT FOUND statement causes the precompiler to
generate code that checks the SQLCODE value after the FETCH statement. This generated
code branches to the label done when the NOT FOUND condition arises, and to the label
error if an error occurs. At the end of the program, the CLOSE statement ends the query
and terminates the program’s access to the query results.
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main()
{

exec sql include sqlca;
exec sql begin declare section;

char  repname[16];             /* retrieved salesperson name */
float repquota;                /* retrieved quota */
float repsales;                /* retrieved sales */
short repquota_ind;            /* null quota indicator */

exec sql end declare section;

/* Declare the cursor for the query */
exec sql declare repcurs cursor for                      1

select name, quota, sales
from salesreps

where sales > quota
order by name;

/* Set up error processing */
whenever sqlerror goto error;
whenever not found goto done;

/* Open the cursor to start the query */
exec sql open repcurs; 2

/* Loop through each row of query results */
for (;;) {

/* Fetch the next row of query results */
exec sql fetch repcurs                                3

into :repname, :repquota, :repquota_ind, repsales;

/* Display the retrieved data */
printf("Name: %s\n", repname);
if (repquota_ind < 0)

printf("Quota is NULL\n");
else

printf("Quota: %f\n", repquota);
printf("Sales: %f\n", repsales);

}

error:
printf("SQL error: %ld\n", sqlca.sqlcode);
exit();

done:
/* Query complete; close the cursor */
exec sql close repcurs;                                    4
exit();

}

Figure 17-23. Multirow query processing
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Cursors
As the program in Figure 17-23 illustrates, an embedded SQL cursor behaves much like a
filename or file handle in a programming language such as C or COBOL. Just as a program
opens a file to access the file’s contents, it opens a cursor to gain access to the query results.
Similarly, the program closes a file to end its access and closes a cursor to end access to the
query results. Finally, just as a file handle keeps track of the program’s current position
within an open file, a cursor keeps track of the program’s current position within the query
results. These parallels between file input/output and SQL cursors make the cursor
concept relatively easy for application programmers to understand.

Despite the parallels between files and cursors, there are also some differences.
Opening a SQL cursor usually involves much more overhead than opening a file,
because opening the cursor actually causes the DBMS to begin carrying out the
associated query. In addition, SQL cursors support only sequential motion through the
query results, like sequential file processing. In most current SQL implementations, there
is no cursor analog to the random access provided to the individual records of a file.

Cursors provide a great deal of flexibility for processing queries in an embedded
SQL program. By declaring and opening multiple cursors, the program can process
several sets of query results in parallel. For example, the program might retrieve some
rows of query results, display them on the screen for its user, and then respond to a
user’s request for more detailed data by launching a second query. The following
sections describe in detail the four embedded SQL statements that define and
manipulate cursors.

The DECLARE CURSOR Statement
The DECLARE CURSOR statement, shown in Figure 17-24, defines a query to be performed.
The statement also associates a cursor name with the query. The cursor name must be a
valid SQL identifier. It is used to identify the query and its results in other embedded SQL
statements. The cursor name is specifically not a host language variable; it is declared by
the DECLARE CURSOR statement, not in a host language declaration.

The SELECT statement in the DECLARE CURSOR statement defines the query
associated with the cursor. The SELECT statement can be any valid interactive SQL
SELECT statement, as described in Chapters 6 through 9. In particular, the SELECT
statement must include a FROM clause and may optionally include WHERE, GROUP BY,
HAVING, and ORDER BY clauses. The SELECT statement may also include the UNION
operator, as described in Chapter 6. Thus, an embedded SQL query can use any of the
query capabilities that are available in the interactive SQL language.

Figure 17-24. The DECLARE CURSOR statement syntax diagram



The query specified in the DECLARE CURSOR statement may also include input host
variables. These host variables perform exactly the same function as in the embedded
INSERT, DELETE, UPDATE, and singleton SELECT statements. An input host variable
can appear within the query anywhere that a constant can appear. Note that output
host variables cannot appear in the query. Unlike the singleton SELECT statement, the
SELECT statement within the DECLARE CURSOR statement has no INTO clause and
does not retrieve any data. The INTO clause appears as part of the FETCH statement,
described shortly.

As its name implies, the DECLARE CURSOR statement is a declaration of the cursor.
In most SQL implementations, including the IBM SQL products, this statement is a
directive for the SQL precompiler; it is not an executable statement, and the precompiler
does not produce any code for it. Like all declarations, the DECLARE CURSOR statement
must physically appear in the program before any statements that reference the cursor
that it declares. Most SQL implementations treat the cursor name as a global name that
can be referenced inside any procedures, functions, or subroutines that appear after the
DECLARE CURSOR statement.

It’s worth noting that not all SQL implementations treat the DECLARE CURSOR
statement strictly as a declarative statement, and this can lead to subtle problems. Some
SQL precompilers actually generate code for the DECLARE CURSOR statement (either
host language declarations or calls to the DBMS, or both), giving it some of the qualities
of an executable statement. For these precompilers, the DECLARE CURSOR statement must
not only physically precede the OPEN, FETCH, and CLOSE statements that reference its
cursor, but it must sometimes precede these statements in the flow of execution or be
placed in the same block as the other statements.

In general, you can avoid problems with the DECLARE CURSOR statement by
following these guidelines:

� Place the DECLARE CURSOR statement right before the OPEN statement for the
cursor. This placement ensures the correct physical statement sequence, it puts
the DECLARE CURSOR and the OPEN statements in the same block, and it ensures
that the flow of control passes through the DECLARE CURSOR statement, if
necessary. It also helps to document just what query is being requested by the
OPEN statement.

� Make sure that the FETCH and CLOSE statements for the cursor follow the
OPEN statement physically as well as in the flow of control.

The OPEN Statement
The OPEN statement, shown in Figure 17-25, conceptually opens the table of query
results for access by the application program. In practice, the OPEN statement actually
causes the DBMS to process the query, or at least to begin processing it. The OPEN
statement thus causes the DBMS to perform the same work as an interactive SELECT
statement, stopping just short of the point where it produces the first row of query
results.
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The single parameter of the OPEN statement is the name of the cursor to be opened.
This cursor must have been previously declared by a DECLARE CURSOR statement. If
the query associated with the cursor contains an error, the OPEN statement will produce
a negative SQLCODE value. Most query-processing errors, such as a reference to an
unknown table, an ambiguous column name, or an attempt to retrieve data from a table
without the proper permission, will be reported as a result of the OPEN statement. In
practice, very few errors occur during the subsequent FETCH statements.

Once opened, a cursor remains in the open state until it is closed with the CLOSE
statement. The DBMS also closes all open cursors automatically at the end of a
transaction (that is, when the DBMS executes a COMMIT or ROLLBACK statement). After
the cursor has been closed, it can be reopened by executing the OPEN statement a second
time. Note that the DBMS restarts the query from scratch each time it executes the OPEN
statement.

The FETCH Statement
The FETCH statement, shown in Figure 17-26, retrieves the next row of query results for
use by the application program. The cursor named in the FETCH statement specifies
which row of query results is to be fetched. It must identify a cursor previously opened
by the OPEN statement.

The FETCH statement fetches the row of data items into a list of host variables,
which are specified in the INTO clause of the statement. An indicator variable can be
associated with each host variable to handle retrieval of NULL data. The behavior of
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Figure 17-25. The OPEN statement syntax diagram

Figure 17-26. The FETCH statement syntax diagram



the indicator variable and the values that it can assume are identical to those described
earlier in the “Single-Row Queries” section for the singleton SELECT statement. The
number of host variables in the list must be the same as the number of columns in the
query results, and the data types of the host variables must be compatible, column by
column, with the columns of query results.

As shown in Figure 17-27, the FETCH statement moves the cursor through the
query results, row by row, according to these rules:

� The OPEN statement positions the cursor before the first row of query results.
In this state, the cursor has no current row.

� The FETCH statement advances the cursor to the next available row of query
results, if there is one. This row becomes the current row of the cursor.

� If a FETCH statement advances the cursor past the last row of query results, the
FETCH statement returns a NOT FOUND warning. In this state, the cursor again
has no current row.

� The CLOSE statement ends access to the query results and places the cursor in
a closed state.

If there are no rows of query results, the OPEN statement still positions the cursor
before the (empty) query results and returns successfully. The program cannot detect
that the OPEN statement has produced an empty set of query results. However, the
very first FETCH statement produces the NOT FOUND warning and positions the cursor
after the end of the (empty) query results.
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Figure 17-27. Cursor positioning with OPEN, FETCH, and CLOSE
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The CLOSE Statement
The CLOSE statement, shown in Figure 17-28, conceptually closes the table of query
results created by the OPEN statement, ending access by the application program. Its
single parameter is the name of the cursor associated with the query results, which
must be a cursor previously opened by an OPEN statement. The CLOSE statement can
be executed any time after the cursor has been opened. In particular, it is not necessary
to FETCH all rows of query results before closing the cursor, although this will usually
be the case. All cursors are automatically closed at the end of a transaction. Once a
cursor is closed, its query results are no longer available to the application program.

Scroll Cursors
The SQL1 standard specifies that a cursor can only move forward through the query
results. Until the last few years, most commercial SQL products also supported only
this form of forward, sequential cursor motion. If a program wants to reretrieve a row
once the cursor has moved past it, the program must CLOSE the cursor and reOPEN it
(causing the DBMS to perform the query again), and then FETCH through the rows
until the desired row is reached.

In the early 1990s, a few commercial SQL products extended the cursor concept
with the concept of a scroll cursor. Unlike standard cursors, a scroll cursor provides
random access to the rows of query results. The program specifies which row it wants
to retrieve through an extension of the FETCH statement, shown in Figure 19-28:

� FETCH FIRST retrieves the first row of query results.

� FETCH LAST retrieves the last row of query results.

� FETCH PRIOR retrieves the row of query results that immediately precedes the
current row of the cursor.

� FETCH NEXT retrieves the row of query results that immediately follows the
current row of the cursor. This is the default behavior if no motion is specified
and corresponds to the standard cursor motion.

� FETCH ABSOLUTE retrieves a specific row by its row number.

� FETCH RELATIVE moves the cursor forward or backward a specific number of
rows relative to its current position.

Figure 17-28. The CLOSE statement syntax diagram
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Scroll cursors can be especially useful in programs that allow a user to browse
database contents. In response to the user’s request to move forward or backward
through the data a row or a screenful at a time, the program can simply fetch the
required rows of the query results. However, scroll cursors are also a great deal harder
for the DBMS to implement than a normal, unidirectional cursor. To support a scroll
cursor, the DBMS must keep track of the previous query results that it provided for a
program, and the order in which it supplied those rows of results. The DBMS must also
ensure that no other concurrently executing transaction modifies any data that has
become visible to a program through a scroll cursor, because the program can use the
extended FETCH statement to reretrieve the row, even after the cursor has moved past
the row.

If you use a scroll cursor, you should be aware that certain FETCH statements on a
scroll cursor may have a very high overhead for some DBMS brands. If the DBMS
brand normally carries out a query step by step as your program FETCHes its way
down through the query results, your program may wait a much longer time than
normal if you request a FETCH NEXT operation when the cursor is positioned at the
first row of query results. It’s best to understand the performance characteristics of
your particular DBMS brand before writing programs that depend on scroll cursor
functionality for production applications.

Because of the usefulness of scroll cursors, and because a few DBMS vendors had
begun to ship scroll cursor implementations that were slightly different from one
another, the SQL2 standard was expanded to include support for scroll cursors. The
Entry SQL level of the standard requires only the older-style, sequential forward cursor,
but conformance at the Intermediate SQL or Full SQL levels requires full support for the
scroll cursor syntax shown in Figure 17-29. The standard also specifies that if any motion
other than FETCH NEXT (the default) is used on a cursor, its DECLARE CURSOR statement
must explicitly identify it as a scroll cursor. Using the SQL2 syntax, the cursor declaration
in Figure 17-22 would appear as:

exec sql declare repcurs scroll cursor for

select name, quota, sales

from salesreps

where sales > quota

order by name;

Cursor-Based Deletes and Updates
Application programs often use cursors to allow the user to browse through a table of
data row by row. For example, the user may ask to see all of the orders placed by a
particular customer. The program declares a cursor for a query of the ORDERS table
and displays each order on the screen, possibly in a computer-generated form, waiting
for a signal from the user to advance to the next row. Browsing continues in this
fashion until the user reaches the end of the query results. The cursor serves as a



pointer to the current row of query results. If the query draws its data from a single
table and it is not a summary query, as in this example, the cursor implicitly points to a
row of a database table, because each row of query results is drawn from a single row
of the table.

While browsing the data, the user may spot data that should be changed. For
example, the order quantity in one of the orders may be incorrect, or the customer may
want to delete one of the orders. In this situation, the user wants to update or delete
this order. The row is not identified by the usual SQL search condition; rather, the
program uses the cursor as a pointer to indicate which particular row is to be updated
or deleted.

Embedded SQL supports this capability through special versions of the DELETE
and UPDATE statements, called the positioned DELETE and positioned UPDATE
statements, respectively.

The positioned DELETE statement, shown in Figure 17-30, deletes a single row from
a table. The deleted row is the current row of a cursor that references the table. To
process the statement, the DBMS locates the row of the base table that corresponds to
the current row of the cursor and deletes that row from the base table. After the row is
deleted, the cursor has no current row. Instead, the cursor is effectively positioned in
the empty space left by the deleted row, waiting to be advanced to the next row by a
subsequent FETCH statement.

The positioned UPDATE statement, shown in Figure 17-31, updates a single row of a
table. The updated row is the current row of a cursor that references the table. To process
the statement, the DBMS locates the row of the base table that corresponds to the current
row of the cursor and updates that row as specified in the SET clause. After the row is
updated, it remains the current row of the cursor. Figure 17-32 shows an order-browsing
program that uses the positioned UPDATE and DELETE statements:

540 S Q L : T h e C o m p l e t e R e f e r e n c e

Figure 17-29. An extended FETCH statement for scroll cursors



1. The program first prompts the user for a customer number and then queries
the ORDERS table to locate all of the orders placed by that customer.

2. As it retrieves each row of query results, it displays the order information on
the screen and asks the user what to do next.

3. If the user types an N, the program does not modify the current order, but
moves directly to the next order.

4. If the user types a D, the program deletes the current order using a positioned
DELETE statement.

5. If the user types a U, the program prompts the user for a new quantity and
amount, and then updates these two columns of the current order using a
positioned UPDATE statement.

6. If the user types an X, the program halts the query and terminates.

Although it is primitive compared to a real application program, the example in
Figure 17-32 shows all of the logic and embedded SQL statements required to
implement a browsing application with cursor-based database updates.

The SQL1 standard specifies that the positioned DELETE and UPDATE statements
can be used only with cursors that meet these very strict criteria:

� The query associated with the cursor must draw its data from a single source
table; that is, there must be only one table named in the FROM clause of the
query specified in the DECLARE CURSOR statement.
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Figure 17-30. The positioned DELETE statement syntax diagram

Figure 17-31. The positioned UPDATE statement syntax diagram
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main()
{

exec sql include sqlca;
exec sql begin declare section;

int   custnum;              /* customer number entered by user*/
int   ordnum;               /* retrieved order number */
char  orddate[12];          /* retrieved order date */
char  ordmfr[4];            /* retrieved manufacturer-id */
char  ordproduct[6];        /* retrieved product–id */
int   ordqty;               /* retrieved order quantity */
float ordamount;            /* retrieved order amount */

exec sql end declare section;
char inbuf[101]                /* character entered by user */

/* Declare the cursor for the query */
exec sql declare ordcurs cursor for

select order_num, ord_date, mfr, product, qty, amount
from orders
where cust = cust_num
order by order_num
for update of qty, amount;

/* Prompt the user for a customer number */
printf("Enter customer number: "); 1
scanf("%d", &custnum);

/* Set up error processing */
whenever sqlerror goto error;
whenever not found goto done;

/* Open the cursor to start the query */
exec sql open ordcurs;

/* Loop through each row of query results */
for (;;) {

/* Fetch the next row of query results */
exec sql fetch ordcurs 2

into :ordnum, :orddate, :ordmfr, :ordproduct,
:ordqty, :ordamount;

/* Display the retrieved data */
printf("Order Number: %d\n", ordnum);
printf("Order Date:   %s\n", orddate);
printf("Manufacturer: %s\n", ordmfr);

Figure 17-32. Using the positioned DELETE and UPDATE statements



� The query cannot specify an ORDER BY clause; the cursor must not identify a
sorted set of query results.

� The query cannot specify the DISTINCT keyword.

� The query must not include a GROUP BY or a HAVING clause.

� The user must have the UPDATE or DELETE privilege (as appropriate) on the
base table.

The IBM databases (DB2, SQL/DS) extended the SQL1 restrictions a step further.
They require that the cursor be explicitly declared as an updateable cursor in the
DECLARE CURSOR statement. The extended IBM form of the DECLARE CURSOR
statement is shown in Figure 17-33. In addition to declaring an updateable cursor, the
FOR UPDATE clause can optionally specify particular columns that may be updated
through the cursor. If the column list is specified in the cursor declarations, positioned
UPDATE statements for the cursor may update only those columns.

In practice, all commercial SQL implementations that support positioned DELETE
and UPDATE statements follow the IBM SQL approach. It is a great advantage for the
DBMS to know, in advance, whether a cursor will be used for updates or whether its
data will be read-only, because read-only processing is simpler. The FOR UPDATE
clause provides this advance notice and can be considered a de facto standard of the
embedded SQL language.

Because of its widespread use, the SQL2 standard includes the IBM-style FOR
UPDATE clause as an option in its DECLARE CURSOR statement. However, unlike the
IBM products, the SQL2 standard automatically assumes that a cursor is opened for
update unless it is a scroll cursor or it is explicitly declared FOR READ ONLY. The FOR
READ ONLY specification in the SQL2 DECLARE CURSOR statement appears in exactly
the same position as the FOR UPDATE clause and explicitly tells the DBMS that the
program will not attempt a positioned DELETE or UPDATE operation using the cursor.
Because they can significantly affect database overhead and performance, it can be very
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Figure 17-33. The DECLARE CURSOR statement with FOR UPDATE clause



important to understand the specific assumptions that your particular DBMS brand
makes about the updateability of cursors and the clauses or statements that can be used
to override them. In addition, programs that explicitly declare whether their intention
is to allow updates via an opened cursor are more maintainable.

Cursors and Transaction Processing
The way your program handles its cursors can have a major impact on database
performance. Recall from Chapter 12 that the SQL transaction model guarantees the
consistency of data during a transaction. In cursor terms, this means that your program
can declare a cursor, open it, fetch the query results, close it, reopen it, and fetch the
query results again—and be guaranteed that the query results will be identical both
times. The program can also fetch the same row through two different cursors and be
guaranteed that the results will be identical. In fact, the data is guaranteed to remain
consistent until your program issues a COMMIT or ROLLBACK to end the transaction.
Because the consistency is not guaranteed across transactions, both the COMMIT and
ROLLBACK statements automatically close all open cursors.

Behind the scenes, the DBMS provides this consistency guarantee by locking all
of the rows of query results, preventing other users from modifying them. If the query
produces many rows of data, a major portion of a table may be locked by the cursor.
Furthermore, if your program waits for user input after fetching each row (for example,
to let the user verify data displayed on the screen), parts of the database may be locked
for a very long time. In an extreme case, the user might leave for lunch in mid-transaction,
locking out other users for an hour or more!

To minimize the amount of locking required, you should follow these guidelines
when writing interactive query programs:

� Keep transactions as short as possible.

� Issue a COMMIT statement immediately after every query and as soon as
possible after your program has completed an update.

� Avoid programs that require a great deal of user interaction or that browse
through many rows of data.

� If you know that the program will not try to refetch a row of data after the
cursor has moved past it, use one of the less restrictive isolation modes
described in Chapter 12. This allows the DBMS to unlock a row as soon as
the next FETCH statement is issued.

� Avoid the use of scroll cursors unless you have taken other actions to eliminate
or minimize the extra database locking they will cause.

� Explicitly specify a READ ONLY cursor, if possible.
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Summary
In addition to its role as an interactive database language, SQL is used for
programmatic access to relational databases:

� The most common technique for programmatic use of SQL is embedded SQL,
where SQL statements are embedded into the application program, intermixed
with the statements of a host programming language such as C or COBOL.

� Embedded SQL statements are processed by a special SQL precompiler. They
begin with a special introducer (usually EXEC SQL) and end with a terminator,
which varies from one host language to another.

� Variables from the application program, called host variables, can be used in
embedded SQL statements wherever a constant can appear. These input host
variables tailor the embedded SQL statement to the particular situation.

� Host variables are also used to receive the results of database queries. The
values of these output host variables can then be processed by the application
program.

� Queries that produce a single row of data are handled with the singleton
SELECT statement of embedded SQL, which specifies both the query and the
host variables to receive the retrieved data.

� Queries that produce multiple rows of query results are handled with cursors
in embedded SQL. The DECLARE CURSOR statement defines the query, the
OPEN statement begins query processing, the FETCH statement retrieves
successive rows of query results, and the CLOSE statement ends query
processing.

� The positioned UPDATE and DELETE statements can be used to update or delete
the row currently selected by a cursor.
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T
he embedded SQL programming features described in Chapter 17 are collectively
known as static SQL. Static SQL is adequate for writing all of the programs typically
required in a data processing application. For example, in the order-processing

application of the sample database, you can use static SQL to write programs that handle
order entry, order updates, order inquiries, customer inquiries, customer file maintenance,
and programs that produce all types of reports. In every one of these programs, the pattern
of database access is decided by the programmer and hard-coded into the program as a
series of embedded SQL statements.

There is an important class of applications, however, where the pattern of database
access cannot be determined in advance. A graphic query tool or a report writer, for
example, must be able to decide at runtime which SQL statements it will use to access
the database. A personal computer spreadsheet that supports host database access must
also be able to send a query to the host DBMS for execution on the fly. These programs
and other general-purpose database front-ends cannot be written using static SQL
techniques. They require an advanced form of embedded SQL, called dynamic SQL,
described in this chapter.

Limitations of Static SQL
As the name static SQL implies, a program built using the embedded SQL features
described in Chapter 17 (host variables, cursors, and the DECLARE CURSOR, OPEN,
FETCH, and CLOSE statements) has a predetermined, fixed pattern of database access.
For each embedded SQL statement in the program, the tables and columns referenced
by that statement are determined in advance by the programmer and hard-coded into
the embedded SQL statement. Input host variables provide some flexibility in static
SQL, but they don’t fundamentally alter its static nature. Recall that a host variable can
appear anywhere a constant is allowed in a SQL statement. You can use a host variable
to alter a search condition:

exec sql select name, quota, sales

from salesreps

where quota > :cutoff_amount;

You can also use a host variable to change the data inserted or updated in a database:

exec sql update salesreps

set quota = quota + :increase

where quota >:cutoff_amount;
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However, you cannot use a host variable in place of a table name or a column reference.
The attempted use of the host variables which_table and which_column in these
statements is illegal:

exec sql update :which_table

set :which_column = 0;

exec sql declare cursor cursor7 for

select *

from :which_table;

Even if you could use a host variable in this way (and you cannot), another problem
would immediately arise. The number of columns produced by the query in the second
statement would vary, depending on which table was specified by the host variable.
For the OFFICES table, the query results would have six columns; for the SALESREPS
table, they would have nine columns. Furthermore, the data types of the columns would
be different for the two tables. But to write a FETCH statement for the query, you must
know in advance how many columns of query results there will be and their data types,
because you must specify a host variable to receive each column:

exec sql fetch cursor7

into :var1, :var2, :var3;

As this discussion illustrates, if a program must be able to determine at runtime which
SQL statements it will use, or which tables and columns it will reference, static SQL is
inadequate for the task. Dynamic SQL overcomes these limitations.

Dynamic SQL has been supported by the IBM SQL products since their introduction,
and it has been supported for many years by the minicomputer-based and UNIX-based
commercial RDBMS products. However, dynamic SQL was not specified by the original
ANSI/ISO SQL1 standard; the standard defined only static SQL. The absence of dynamic
SQL from the SQL1 standard is ironic, given the popular notion that the standard allowed
you to build front-end database tools that are portable across many different DBMS
brands. In fact, such front-end tools must almost always be built using dynamic SQL.

In the absence of an ANSI/ISO standard, DB2 set the de facto standard for dynamic
SQL. The other IBM databases of the day (SQL/DS and OS/2 Extended Edition) were
nearly identical to DB2 in their dynamic SQL support, and most other SQL products
also followed the DB2 standard. In 1992, the SQL2 standard added official support
for dynamic SQL, mostly following the path set by IBM. The SQL2 standard does not
require dynamic SQL support at the lowest level of compliance (Entry), but dynamic
SQL support is required for products claiming the Intermediate or Full compliance
levels to the SQL standard.
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Dynamic SQL Concepts
The central concept of dynamic SQL is simple: don’t hard-code an embedded SQL
statement into the program’s source code. Instead, let the program build the text of
a SQL statement in one of its data areas at runtime. The program then passes the
statement text to the DBMS for execution on the fly. Although the details get quite
complex, all of dynamic SQL is built on this simple concept, and it’s a good idea to
keep it in mind.

To understand dynamic SQL and how it compares with static SQL, it’s useful to
consider once again the process the DBMS goes through to execute a SQL statement,
originally shown in Figure 17-1 and repeated here in Figure 18-1. Recall from Chapter 17
that a static SQL statement goes through the first four steps of the process at compile-time.
The BIND utility (or the equivalent part of the DBMS runtime system) analyzes the SQL
statement, determines the best way to carry it out, and stores the application plan for
the statement in the database as part of the program development process. When the
static SQL statement is executed at runtime, the DBMS simply executes the stored
application plan.

In dynamic SQL, the situation is quite different. The SQL statement to be executed
isn’t known until runtime, so the DBMS cannot prepare for the statement in advance.
When the program is actually executed, the DBMS receives the text of the statement to
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Figure 18-1. How the DBMS processes a SQL statement



be dynamically executed (called the statement string) and goes through all five of the
steps shown in Figure 18-1 at runtime.

As you might expect, dynamic SQL is less efficient than static SQL. For this reason,
static SQL is used whenever possible, and many application programmers never need
to learn about dynamic SQL. However, dynamic SQL has grown in importance as more
and more database access has moved to a client/server, front-end/back-end architecture
over the last ten years. Database access from within personal computer applications
such as spreadsheets and word processors has grown dramatically, and an entire set of
PC-based front-end data entry and data access tools has emerged. All of these applications
require the features of dynamic SQL.

More recently, the emergence of Internet-based three-tier architectures—with
applications logic executing on one (mid-tier) system and the database logic executing
on another (back-end) system—have added new importance to capabilities that have
grown out of dynamic SQL. In most of these three-tier environments, the applications
logic running in the middle tier is quite dynamic. It must be changed frequently to
respond to new business conditions and to implement new business rules. This frequently
changing environment is at odds with the very tight coupling of applications programs
and database contents implied by static SQL. As a result, most three-tier architectures
use a callable SQL API (described in Chapter 19) to link the middle tier to back-end
databases. These APIs explicitly borrow the key concepts of dynamic SQL (for example,
separate PREPARE and EXECUTE steps and the EXECUTE IMMEDIATE capability) to
provide their database access. A solid understanding of dynamic SQL concepts is thus
important to help a programmer understand what’s going on behind the scenes of the
SQL API. In performance-sensitive applications, this understanding can make all the
difference between an application design that provides good performance and response
times and one that does not.

Dynamic Statement Execution

(EXECUTE IMMEDIATE)
The simplest form of dynamic SQL is provided by the EXECUTE IMMEDIATE statement,
shown in Figure 18-2. This statement passes the text of a dynamic SQL statement to the
DBMS and asks the DBMS to execute the dynamic statement immediately. To use this
statement, your program goes through the following steps:

1. The program constructs a SQL statement as a string of text in one of its data
areas (usually called a buffer). The statement can be almost any SQL statement
that does not retrieve data.
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Figure 18-2. The EXECUTE IMMEDIATE statement syntax diagram



2. The program passes the SQL statement to the DBMS with the EXECUTE
IMMEDIATE statement.

3. The DBMS executes the statement and sets the SQLCODE/SQLSTATE values to
indicate the completion status, exactly as if the statement had been hard-coded
using static SQL.

Figure 18-3 shows a simple C program that follows these steps. The program
prompts the user for a table name and a SQL search condition, and builds the text of a
DELETE statement based on the user’s responses. The program then uses the EXECUTE
IMMEDIATE statement to execute the DELETE statement. This program cannot use a
static SQL-embedded DELETE statement, because neither the table name nor the search
condition are known until the user enters them at runtime. It must use dynamic SQL.
If you run the program in Figure 18-3 with these inputs:

Enter table name: staff

Enter search condition: quota < 20000

Delete from staff successful.

the program passes this statement text to the DBMS:

delete from staff

where quota < 20000

If you run the program with these inputs:

Enter table name: orders

Enter search condition: cust = 2105

Delete from orders successful

the program passes this statement text to the DBMS:

delete from orders

where cust = 2105

The EXECUTE IMMEDIATE statement thus gives the program great flexibility in the
type of DELETE statement that it executes.

The EXECUTE IMMEDIATE statement uses exactly one host variable—the variable
containing the entire SQL statement string. The statement string itself cannot include
host variable references, but there’s no need for them. Instead of using a static SQL
statement with a host variable like this:

exec sql delete from orders

where cust = :cust_num;
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main()

{

/* This program deletes rows from a user-specified table

according to a user-specified search condition.

*/

exec sql include sqlca;

exec sql begin declare section;

char stmtbuf[301];            /* SQL text to be executed */

exec sql end declare section;

char tblname[101];               /* table name entered by user */

char search_cond[101];           /* search condition entered by user */

/* Start building the DELETE statement in stmtbuf */

strcpy(stmtbuf,"delete from ");

/* Prompt user for table name; add it to the DELETE statement text */

printf("Enter table name:      ");

gets(tblname);

strcat(stmtbuf, tblname);

/* Prompt user for search condition; add it to the text */

printf("Enter search condition:");

gets(search_cond);

if (strlen(search_cond) > 0) {

strcat(stmtbuf, " where ");

strcat(stmtbuf, search_cond);

}

/* Now ask the DBMS to execute the statement */

exec sql execute immediate :stmtbuf;

if (sqlca.sqlcode < 0)

printf("SQL error: %ld\n", sqlca.sqlcode);

else

printf("Delete from %s successful.\n", tblname);

exit();

}

Figure 18-3. Using the EXECUTE IMMEDIATE statement
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a dynamic SQL program achieves the same effect by building the entire statement in
a buffer and executing it:

sprintf(buffer, "delete from orders where cust = %d", cust_num)

exec sql execute immediate :buffer;

The EXECUTE IMMEDIATE statement is the simplest form of dynamic SQL, but it is
very versatile. You can use it to dynamically execute most DML statements, including
INSERT, DELETE, UPDATE, COMMIT, and ROLLBACK. You can also use EXECUTE
IMMEDIATE to dynamically execute most DDL statements, including the CREATE,
DROP, GRANT, and REVOKE statements.

The EXECUTE IMMEDIATE statement does have one significant limitation, however.
You cannot use it to dynamically execute a SELECT statement, because it does not provide
a mechanism to process the query results. Just as static SQL requires cursors and special-
purpose statements (DECLARE CURSOR, OPEN, FETCH, and CLOSE) for programmatic
queries, dynamic SQL uses cursors and some new special-purpose statements to handle
dynamic queries. The dynamic SQL features that support dynamic queries are discussed
later in the section “Dynamic Queries.”

Two-Step Dynamic Execution
The EXECUTE IMMEDIATE statement provides one-step support for dynamic statement
execution. As described previously, the DBMS goes through all five steps of Figure 18-1
for the dynamically executed statement. The overhead of this process can be very
significant if your program executes many dynamic statements, and it’s wasteful if
the statements to be executed are identical or very similar. In practice, the EXECUTE
IMMEDIATE statement should be used only for one-time statements that will be
executed once by a program and then never executed again.

To deal with the large overhead of the one-step approach, dynamic SQL offers an
alternative, two-step method for executing SQL statements dynamically. In practice,
this two-step approach, separating statement preparation and statement execution, is
used for all SQL statements in a program that is executed more than once, and especially
for those that are executed repeatedly, hundreds or thousands of times, in response to
user interaction. Here is an overview of the two-step technique:

1. The program constructs a SQL statement string in a buffer, just as it does for the
EXECUTE IMMEDIATE statement. A question mark (?) can be substituted for a
constant anywhere in the statement text to indicate that a value for the constant
will be supplied later. The question mark is called a parameter marker.

2. The PREPARE statement asks the DBMS to parse, validate, and optimize the
statement and to generate an application plan for it. This is Step 1 of the DBMS
interaction. The DBMS sets the SQLCODE/SQLSTATE values to indicate any
errors found in the statement and retains the application plan for later execution.
Note that the DBMS does not execute the plan in response to the PREPARE
statement.



3. When the program wants to execute the previously prepared statement, it
uses the EXECUTE statement and passes a value for each parameter marker to
the DBMS. This is Step 2 of the DBMS interaction. The DBMS substitutes the
parameter values, executes the previously generated application plan, and sets
the SQLCODE/SQLSTATE values to indicate its completion status.

4. The program can use the EXECUTE statement repeatedly, supplying different
parameter values each time the dynamic statement is executed. The DBMS can
simply repeat Step 2 of the interaction, since the work in Step 1 has already
been done, and the results of that work (the application plan for execution) will
still be valid.

Figure 18-4 shows a C program that uses these steps, which are labeled by the callouts
in the figure. The program is a general-purpose table update program. It prompts the
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main()

{

/* This is a general-purpose update program. It can be used

for any update where a numeric column is to be updated in

all rows where a second numeric column has a specified

value. For example, you can use it to update quotas for

selected salespeople or to update credit limits for

selected customers.

/*

exec sql include sqlca;

exec sql begin declare section;

char  stmtbuf[301]             /* SQL text to be executed */

float search_value;            /* parameter value for searching */

float new_value;               /* parameter value for update */

exec sql end declare section;

char tblname[31];                 /* table to be updated */

char searchcol[31];               /* name of search column */

char updatecol[31];               /* name of update column */

char yes_no[31];                  /* yes/no response from user */

/* Prompt user for tablename and column name * /

printf("Enter name of table to be updated:   ");

gets(tblname);

Figure 18-4. Using the PREPARE and EXECUTE statements
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printf("Enter name of column to be searched: ");

gets(searchcol);

printf("Enter name of column to be updated:  ");

gets(updatecol);

/* Build SQL statement in buffer; ask DBMS to compile it */

sprintf(stmtbuf, "update %s set %s = ? where %s = ?",          1

tblname, searchcol, updatecol);

exec sql prepare mystmt from :stmtbuf;                       2

if (sqlca.sqlcode) {

printf("PREPARE error: %ld\n", sqlca.sqlcode);

exit();

}

/* Loop prompting user for parameters and performing updates */

for ( ; ; ) {

printf("\nEnter search value for %s: ", searchcol);

scanf("%f", &search_value);

printf("Enter new value for %s: ", updatecol);

scanf("%f", &new_value);

/* Ask the DBMS to execute the UPDATE statement */

execute mystmt using :search_value, :new_value;             3

if (sqlca.sqlcode) {

printf("EXECUTE error: %ld\n", sqlca.sqlcode);

exit();

}

/*Ask user if there is another update */

printf("Another (y/n)? ");                                    4

gets(yes_no);

if (yes_no[0] == 'n')

break;

}

printf("\nUpdates complete.\n");

exit();

}

Figure 18-4. Using the PREPARE and EXECUTE statements (continued)



user for a table name and two column names, and constructs an UPDATE statement for
the table that looks like this:

update table-name

set second-column-name = ?

where first-column-name = ?

The user’s input thus determines the table to be updated, the column to be updated,
and the search condition to be used. The search comparison value and the updated data
value are specified as parameters, to be supplied later when the UPDATE statement is
actually executed.

After building the UPDATE statement text in its buffer, the program asks the DBMS
to compile it with the PREPARE statement. The program then enters a loop, prompting
the user to enter pairs of parameter values to perform a sequence of table updates. This
user dialog shows how you could use the program in Figure 18-4 to update the quotas
for selected salespeople:

Enter name of table to be updated: staff

Enter name of column to be searched: empl_num

Enter name of column to be updated: quota

Enter search value for empl_num: 106

Enter new value for quota: 150000.00

Another (y/n)? y

Enter search value for empl_num: 102

Enter new value for quota: 225000.00

Another (y/n)? y

Enter search value for empl_num: 107

Enter new value for quota: 215000.00

Another (y/n)? n

Updates complete.

This program is a good example of a situation where two-step dynamic execution
is appropriate. The DBMS compiles the dynamic UPDATE statement only once but
executes it three times, once for each set of parameter values entered by the user. If the
program had been written using EXECUTE IMMEDIATE instead, the dynamic UPDATE
statement would have been compiled three times and executed three times. Thus, the
two-step dynamic execution of PREPARE and EXECUTE helps to eliminate some of the
performance disadvantage of dynamic SQL. As mentioned earlier, this same two-step
approach is used by all of the callable SQL APIs described in Chapter 19.
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The PREPARE Statement
The PREPARE statement, shown in Figure 18-5, is unique to dynamic SQL. It accepts a
host variable containing a SQL statement string and passes the statement to the DBMS.
The DBMS compiles the statement text and prepares it for execution by generating an
application plan. The DBMS sets the SQLCODE/SQLSTATE variables to indicate any
errors detected in the statement text. As described previously, the statement string can
contain a parameter marker, indicated by a question mark, anywhere that a constant
can appear. The parameter marker signals the DBMS that a value for the parameter
will be supplied later, when the statement is actually executed.

As a result of the PREPARE statement, the DBMS assigns the specified statement
name to the prepared statement. The statement name is a SQL identifier, like a cursor
name. You specify the statement name in subsequent EXECUTE statements when you
want to execute the statement. DBMS brands differ in how long they retain the prepared
statement and the associated statement name. For some brands, the prepared statement
can be reexecuted only until the end of the current transaction (that is, until the next
COMMIT or ROLLBACK statement). If you want to execute the same dynamic statement
later during another transaction, you must prepare it again. Other brands relax this
restriction and retain the prepared statement throughout the current session with the
DBMS. The ANSI/ISO SQL2 standard acknowledges these differences and explicitly
says that the validity of a prepared statement outside of the current transaction is
implementation dependent.

The PREPARE statement can be used to prepare almost any executable DML or DDL
statement, including the SELECT statement. Embedded SQL statements that are actually
precompiler directives (such as the WHENEVER or DECLARE CURSOR statements) cannot
be prepared, of course, because they are not executable.

The EXECUTE Statement
The EXECUTE statement, shown in Figure 18-6, is unique to dynamic SQL. It asks the
DBMS to execute a statement previously prepared with the PREPARE statement. You
can execute any statement that can be prepared, with one exception. Like the EXECUTE
IMMEDIATE statement, the EXECUTE statement cannot be used to execute a SELECT
statement, because it lacks a mechanism for handling query results.

If the dynamic statement to be executed contains one or more parameter markers,
the EXECUTE statement must provide a value for each of the parameters. The values
can be provided in two different ways, described in the next two sections. The ANSI/
ISO SQL2 standard includes both of these methods.
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Figure 18-5. The PREPARE statement syntax diagram



EXECUTE with Host Variables
The easiest way to pass parameter values to the EXECUTE statement is by specifying
a list of host variables in the USING clause. The EXECUTE statement substitutes the
values of the host variables, in sequence, for the parameter markers in the prepared
statement text. The host variables thus serve as input host variables for the dynamically
executed statement. This technique was used in the program shown in Figure 18-4. It is
supported by all of the popular DBMS brands that support dynamic SQL and is included
in the ANSI/ISO SQL2 standard for dynamic SQL.

The number of host variables in the USING clause must match the number of
parameter markers in the dynamic statement, and the data type of each host variable
must be compatible with the data type required for the corresponding parameter. Each
host variable in the list may also have a companion host indicator variable. If the indicator
variable contains a negative value when the EXECUTE statement is processed, the
corresponding parameter marker is assigned the NULL value.

EXECUTE with SQLDA
The second way to pass parameters to the EXECUTE statement is with a special dynamic
SQL data structure called a SQL Data Area, or SQLDA. You must use a SQLDA to pass
parameters when you don’t know the number of parameters to be passed and their
data types at the time that you write the program. For example, suppose you wanted
to modify the general-purpose update program in Figure 18-4 so that the user could
select more than one column to be updated. You could easily modify the program to
generate an UPDATE statement with a variable number of assignments, but the list of
host variables in the EXECUTE statement poses a problem; it must be replaced with a
variable-length list. The SQLDA provides a way to specify such a variable-length
parameter list.

Figure 18-7 shows the layout of the SQLDA used by the IBM databases, including
DB2, which set the de facto standard for dynamic SQL. Most other DBMS products
also use this IBM SQLDA format or one very similar to it. The ANSI/ISO SQL2 standard
provides a similar structure, called a SQL Descriptor Area. The types of information
contained in the ANSI/ISO SQL Descriptor Area and the DB2-style SQLDA are the
same, and both structures play the same role in dynamic SQL processing. However, the
details of use—how program locations are associated with SQL statement parameters,
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Figure 18-6. The EXECUTE statement syntax diagram



how information is placed into the descriptor area and retrieved from it, and so on—
are quite different. In practice, the DB2-style SQLDA is the more important, because
dynamic SQL support appeared in most major DBMS brands, modeled on the DB2
implementation, long before the SQL2 standard was written.

The SQLDA is a variable-size data structure with two distinct parts:

� The fixed part is located at the beginning of the SQLDA. Its fields identify the
data structure as a SQLDA and specify the size of this particular SQLDA.

� The variable part is an array of one or more SQLVAR data structures. When you
use a SQLDA to pass parameters to an EXECUTE statement, there must be one
SQLVAR structure for each parameter.

The fields in the SQLVAR structure describe the data being passed to the EXECUTE
statement as a parameter value:

� The SQLTYPE field contains an integer data type code that specifies the data type
of the parameter being passed. For example, the DB2 data type code is 500 for
a 2-byte integer, 496 for a 4-byte integer, and 448 for a variable-length character
string.

� The SQLLEN field specifies the length of the data being passed. It will contain a
two for a 2-byte integer and a four for a 4-byte integer. When you pass a character
string as a parameter, SQLLEN contains the number of characters in the string.
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struct sqlda {

unsigned char sqldaid[8];

long          sqldabc;

short         sqln;

short         sqld;

struct sqlvar {

short          sqltype;

short          sqllen;

unsigned char *sqldata;

short         *sqlind;

struct sqlname {

short         length;

unsigned char data[30];

} sqlname;

} sqlvar[1];

} ;

Figure 18-7. The SQL Data Area (SQLDA)for IBM databases
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� The SQLDATA field is a pointer to the data area within your program that contains
the parameter value. The DBMS uses this pointer to find the data value as it
executes the dynamic SQL statement. The SQLTYPE and SQLLEN fields tell the
DBMS which type of data is being pointed to and its length.

� The SQLIND field is a pointer to a 2-byte integer that is used as an indicator
variable for the parameter. The DBMS checks the indicator variable to determine
whether you are passing a NULL value. If you are not using an indicator
variable for a particular parameter, the SQLIND field must be set to zero.

The other fields in the SQLVAR and SQLDA structures are not used to pass parameter
values to the EXECUTE statement. They are used when you use a SQLDA to retrieve data
from the database, as described later in the “Dynamic Queries” section.

Figure 18-8 shows a dynamic SQL program that uses a SQLDA to specify input
parameters. The program updates the SALESREPS table, but it allows the user to select
the columns that are to be updated at the beginning of the program. Then it enters a
loop, prompting the user for an employee number and then prompting for a new value

main()

{

/* This program updates user-specified columns of the

SALESREPS table. It first asks the user to select the

columns to be updated, and then prompts repeatedly for the

employee number of a salesperson and new values for the

selected columns.

*/

#define COLCNT 6                   /* six columns in SALESREPS table */

exec sql include sqlca;

exec sql include sqlda;

exec sql begin declare section;

char stmtbuf[2001];             /* SQL text to be executed */

exec sql end declare section;

char *malloc()

struct {

char  prompt[31];               /* prompt for this column */

char  name[31];                 /* name for this column */

short typecode;                 /* its data type code */

short buflen;                   /* length of its buffer */

char  selected;                 /* "selected" flag (y/n) */

} columns[] = { "Name",    "NAME",       449, 16, 'n',

"Office”,  "REP_OFFICE", 497,  4, 'n',

Figure 18-8. Using EXECUTE with a SQLDA



562 S Q L : T h e C o m p l e t e R e f e r e n c e

"Manager",  "MANAGER",    497,  4, 'n',

"Hire Date","HIRE_DATE",  449, 12, 'n',

"Quota",    "QUOTA",      481,  8, 'n',

"Sales",    "SALES",      481,  8, 'n'};

struct sqlda  *parmda;             /* SQLDA for parameter values */

struct sqlvar *parmvar;            /* SQLVAR for current parm value */

int            parmcnt;            /* running parameter count */

int            empl_num;           /* employee number entered by user

*/

int            i;                  /* index for columns[] array */

int            j;                  /* index for sqlvar array in sqlda

*/

char           inbuf[101];         /* input entered by user */

/* Prompt the user to select the columns to be updated */

printf(“*** Salesperson Update Program ***\n\n”);

parmcnt = 1;

for (i = 0; i < COLCNT; i++) {

/* Ask about this column */

printf("Update %s column (y/n)? ");

gets(inbuf);

if (inbuf[0] == 'y') {

columns[i].selected = 'y';

parmcnt += 1;

}

}

/* Allocate a SQLDA structure to pass parameter values */

parmda = malloc(16 = (44 * parmcnt));                        1

strcpy(parmda -> sqldaid, "SQLDA  ");

parmda->sqldabc = (16 = (44 * parmcnt));

parmda->sqln = parmcnt;

/* Start building the UPDATE statement in statement buffer */

strcpy(stmtbuf, "update orders set ");

/* Loop through columns, processing the selected ones */

for (i = 0; j = 0; i++; i < COLCNT) {                        2

/* Skip over non-selected columns */

if (columns[i].selected == 'n')

continue;

/* Add an assignment to the dynamic UPDATE statement */

Figure 18-8. Using EXECUTE with a SQLDA (continued)
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if (parmcnt > 0) strcat(stmtbuf, ", ");

strcat(stmtbuf, columns[i].name);

strcat(stmtbuf, " = ?");

/* Allocate space for data and indicator variable, and */

/* fill in the SQLVAR with information for this column */

parmvar = parmda -> sqlvar + j;

parmvar -> sqltype = columns[i].typecode;                        3

parmvar -> sqllen  = columns[i].buflen;                     4

parmvar -> sqldata = malloc(columns[i].buflen);                 5

parmvar -> sqlind  = malloc920;                        6

strcpy(parmvar -> sqlname.data, columns[i].prompt);

j += 1;

}

/* Fill in the last SQLVAR for parameter in the WHERE clause */

strcat(stmbuf, " where empl_num = ?");

parmvar = parmda + parmcnt;

parmvar->sqltype = 496;

parmvar->sqllen  = 4;

parmvar->sqldata = &empl_num;

parmvar->sqlind  = 0;

parmda->sqld = parmcnt;>                                      7

/* Ask the DBMS to compile the complete dynamic UPDATE statement */

exec sql prepare updatestmt from :stmtbuf;

if (sqlca.sqlcode < 0) {

printf("PREPARE error: %ld\n", sqlca.sqlcode);

exit();

}

/* Now loop, prompting for parameters and doing UPDATEs */

for ( ; ; ) {

/* Prompt user for order number of order to be updated */

printf("\nEnter Salesperson’s Employee Number: ");

scanf("%ld", &empl_num);

if (empl_num == 0) break;

/* Get new values for the updated columns */

for (j = 0; j < (parmcnt-1); j++) {

parmvar = parmda + j;

printf("Enter new value for %s: ", parmvar->sqlname.data);

gets(inbuf);                                                  8

if (inbuf[0] == '*') {

/* If user enters '*', set column to a NULL value */

*(parmvar -> sqlind) = -1;

Figure 18-8. Using EXECUTE with a SQLDA (continued)
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continue;

}

else {

/* Otherwise, set indicator for non-NULL value */

*(parmvar -> sqlind) = 0;

switch(parmvar -> sqltype) {

case 481:

/* Convert entered data to 8-byte floating point */

sscanf(inbuf, "%lf", parmvar -> sqldata);                8

break;

case 449:

/* Pass entered data as variable-length string */

stccpy(parmvar -> sqldata, inbuf, strlen(inbuf));

parmvar -> sqllen = strlen(inbuf);

break;

case 501:

/* Convert entered data to 4-byte integer */

sscanf(inbuf, "%ld", parmvar->sqldata);

break;

}

}

}

/* Execute the statement */

exec sql execute updatestmt using :parmda;                  9

if (sqlca.sqlcode < 0)    {

printf("EXECUTE error: %ld\n", sqlca.sqlcode);

exit();

}

}

/* All finished with updates */

exec sql execute immediate "commit work";

if (sqlca.sqlcode)

printf("COMMIT error: %ld\n", sqlca.sqlcode);

else

printf("\nAll updates committed.\n");

exit();

}

Figure 18-8. Using EXECUTE with a SQLDA (continued)
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for each column to be updated. If the user types an asterisk (*) in response to the new
value prompt, the program assigns the corresponding column a NULL value.

Because the user can select different columns each time the program is run, this
program must use a SQLDA to pass the parameter values to the EXECUTE statement.
The program illustrates the general technique for using a SQLDA, indicated by callouts
in Figure 18-8:

1. The program allocates a SQLDA large enough to hold a SQLVAR structure
for each parameter to be passed. It sets the SQLN field to indicate how many
SQLVARs can be accommodated.

2. For each parameter to be passed, the program fills in one of the SQLVAR
structures with information describing the parameter.

3. The program determines the data type of a parameter and places the correct
data type code in the SQLTYPE field.

4. The program determines the length of the parameter and places it in the
SQLLEN field.

5. The program allocates memory to hold the parameter value and puts the
address of the allocated memory in the SQLDATA field.

6. The program allocates memory to hold an indicator variable for the parameter
and puts the address of the indicator variable in the SQLIND field.

7. The program sets the SQLD field in the SQLDA header to indicate how many
parameters are being passed. This tells the DBMS how many SQLVAR structures
within the SQLDA contain valid data.

8. The program prompts the user for data values and places them into the data
areas allocated in Steps 5 and 6.

9. The program uses an EXECUTE statement with the USING DESCRIPTOR clause
to pass parameter values via the SQLDA.

Note that this particular program copies the prompt string for each parameter value
into the SQLNAME structure. The program does this solely for its own convenience; the
DBMS ignores the SQLNAME structure when you use the SQLDA to pass parameters. Here
is a sample user dialog with the program in Figure 18-8:

*** Salesperson Update Program ***

Update Name column (y/n)? y

Update Office column (y/n)? y

Update Manager column (y/n)? n

Update Hire Date column (y/n)? n

Update Quota column (y/n)? y

Update Sales column (y/n)? n



Enter Salesperson's Employee Number: 106

Enter new value for Name: Sue Jackson

Enter new value for Office: 22

Enter new value for Quota: 175000.00

Enter Salesperson's Employee Number: 104

Enter new value for Name: Joe Smith

Enter new value for Office: *

Enter new value for Quota: 275000.00

Enter Salesperson's Employee Number: 0

All updates committed.

Based on the user’s response to the initial questions, the program generates this
dynamic UPDATE statement and prepares it:

update salesreps

set name = ?, office = ?, quota = ?

where empl_num = ?

The statement specifies four parameters, and the program allocates a SQLDA big
enough to handle four SQLVAR structures. When the user supplies the first set of
parameter values, the dynamic UPDATE statement becomes:

update salesreps

set name = 'Sue Jackson', office = 22, quota = 175000.00

where empl_num = 106

and with the second set of parameter values, it becomes:

update salesreps

set name = 'Joe Smith', office = NULL, quota = 275000.00

where empl_num = 104

This program is somewhat complex, but it’s simple compared to a real general-
purpose database update utility. It also illustrates all of the dynamic SQL features
required to dynamically execute statements with a variable number of parameters.

Dynamic Queries
The EXECUTE IMMEDIATE, PREPARE, and EXECUTE statements as described thus far
support dynamic execution of most SQL statements. However, they can’t support dynamic
queries because they lack a mechanism for retrieving the query results. To support
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dynamic queries, SQL combines the dynamic SQL features of the PREPARE and EXECUTE
statements with extensions to the static SQL query-processing statements, and adds a
new statement. Here is an overview of how a program performs a dynamic query:

1. A dynamic version of the DECLARE CURSOR statement declares a cursor for
the query. Unlike the static DECLARE CURSOR statement, which includes a
hard-coded SELECT statement, the dynamic form of the DECLARE CURSOR
statement specifies the statement name that will be associated with the
dynamic SELECT statement.

2. The program constructs a valid SELECT statement in a buffer, just as it would
construct a dynamic UPDATE or DELETE statement. The SELECT statement may
contain parameter markers like those used in other dynamic SQL statements.

3. The program uses the PREPARE statement to pass the statement string to the
DBMS, which parses, validates, and optimizes the statement and generates an
application plan. This is identical to the PREPARE processing used for other
dynamic SQL statements.

4. The program uses the DESCRIBE statement to request a description of the
query results that will be produced by the query. The DBMS returns a
column-by-column description of the query results in a SQL Data Area (SQLDA)
supplied by the program, telling the program how many columns of query
results there are, and the name, data type, and length of each column. The
DESCRIBE statement is used exclusively for dynamic queries.

5. The program uses the column descriptions in the SQLDA to allocate a block of
memory to receive each column of query results. The program may also allocate
space for an indicator variable for the column. The program places the address
of the data area and the address of the indicator variable into the SQLDA to tell
the DBMS where to return the query results.

6. A dynamic version of the OPEN statement asks the DBMS to start executing the
query and passes values for the parameters specified in the dynamic SELECT
statement. The OPEN statement positions the cursor before the first row of query
results.

7. A dynamic version of the FETCH statement advances the cursor to the first
row of query results and retrieves the data into the program’s data areas and
indicator variables. Unlike the static FETCH statement, which specifies a list of
host variables to receive the data, the dynamic FETCH statement uses the SQLDA
to tell the DBMS where to return the data. Subsequent FETCH statements move
through the query results row by row, advancing the cursor to the next row of
query results and retrieving its data into the program’s data areas.

8. The CLOSE statement ends access to the query results and breaks the association
between the cursor and the query results. This CLOSE statement is identical to
the static SQL CLOSE statement; no extensions are required for dynamic queries.
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The programming required to perform a dynamic query is more extensive than the
programming for any other embedded SQL statement. However, the programming is
typically more tedious than complex. Figure 18-9 shows a small query program that
uses dynamic SQL to retrieve and display selected columns from a user-specified table.
The callouts in the figure identify the eight steps in the preceding list.
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main()

{

/* This is a simple general-purpose query program. It prompts

the user for a table name, and then asks the user which

columns of the table are to be included in the query.

After the user’s selections are complete, the program runs

the requested query and displays the results.

*/

exec sql include sqlca;

exec sql include sqlda;

exec sql begin declare section;

char stmtbuf[2001];             /* SQL text to be executed */

char querytbl[32];              /* user-specified table */

char querycol[32];              /* user-specified column */

exec sql end declare section;

/* Cursor for system catalog query that retrieves column names */

exec sql declare tblcurs cursor for

select colname from system.syscolumns

where tblname = :querytbl and owner = user;

exec sql declare qrycurs cursor for querystmt;                     1

/* Data structures for the program */

int            colcount = 0;       /* number of columns chosen */

struct sqlda  *qry_da;             /* allocated SQLDA for query */

struct sqlvar *qry_var;            /* SQLVAR for current column */

int i;                   /* index for SQLVAR array in SQLDA

*/

char inbuf[101]; /* input entered by user */

/* Prompt the user for which table to query */

printf("*** Mini-Query Program ***\n\n")

printf("Enter name of table for query: ");

gets(querytbl);

/* Start the SELECT statement in the buffer */

Figure 18-9. Data retrieval with dynamic SQL
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strcpy(stmtbuf, "select "); 2

/* Set up error processing */

exec sql whenever sqlerror goto handle_error;

exec sql whenever not found goto no_more_columns;

/* Query the system catalog to get column names for the table */

exec sql open tblcurs;

for ( ; ; ) {

/* Get name of next column and prompt the user */

exec sql feth tblcurs into :querycol;

printf("Include column %s (y/n)? ", querycol);

gets(inbuf);

if (inbuf[0] == 'y') {

/* User wants the column; add it to the select list */

if (colcount++ > 0)

strcat(stmtbuf, ", ");

strcat(stmtbuf, querycol); 2

}

}

no_more_columns:

exec sql close tblcurs;

/* Finish the SELECT statement with a FROM clause */

strcat(stmtbuf, "from ");

strcat(stmtbuf, querytbl);

/* Allocate SQLDA for the dynamic query */

query_da = (SQLDA *)malloc(sizeof(SQLDA) + colcount * sizeof(SQLVAR));

query_da->sqln = colcount;

/* Prepare the query and ask the DBMS to describe it */

exec sql prepare querystmt from :stmtbuf; 3

exec sql describe querystmt into qry_da; 4

/* Loop through SQLVARs, allocating memory for each column */

for (i = 0; i < colcount; i++) {

qry_var = qry_da->sqlvar + i;

qry_var->sqldat = malloc(qry_var->sqllen); 5

qry_var->sqlind = malloc(sizeof(short));

}

/* SQLDA is all set; do the query and retrieve the results! */

Figure 18-9. Data retrieval with dynamic SQL (continued)
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exec sql open qrycurs; 6

exec sql whenever not found goto no_more_data;

for ( ; ; ) {

/* Fetch the row of data into our buffers */

exec sql fetch sqlcurs using descriptor qry_da; 7

printf("\n");

/* Loop printing data for each column of the row */

for (i = 0; i < colcount; i++) {

/* Find the SQLVAR for this column; print column label */

qry_var = qry_da->sqlvar + i;

printf(" Column # %d (%s): ", i+1, qry_var->sqlname);

/* Check indicator variable for NULL indication */

if (*(qry_var -> sqlind)) != 0) {

puts("is NULL!\n");

continue;

}

/* Actual data returned; handle each type separately */

switch (qry_var -> sqltype) {

case 448:

case 449:

/* VARCHAR data -– just display it */

puts(qry_var -> sqldata);

break;

case 496:

case 497:

/* Four-byte integer data -– convert & display it */

printf("%ld", *((int *) (qry_var->sqldata)));

break;

case 500:

case 501:

/* Two-byte integer data -– convert & dispay it */

printf("%d", *((short *)(qry_var->sqldata)));

break;

case 480:

case 481:

/* Floating-point data -– convert & display it */

Figure 18-9. Data retrieval with dynamic SQL (continued)
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The program in the figure begins by prompting the user for the table name and
then queries the system catalog to discover the names of the columns in that table. It
asks the user to select the column(s) to be retrieved and constructs a dynamic SELECT
statement based on the user’s responses. The step-by-step mechanical construction of a
select list in this example is very typical of database front-end programs that generate
dynamic SQL. In real applications, the generated select list might include expressions
or aggregate functions, and there might be additional program logic to generate GROUP
BY, HAVING, and ORDER BY clauses. A graphical user interface would also be used instead
of the primitive user prompting in the sample program. However, the programming
steps and concepts remain the same. Notice that the generated SELECT statement
is identical to the interactive SELECT statement that you would use to perform the
requested query.

The handling of the PREPARE and DESCRIBE statements and the method of allocating
storage for the retrieved data in this program are also typical of dynamic query programs.
Note how the program uses the column descriptions placed in the SQLVAR array to
allocate a data storage block of the proper size for each column. This program also allocates
space for an indicator variable for each column. The program places the address of the
data block and indicator variable back into the SQLVAR structure.
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printf("%lf", *((double *)(qry_var->sqldat)));

break;

}

}

}

no_more_data:

printf("\nEnd of data.\n");

/* Clean up allocated storage */

for (i = 0; i < colcount; i++) {

qry_var = qry_da->sqlvar + i;

free(qry_var->sqldata);

free(qry_var->sqlind);

}

free(qry_da);

close qrycurs; 8

exit();

}

Figure 18-9. Data retrieval with dynamic SQL (continued)



The OPEN, FETCH, and CLOSE statements play the same role for dynamic queries as
they do for static queries, as illustrated by this program. Note that the FETCH statement
specifies the SQLDA instead of a list of host variables. Because the program has previously
filled in the SQLDATA and SQLIND fields of the SQLVAR array, the DBMS knows where
to place each retrieved column of data.

As this example shows, much of the programming required for a dynamic query
is concerned with setting up the SQLDA and allocating storage for the SQLDA and the
retrieved data. The program must also sort out the various types of data that can be
returned by the query and handle each one correctly, taking into account the possibility
that the returned data will be NULL. These characteristics of the sample program are
typical of production applications that use dynamic queries. Despite the complexity,
the programming is not too difficult in languages like C, C++, Pascal, PL/I, or Java.
Languages such as COBOL and FORTRAN, which lack the capability to dynamically
allocate storage and work with variable-length data structures, cannot be used for
dynamic query processing.

The following sections discuss the DESCRIBE statement and the dynamic versions
of the DECLARE CURSOR, OPEN, and FETCH statements.

The DESCRIBE Statement
The DESCRIBE statement, shown in Figure 18-10, is unique to dynamic queries. It is used
to request a description of a dynamic query from the DBMS. The DESCRIBE statement
is used after the dynamic query has been compiled with the PREPARE statement but
before it is executed with the OPEN statement. The query to be described is identified by
its statement name. The DBMS returns the query description in a SQLDA supplied by
the program.

The SQLDA is a variable-length structure with an array of one or more SQLVAR
structures, as described earlier in the section “EXECUTE with SQLDA,” and shown
in Figure 18-7. Before passing the SQLDA to the DESCRIBE statement, your program
must fill in the SQLN field in the SQLDA header, telling the DBMS how large the
SQLVAR array is in this particular SQLDA. As the first step of its DESCRIBE processing,
the DBMS fills in the SQLD field in the SQLDA header with the number of columns
of query results. If the size of the SQLVAR array (as specified by the SQLN field) is
too small to hold all of the column descriptions, the DBMS does not fill in the
remainder of the SQLDA. Otherwise, the DBMS fills in one SQLVAR structure for each
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Figure 18-10. The DESCRIBE statement syntax diagram
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column of query results, in left-to-right order. The fields of each SQLVAR describe the
corresponding column:

� The SQLNAME structure specifies the name of the column (with the name in the
DATA field and the length of the name in the LENGTH field). If the column is
derived from an expression, the SQLNAME field is not used.

� The SQLTYPE field specifies an integer data type code for the column. The data
type codes used by different brands of DBMS vary. For the IBM SQL products,
the data type code indicates both the data type and whether NULL values are
allowed, as shown in Table 18-1.

� The SQLLEN field specifies the length of the column. For variable-length data
types (such as VARCHAR), the reported length is the maximum length of the
data; the length of the columns in individual rows of query results will not
exceed this length. For DB2 (and many other SQL products), the length returned
for a DECIMAL data type specifies both the size of the decimal number (in the
upper byte) and the scale of the number (in the lower byte).

� The SQLDATA and SQLIND fields are not filled in by the DBMS. Your application
program fills in these fields with the addresses of the data buffer and indicator
variable for the column before using the SQLDA later in a FETCH statement.
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Data Type NULL Allowed NOT NULL

CHAR 452 453

VARCHAR 448 449

LONG VARCHAR 456 457

SMALLINT 500 501

INTEGER 496 497

FLOAT 480 481

DECIMAL 484 485

DATE 384 385

TIME 388 389

TIMESTAMP 392 393

GRAPHIC 468 469

VARGRAPHIC 464 465

Table 18-1. If SQLDA Data Type Codes for DB2
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A complication of using the DESCRIBE statement is that your program may not
know in advance how many columns of query results there will be, and therefore, it
may not know how large a SQLDA must be allocated to receive the description. One
of three strategies is typically used to ensure that the SQLDA has enough space for the
returned descriptions.

� If the program has generated the select list of the query, it can keep a running
count of the select items as it generates them. In this case, the program can
allocate a SQLDA with exactly the right number of SQLVAR structures to receive
the column descriptions. This approach was used in the program shown in
Figure 18-9.

� If it is inconvenient for the program to count the number of select list items,
it can initially DESCRIBE the dynamic query into a minimal SQLDA with a
one-element SQLVAR array. When the DESCRIBE statement returns, the SQLD
value tells the program how large the SQLDA must be. The program can then
allocate a SQLDA of the correct size and reexecute the DESCRIBE statement,
specifying the new SQLDA. There is no limit to the number of times that a
prepared statement can be described.

� Alternatively, the program can allocate a SQLDA with a SQLVAR array large
enough to accommodate a typical query. A DESCRIBE statement using this
SQLDA will succeed most of the time. If the SQLDA turns out to be too small for
the query, the SQLD value tells the program how large the SQLDA must be, and
it can allocate a larger one and DESCRIBE the statement again into that SQLDA.

The DESCRIBE statement is normally used for dynamic queries, but you can ask
the DBMS to DESCRIBE any previously prepared statement. This feature is useful, for
example, if a program needs to process an unknown SQL statement typed by a user. The
program can PREPARE and DESCRIBE the statement and examine the SQLD field in the
SQLDA. If the SQLD field is zero, the statement text was not a query, and the EXECUTE
statement can be used to execute it. If the SQLD field is positive, the statement text was
a query, and the OPEN/FETCH/CLOSE statement sequence must be used to execute it.

The DECLARE CURSOR Statement
The dynamic DECLARE CURSOR statement, shown in Figure 18-11, is a variation of the
static DECLARE CURSOR statement. Recall from Chapter 17 that the static DECLARE
CURSOR statement literally specifies a query by including the SELECT statement as one
of its clauses. By contrast, the dynamic DECLARE CURSOR statement specifies the query
indirectly, by specifying the statement name associated with the query by the PREPARE
statement.

Like the static DECLARE CURSOR statement, the dynamic DECLARE CURSOR statement
is a directive to the SQL precompiler rather than an executable statement. It must appear
before any other references to the cursor that it declares. The cursor name declared by
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this statement is used in subsequent OPEN, FETCH, and CLOSE statements to process
the results of the dynamic query.

The Dynamic OPEN Statement
The dynamic OPEN statement, shown in Figure 18-12, is a variation of the static OPEN
statement. It causes the DBMS to begin executing a query and positions the associated
cursor just before the first row of query results. When the OPEN statement completes
successfully, the cursor is in an open state and is ready to be used in a FETCH statement.

The role of the OPEN statement for dynamic queries parallels the role of the EXECUTE
statement for other dynamic SQL statements. Both the EXECUTE and the OPEN statements
cause the DBMS to execute a statement previously compiled by the PREPARE statement. If
the dynamic query text includes one or more parameter markers, then the OPEN statement,
like the EXECUTE statement, must supply values for these parameters. The USING clause
is used to specify parameter values, and it has an identical format in both the EXECUTE
and OPEN statements.

If the number of parameters that will appear in a dynamic query is known in advance,
the program can pass the parameter values to the DBMS through a list of host variables
in the USING clause of the OPEN statement. As in the EXECUTE statement, the number
of host variables must match the number of parameters, the data type of each host
variable must be compatible with the type required by the corresponding parameter,
and an indicator variable can be specified for each host variable, if necessary. Figure 18-13
shows a program excerpt where the dynamic query has three parameters whose values
are specified by host variables.

If the number of parameters is not known until runtime, the program must pass the
parameter values using a SQLDA structure. This technique for passing parameter values

Figure 18-11. The dynamic DECLARE CURSOR statement syntax diagram

Figure 18-12. The dynamic OPEN statement syntax diagram
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was described for the EXECUTE statement earlier in the section “EXECUTE with SQLDA.”
The same technique is used for the OPEN statement. Figure 18-14 shows a program excerpt
like the one in Figure 18-13, except that it uses a SQLDA to pass parameters.

Note carefully that the SQLDA used in the OPEN statement has absolutely nothing to
do with the SQLDA used in the DESCRIBE and FETCH statements:

� The SQLDA in the OPEN statement is used to pass parameter values to the DBMS
for dynamic query execution. The elements of its SQLVAR array correspond to
the parameter markers in the dynamic statement text.

� The SQLDA in the DESCRIBE and FETCH statements receives descriptions of the
query results columns from the DBMS and tells the DBMS where to place the
retrieved query results. The elements of its SQLVAR array correspond to the
columns of query results produced by the dynamic query.

.

.

.

/* Program has previously generated and prepared a SELECT

statement like this one:

SELECT A, B, C ...

FROM SALESREPS

WHERE SALES BETWEEN ? AND ?

with two parameters to be specified

*/

/* Prompt the user for low & high values and do the query */

printf("Enter low end of sales range: ");

scanf("%f", &low_end);

printf("Enter high end of sales range: ");

scanf("%f", &high_end);

/* Open the cursor to start the query, passing parameters */

exec sql open qrycursor using :low_end, :high_end;

.

.

.

.. .        .

.

Figure 18-13. OPEN statement with host variable parameter passing
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.

.

.

/* Program has previously generated and prepared a SELECT

statement like this one:

SELECT A, B, C ...

FROM SALESREPS

WHERE EMPL_NUM IN (?, ?, ... ?)

with a variable number of parameters to be specified. The

number of parameters for this execution is stored in the

variable parmcnt.

*/

char   *malloc()

SQLDA  *parmda;

SQLVAR *parmvar;

long    parm_value[101];

/* Allocate a SQLDA to pass parameter values */

parmda = (SQLDA *)malloc(sizeof(SQLDA) + parmcnt * sizeof(SQLVAR));

parmda->sqln = parmcnt;

/*Prompt the user for parameter values */

for (i = 0; i < parmcnt; i++) {

printf("Enter employee number: ");

scanf("%ld", &(parm_value[i]));

parmvar = parmda -> sqlvar + i;

parmvar->sqltype = 496;

parmvar->sqllen  = 4;

parmvar->sqldata = &(parm_value[i]);

parmvar->sqlind  = 0;

}

/* Open the cursor to start the query, passing parameters */

exec sql open qrycursor using descriptor :parmda;

.

.

.

Figure 18-14. OPEN statement with SQLDA parameter passing



The Dynamic FETCH Statement
The dynamic FETCH statement, shown in Figure 18-15, is a variation of the static FETCH
statement. It advances the cursor to the next available row of query results and retrieves
the values of its columns into the program’s data areas. Recall from Chapter 17 that the
static FETCH statement includes an INTO clause with a list of host variables that receive
the retrieved column values. In the dynamic FETCH statement, the list of host variables
is replaced by a SQLDA.

Before using the dynamic FETCH statement, it is the application program’s
responsibility to provide data areas to receive the retrieved data and indicator variable
for each column. The application program must also fill in the SQLDATA, SQLIND, and
SQLLEN fields in the SQLVAR structure for each column, as follows:

� The SQLDATA field must point to the data area for the retrieved data.

� The SQLLEN field must specify the length of the data area pointed to by the
SQLDATA field. This value must be correctly specified to make sure the DBMS
does not copy retrieved data beyond the end of the data area.

� The SQLIND field must point to an indicator variable for the column (a 2-byte
integer). If no indicator variable is used for a particular column, the SQLIND
field for the corresponding SQLVAR structure should be set to zero.

Normally, the application program allocates a SQLDA, uses the DESCRIBE statement
to get a description of the query results, allocates storage for each column of query
results, and sets the SQLDATA and SQLIND values, all before opening the cursor. This
same SQLDA is then passed to the FETCH statement. However, there is no requirement
that the same SQLDA be used or that the SQLDA specify the same data areas for each
FETCH statement. It is perfectly acceptable for the application program to change the
SQLDATA and SQLIND pointers between FETCH statements, retrieving two successive
rows into different locations.

The Dynamic CLOSE Statement
The dynamic form of the CLOSE statement is identical in syntax and function to the
static CLOSE statement shown in Figure 17-25. In both cases, the CLOSE statement ends
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Figure 18-15. The dynamic FETCH statement syntax diagram
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access to the query results. When a program closes a cursor for a dynamic query, the
program normally should also deallocate the resources associated with the dynamic
query, including:

� The SQLDA allocated for the dynamic query and used in the DESCRIBE and
FETCH statements

� A possible second SQLDA, used to pass parameter values to the OPEN statement

� The data areas allocated to receive each column of query results retrieved by a
FETCH statement

� The data areas allocated as indicator variables for the columns of query results

It may not be necessary to deallocate these data areas if the program will terminate
immediately after the CLOSE statement.

Dynamic SQL Dialects
Like the other parts of the SQL language, dynamic SQL varies from one brand of
DBMS to another. In fact, the differences in dynamic SQL support are more serious
than for static SQL, because dynamic SQL exposes more of the nuts and bolts of the
underlying DBMS—data types, data formats, and so on. As a practical matter, these
differences make it impossible to write a single, general-purpose database front-end
that is portable across different DBMS brands using dynamic SQL. Instead, database
front-end programs must include a translation layer, often called a driver, for each
brand of DBMS that they support to accommodate the differences.

The early front-end products usually shipped with a separate driver for each of the
popular DBMS brands. The introduction of ODBC as a uniform SQL API layer made
this job simpler, since an ODBC driver could be written once for each DBMS brand,
and the front-end program could be written to solely use the ODBC interface. In practice,
however, ODBC’s least-common-denominator approach meant that the front-end
programs couldn’t take advantage of the unique capabilities of the various supported
DBMS systems, and it limited the performance of the application. As a result, most
modern front-end programs and tools still include a separate, explicit driver for each
of the popular DBMS brands. An ODBC driver is usually included to provide access
to the others.

A detailed description of the dynamic SQL features supported by all of the major
DBMS brands is beyond the scope of this book. However, it is instructive to examine
the dynamic SQL support provided by SQL/DS and by Oracle as examples of the kinds
of differences and extensions to dynamic SQL that you may find in your particular DBMS.
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Dynamic SQL in Oracle *
The Oracle DBMS preceded DB2 into the market and based its dynamic SQL support
on IBM’s System/R prototype. For this reason, the Oracle support for dynamic SQL
differs somewhat from the IBM SQL standard. Although Oracle and DB2 are broadly
compatible, they differ substantially at the detail level. These differences include
Oracle’s use of parameter markers, its use of the SQLDA, the format of its SQLDA, and
its support for data type conversion. The Oracle differences from DB2 are similar to
those you may encounter in other DBMS brands. For that reason, it is instructive to
briefly examine Oracle’s dynamic SQL support and its points of difference from DB2.

Named Parameters
Recall that DB2 does not allow host variable references in a dynamically prepared
statement. Instead, parameters in the statement are identified by question marks
(parameter markers), and values for the parameters are specified in the EXECUTE or
OPEN statement. Oracle allows you to specify parameters in a dynamically prepared
statement using the syntax for host variables. For example, this sequence of embedded
SQL statements is legal for Oracle:

exec sql begin declare section;

char  stmtbuf[1001];

int   employee_number;

exec sql end declare section;

.

.

.

strcpy(stmtbuf, "delete from salesreps

where empl_num = :rep_number;");

exec sql prepare delstmt from :stmtbuf;

exec sql execute delstmt using :employee_number;

Although rep_number appears to be a host variable in the dynamic DELETE
statement, it is in fact a named parameter. As shown in the example, the named parameter
behaves exactly like the parameter markers in DB2. A value for the parameter is supplied
from a real host variable in the EXECUTE statement. Named parameters are a real
convenience when you use dynamic statements with a variable number of parameters.

The DESCRIBE Statement
The Oracle DESCRIBE statement is used, like the DB2 DESCRIBE statement, to describe
the query results of a dynamic query. Like DB2, Oracle returns the descriptions in a
SQLDA. The Oracle DESCRIBE statement can also be used to request a description of
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the named parameters in a dynamically prepared statement. Oracle also returns these
parameter descriptions in a SQLDA.

This Oracle DESCRIBE statement requests a description of the columns of query
results from a previously prepared dynamic query:

exec sql describe select list for qrystmt into qry_sqlda;

It corresponds to the DB2 statement:

exec sql describe qrystmt into qry_sqlda;

This Oracle DESCRIBE statement requests a description of the named parameters
in a previously prepared dynamic statement. The statement might be a query or some
other SQL statement:

exec sql describe bind list for thestmt into the_sqlda;

This Oracle statement has no DB2 equivalent. Following this DESCRIBE statement,
your program would typically examine the information in the SQLDA, fill in the pointers
in the SQLDA to point to the parameter values the program wants to supply, and then
execute the statement using the SQLDA form of the OPEN or EXECUTE statement:

exec sql execute thestmt using descriptor the_sqlda;

exec sql open qrycursor using descriptor the_sqlda;

The information returned by both forms of the Oracle DESCRIBE statement is the
same, and is described in the next section.

The Oracle SQLDA
The Oracle SQLDA performs the same functions as the DB2 SQLDA, but its format, shown
in Figure 18-16, differs substantially from that of DB2. The two important fields in the
DB2 SQLDA header both have counterparts in the Oracle SQLDA:

� The N field in the Oracle SQLDA specifies the size of the arrays used to hold
column definitions. It corresponds to the SQLN field in the DB2 SQLDA.

� The F field in the Oracle SQLDA indicates how many columns are currently
described in the arrays of the SQLDA. It corresponds to the SQLD field in the
DB2 SQLDA.
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Instead of DB2’s single array of SQLVAR structures that contain column descriptions,
the Oracle SQLDA contains pointers to a series of arrays, each of which describes one aspect
of a column:

� The T field points to an array of integers that specify the data type for each query
results column or named parameter. The integers in this array correspond to
the SQLTYPE field in each DB2 SQLVAR structure.

� The V field points to an array of pointers that specify the buffer for each column
of query results or each passed parameter value. The pointers in this array
correspond to the SQLDATA field in each DB2 SQLVAR structure.

� The L field points to an array of integers that specify the length of each buffer
pointed to by the V array. The integers in this array correspond to the SQLLEN
field in each DB2 SQLVAR structure.

� The I field points to an array of data pointers that specify the indicator variable
for each query results column or named parameter. The pointers in this array
correspond to the SQLIND field in each DB2 SQLVAR structure.

� The S field points to an array of string pointers that specify the buffers where
Oracle is to return the name of each query results column or named parameter.
The buffers pointed to by this array correspond to the SQLNAME structure in
each DB2 SQLVAR structure.

struct sqlda {

int      N;  /* number of entries in the SQLDA arrays */

char   **V;  /* pointer to array of pointers to data areas */

int     *L;  /* pointer to array of buffer lengths */

short   *T;  /* pointer to array of data type codes */

short  **I;  /* pointer to array of pointers to indicator variables */

int      F;  /* number of active entries in the SQLDA arrays */

char   **S;  /* pointer to array of pointers to column/parameter names

*/

short   *M;  /* pointer to array of name buffer lengths */

short   *C;  /* pointer to array of current lengths of names */

char **X; /* pointer to array of pointers to indicator parameter names

*/

short   *Y;  /* pointer to array of indicator name buffer lengths */

short   *Z;  /* pointer to array of current lengths of indicator names */

} ;

Figure 18-16. The Oracle SQLDA
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� The M field points to an array of integers that specify the size of each buffer
pointed to by the S array. For DB2, the SQLNAME structure has a fixed-length
buffer, so there is no equivalent to the M field.

� The C field points to an array of integers that specify the actual lengths of the
names pointed to by the S array. When Oracle returns the column or parameter
names, it sets the integers in this array to indicate their actual lengths. For DB2,
the SQLNAME structure has a fixed-length buffer, so there is no equivalent to the
C field.

� The X field points to an array of string pointers that specify the buffers where
Oracle is to return the name of each named indicator parameter. These buffers
are used only by the Oracle DESCRIBE BLIND LIST statement; they have no
DB2 equivalent.

� The Y field points to an array of integers specifying the size of each buffer
pointed to by the X array. There is no DB2 equivalent.

� The Z field points to an array of integers specifying actual lengths of the
indicator parameter names pointed to by the X array. When Oracle returns
the indicator parameter names, it sets the integers in this array to indicate
their actual lengths. There is no DB2 equivalent.

Data Type Conversions
The data type formats that DB2 uses to receive parameter values and return query
results are those supported by the IBM S/370 architecture mainframes that run DB2.
Because it was designed as a portable DBMS, Oracle uses its own internal data type
formats. Oracle automatically converts between its internal data formats and those of
the computer system on which it is running when it receives parameter values from
your program and when it returns query results to your program.

Your program can use the Oracle SQLDA to control the data type conversion performed
by Oracle. For example, suppose your program uses the DESCRIBE statement to describe
the results of a dynamic query and discovers (from the data type code in the SQLDA)
that the first column contains numeric data. Your program can request conversion of
the numeric data by changing the data type code in the SQLDA before it fetches the
data. If the program places the data type code for a character string into the SQLDA,
for example, Oracle will convert the first column of query results and return it to your
program as a string of digits.

The data type conversion feature of the Oracle SQLDA provides excellent portability,
both across different computer systems and across different programming languages.
A similar feature is supported by several other DBMS brands, but not by the IBM
SQL products.



Dynamic SQL and the SQL2 Standard
The SQL1 standard did not address dynamic SQL, so the de facto standard for dynamic
SQL, as described in the preceding sections, was set by IBM’s implementation in DB2.
The SQL2 standard explicitly included a standard for dynamic SQL, specified in a
separate chapter of the standard that is nearly 50 pages long. In the simplest areas of
dynamic SQL, the new SQL2 standard closely follows the dynamic SQL currently used
by commercial DBMS products. But in other areas, including even the most basic dynamic
SQL queries, the new standard introduces incompatibilities with existing DBMS products,
which will require the rewriting of applications. The next several sections describe the
SQL2 standard for dynamic SQL in detail, with an emphasis on the differences from
the DB2-style dynamic SQL described in the preceding sections.

In practice, support for SQL2-style dynamic SQL is appearing slowly in commercial
DBMS products, and most dynamic SQL programming still requires the use of the old,
DB2-style dynamic SQL. Even when a new version of a DBMS product supports the
new SQL2 statements, the DBMS vendor always provides a precompiler option that
accepts the old dynamic SQL structure used by the particular DBMS. Often, this is the
default option for the precompiler, because with thousands and thousands of SQL
programs already in existence, the DBMS vendor has an absolute requirement that new
DBMS versions do not break old programs. Thus, the migration to portions of SQL2 that
represent incompatibilities with current practice will be a slow and evolutionary one.

Basic Dynamic SQL2 Statements
The SQL2 statements that implement basic dynamic SQL statement execution (that is,
dynamic SQL that does not involve database queries) are shown in Figure 18-17. These
statements closely follow the DB2 structure and language. This includes the single-step
and two-step methods of executing dynamic SQL statements.

The SQL2 EXECUTE IMMEDIATE statement has an identical syntax and operation to
that of its DB2 counterpart. It immediately executes the SQL statement passed to the
DBMS as a character string. Thus, the EXECUTE IMMEDIATE statement in Figure 18-3
conforms to the SQL2 standard.

The SQL2 PREPARE and EXECUTE statements also operate identically to their DB2-style
counterparts. The PREPARE statement passes a text string containing a SQL statement
to the DBMS and causes the DBMS to analyze the statement, optimize it, and build an
application plan for it. The EXECUTE statement causes the DBMS to actually execute a
previously prepared statement. Like the DB2 version, the SQL2 EXECUTE statement
optionally accepts host variables that pass the specific values to be used when executing
the SQL statement. The PREPARE and EXECUTE statements in Figure 18-4 (called out as
item 2) thus conform to the SQL2 standard.

Two useful extensions to the PREPARE/EXECUTE structure are a part of the
Full compliance level SQL2 standard specification (neither is part of the Entry or
Intermediate compliance levels). The first is a useful companion to the PREPARE
statement that unprepares a previously compiled dynamic SQL statement. The
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DEALLOCATE PREPARE statement provides this capability. When the DBMS processes
this statement, it can free the resources associated with the compiled statement, which
will usually include some internal representation of the application plan for the
statement. The statement named in the DEALLOCATE PREPARE statement must match
the name specified in a previously executed PREPARE statement.

In the absence of a capability like that provided by DEALLOCATE PREPARE, the
DBMS has no way of knowing whether a previously prepared statement will be
executed again or not, and so must retain all of the information associated with
the statement. In practice, some DBMS brands maintain the compiled version of the
statement only until the end of a transaction; in these systems, a statement must be
reprepared for each subsequent transaction where it is used. Because of the overhead
involved in this process, other DBMS brands maintain the compiled statement
information indefinitely. The DEALLOCATE PREPARE can play a more important role
in these systems, where a database session might last for hours. Note, however, that the
SQL2 standard explicitly says that whether a prepared statement is valid outside of the
transaction in which it is prepared is implementation dependent.

The SQL2 extension to the DB2-style EXECUTE statement may be even more useful
in practice. It allows the EXECUTE statement to be used to process simple singleton
SELECT statements that return a single row of query results. Like the DB2 EXECUTE
statement, the SQL2 statement includes a USING clause that names the host variables
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Figure 18-17. SQL2 dynamic SQL statements



that supply the values for parameters in the statement being executed. But the SQL2
statement also permits an optional INTO clause that names the host variables that
receive the values returned by a single-row query.

Suppose you have written a program that dynamically generates a query statement
that retrieves the name and quota of a salesperson, with the salesperson’s employee
number as an input parameter. Using DB2-style dynamic SQL, even this simple query
involves the use of a SQLDA, cursors, a FETCH statement loop, and so on. Using SQL2
dynamic SQL, the statement can be executed using the simple two-statement sequence:

PREPARE qrystmt FROM :statement_buffer;

EXECUTE qrystmt USING :emplnum INTO :name, :quota;

As with any prepared statement, this single-row query could be executed repeatedly
after being prepared once. It still suffers from the restriction that the number of returned
columns, and their data types, must know when the program is written, since they
must match exactly the number and data types of the host variables in the INTO clause.
This restriction is removed by allowing the use of a SQLDA-style descriptor area instead
of a list of host variables, as described in the next section.

SQL2 and the SQLDA
Although its support for PREPARE/EXECUTE processing closely parallels that of DB2
dynamic SQL, the SQL2 standard diverges substantially from DB2 style in the area of
dynamic query processing. In particular, the SQL2 standard includes major changes to
the DB2 SQL Data Area (SQLDA), which is at the heart of dynamic multirow queries.
Recall that a SQL Data Area (SQLDA) provides two important functions:

� A flexible way to pass parameters to be used in the execution of a dynamic SQL
statement (passing data from the host program to the DBMS), as described earlier
in the section “EXECUTE with SQLDA.”

� The way that the query results are returned to the program in the execution of a
dynamic SQL query (passing data from the DBMS back to the host program), as
described earlier in the section “The Dynamic FETCH Statement.”

The DB2-style SQLDA handles these functions with flexibility, but it has some serious
disadvantages. It is a very low-level data structure, which tends to be specific to a
particular programming language. For example, the variable-length structure of a
DB2-style SQLDA makes it very difficult to represent in the FORTRAN language. The
SQLDA structure also implicitly makes assumptions about the memory of the computer
system on which the dynamic SQL program is running, how data items in a structure
are aligned on such a system, and so on. For the writers of the SQL2 standard, these low-
level dependencies were unacceptable barriers to portability. Therefore, they replaced the
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DB2 SQLDA structure with a set of statements for manipulating a more abstract structure
called a dynamic SQL descriptor.

The structure of a SQL2 descriptor is shown in Figure 18-18. Conceptually, the SQL2
descriptor is parallel to, and plays exactly the same role as, the DB2-style SQLDA shown
in Figure 18-7. The fixed part of the SQL2 descriptor specifies a count of the number
of items in the variable part of the descriptor. Each item in the variable part contains
information about a single parameter being passed, such as its data type, its length, an
indicator telling whether a NULL value is being passed, and so on.

But unlike the DB2 SQLDA, the SQL2 descriptor is not an actual data structure
within the host program. Instead, it is a collection of data items owned by the DBMS
software. The host program manipulates SQL2 descriptors—creating them, destroying
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Fixed part

COUNT number of items described

Variable part—one occurrence per item (parameter or query results column):

TYPE data type of item

LENGTH length of item

OCTET_LENGTH length of item (in 8-bit octets)

RETURNED_LENGTH length of returned data item

RETURNED_OCTET_LENGTH length of returned data (in 8-bit octets)

PRECISION precision of data item

SCALE scale of data item

DATETIME_INTERVAL_CODE type of date/time interval data

DATETIME_INTERVAL_PRECISION precision of date/time interval data

NULLABLE can item be NULL?

INDICATOR is data item NULL? (indicator value)

DATA data item itself

NAME name of data item

UNNAMED is data item unnamed?

Figure 18-18. SQL2 descriptor structure



them, placing data items into them, extracting data from them—via a new set of dynamic
SQL statements specially designed for that purpose. Figure 18-19 summarizes these SQL2
descriptor management statements.

To understand how the SQL2 descriptor management statements work, it’s instructive
to reexamine the dynamic SQL update program in Figure 18-8. This program illustrates
the use of a DB2-style SQLDA in an EXECUTE statement. The flow of the program remains
identical if a SQL2 descriptor is used instead, but the specifics change quite a lot.

Before using the descriptor, the program must create it, using the statement:

ALLOCATE DESCRIPTOR parmdesc WITH MAX :parmcnt;

This statement replaces the allocation of storage for the parmda data structure at
callout 1 in Figure 18-8. The descriptor (named parmdesc) will perform the same
functions as the parmda. Note that the program in Figure 18-8 had to calculate how
much storage would be required for the parmda structure before allocating it. With the
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Figure 18-19. SQL2 descriptor management statements



SQL2 descriptor, that calculation is eliminated, and the host program simply tells the
DBMS how many items the variable part of the descriptor must be able to hold.

The next step in the program is to set up the descriptor so that it describes the
parameters to be passed—their data types, lengths, and so on. The loop at callout 2 of
the program remains intact, but again, the details of how the descriptor is initialized
differ from those for the SQLDA. At callout 3 and callout 4, the data type and length for
the parameter are specified with a form of the SET DESCRIPTOR statement, with this
code excerpt:

typecode = columns[i].typecode;

length = columns[i].buflen;

SET DESCRIPTOR parmdesc VALUE (:i + l) TYPE = :typecode

SET DESCRIPTOR parmdesc VALUE (:i + l) LENGTH = :length;

The differences from Figure 18-8 are instructive. Because the descriptor is maintained
by the DBMS, the data type and length must be passed to the DBMS, through the SET
DESCRIPTOR statement, using host variables. In this particular example, the simple
variables typecode and length are used. Additionally, the data type codes in Figure 18-8
were specific to DB2. The fact that each DBMS vendor used different codes to represent
different SQL data types was a major source of portability problems in dynamic SQL.
The SQL2 standard specifies integer data type codes for all of the data types specified
in the standard, eliminating this issue. The SQL2 data type codes are summarized in
Table 18-2. So, in addition to the other changes, the data type codes in the columns
structure of Figure 18-8 would need to be modified to use these SQL2 standard data
type codes.
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Data Type Code

Data Type Codes (TYPE)

INTEGER 4

SMALLINT 5

NUMERIC 2

DECIMAL 3

FLOAT 6

Table 18-2. SQL2 Data Type Codes
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Data Type Code

REAL 7

DOUBLE PRECISION 8

CHARACTER 1

CHARACTER VARYING 12

BIT 14

BIT VARYING 15

DATE/TIME/TIMESTAMP 9

INTERVAL 10

Date/Time Subcodes (Interval_Code)

DATE 1

TIME 2

TIME WITH TIME ZONE 4

TIMESTAMP 3

TIMESTAMP WITH TIME ZONE 5

Date/Time Subcodes (Interval_Precision)

YEAR 1

MONTH 2

DAY 3

HOUR 4

MINUTE 5

SECOND 6

YEAR – MONTH 7

DAY – HOUR 8

DAY – MINUTE 9

DAY – SECOND 10

Table 18-2. SQL2 Data Type Codes (continued)



The statements at callouts 5 and 6 in Figure 18-8 were used to bind the SQLDA structure
to the program buffers used to contain the parameter data and the corresponding indicator
variable. Effectively, they put pointers to these program buffers into the SQLDA for the
use of the DBMS. With SQL2 descriptors, this type of binding is not possible. Instead,
the data value and indicator value are specifically passed as host variables, later in the
program. Thus, the statements at callouts 5 and 6 would be eliminated in the conversion
to SQL2.

The statement at callout 7 in Figure 18-8 sets the SQLDA to indicate how many
parameter values are actually being passed to the DBMS. The SQL2 descriptor must
similarly be set to indicate the number of passed parameters. This is done with a form
of the SET DESCRIPTOR statement:

SET DESCRIPTOR parmdesc COUNT = :parmcnt;

Strictly speaking, this SET DESCRIPTOR statement should probably be placed earlier
in the program and should be executed before those for the individual items. The SQL2
standard specifies a complete set of rules that describe how setting values in some parts
of the descriptor causes values in other parts of the descriptor to be reset. For the most
part, these rules simply specify the natural hierarchy of information.

For example, if you set the data type for a particular item to indicate an integer, the
standard says that the corresponding information in the descriptor that tells the length
of the same item will be reset to some implementation-dependent value. Normally this
doesn’t impact your programming, but it does mean that you can’t assume that just
because you set some value within the descriptor previously, that it still retains the same
value. It’s best to fill the descriptor hierarchically, starting with higher-level information
(for example, the number of items and their data types) and then proceeding to lower-level
information (data type lengths, subtypes, whether NULL values are allowed, and so on).

The flow of the program in Figure 18-8 can now continue unmodified. The PREPARE
statement compiles the dynamic UPDATE statement, and its form does not change for
SQL2. The program then enters the for loop, prompting the user for parameters. Here
again, the concepts are the same, but the details of manipulating the SQLDA structure
and the SQL2 descriptor differ.

If the user indicates that a NULL value is to be assigned (by typing an asterisk in
response to the prompt), the program in Figure 18-8 sets the parameter indicator buffer
appropriately with the statement:

*(parmvar->sqlind) = -1;

and if the value is not NULL, the program again sets the indicator buffer with the statement:

*(parmvar->sqlind) = 0;
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For the SQL2 descriptor, these statements would again be converted to a pair of SET
DESCRIPTOR statements:

SET DESCRIPTOR parmdesc VALUE(:j + l) INDICATOR = -1;

SET DESCRIPTOR parmdesc VALUE (:j + 1) INDICATOR = 0;

Note again the use of the loop control variable to specify which item in the descriptor
is being set, and the direct passing of data (in this case, constants) rather than the use of
pointers to buffers in the SQLDA structure.

Finally, the program in Figure 18-8 passes the actual parameter value typed by the
user to the DBMS, via the SQLDA. The statements at callout 8 accomplish this for data
of different types, by first converting the typed characters into binary representations
of the data and placing the binary data into the data buffers pointed to by the SQLDA.
Again, the conversion to SQL2 involves replacing these pointers and direct SQLDA
manipulation with a SET DESCRIPTOR statement. For example, these statements pass
the data and its length for a variable-length character string:

length = strlen(inbuf);

SET DESCRIPTOR parmdesc VALUE (:j + 1) DATA = :inbuf;

SET DESCRIPTOR parmdesc VALUE (:j + 1) LENGTH = :length;

For data items that do not require a length specification, passing the data is even
easier, since only the DATA form of the SET DESCRIPTOR statement is required. It’s
also useful to note that SQL2 specifies implicit data type conversions between host
variables (such as inbuf) and SQL data types. Following the SQL standard, it would
be necessary for the program in Figure 18-8 to perform all of the data type conversion
in the sscanf() functions. Instead, the data could be passed to the DBMS as character
data, for automatic conversion and error detection.

With the SQLDA finally set up as required, the program in Figure 18-8 executes the
dynamic UPDATE statement with the passed parameters at callout 9, using an EXECUTE
statement that specifies a SQLDA. The conversion of this statement to a SQL2 descriptor
is straightforward; it becomes:

EXECUTE updatestmt USING SQL DESCRIPTOR parmdesc;

The keywords in the EXECUTE statement change slightly, and the name of the
descriptor is specified instead of the name of the SQLDA.

Finally, the program in Figure 18-8 should be modified like this to tell the DBMS
to deallocate the SQL2 descriptor. The statement that does this is:

DEALLOCATE DESCRIPTOR parmdesc;
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In a simple program like this one, the DEALLOCATE is not very necessary, but in a
more complex real-world program with multiple descriptors, it’s a very good idea to
deallocate the descriptors when the program no longer requires them.

SQL2 and Dynamic SQL Queries
In the dynamic SQL statements of the preceding sections, the SQL2 descriptor, like the
SQLDA it replaces, is used to pass parameter information from the host program to the
DBMS, for use in dynamic statement execution. The SQL2 standard also uses the SQL
descriptor in dynamic query statements where, like the SQLDA it replaces, it controls
the passing of query result from the DBMS back to the host program. Figure 18-9 lists
a DB2-style dynamic SQL query program. It’s useful to examine how the program in
Figure 18-9 would change to conform to the SQL2 standard. Again, the flow of the
program remains identical under SQL2, but the specifics change quite a lot. The SQL2
forms of the dynamic SQL query-processing statements are shown in Figure 18-20.
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Figure 18-20. SQL2 dynamic query-processing statements
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The declaration of the cursor for the dynamic query, in callout 1 of Figure 18-9,
remains unchanged under SQL2. The construction of the dynamic SELECT statement
in callout 2 is also unchanged, as is the PREPARE statement of callout 3. The changes
to the program begin at callout 4, where the program uses the DESCRIBE statement to
obtain a description of the query results, which is returned in a SQLDA named qry_da.
For SQL2, this DESCRIBE statement must be modified to refer to a SQL2 descriptor,
which must have been previously allocated. Assuming the descriptor is named qrydesc,
the statements would be:

ALLOCATE DESCRIPTOR qrydesc WITH MAX :colcount;

DESCRIBE querystmt USING SQL DESCRIPTOR qrydesc;

The SQL2 form of the DESCRIBE statement has a parallel effect on the one it
replaces. Descriptions of the query result columns are returned, column by column,
into the SQL2 descriptor, instead of into the SQLDA. Because the descriptor is a DBMS
structure, rather than an actual data structure in the program, the host program must
retrieve the information from the descriptor, piece by piece, as required. The GET
DESCRIPTOR statement performs this function, just as the SET DESCRIPTOR function
performs the opposite function of putting information into the SQL2 descriptor. In the
program of Figure 18-9, the statements at callout 5, which obtains the length of a particular
column of query results from a SQLDA, would be replaced with this statement:

GET DESCRIPTOR qrydesc VALUE (:i + 1) :length = LENGTH;

qry_var -> sqldat = malloc(length);

The statement at callout 5 that allocates buffers for each item of query results is
still needed, but the method for telling the DBMS where to put the results changes for
SQL2. Instead of placing the address of the program destination for each item into the
SQLDA, the program must place these addresses into the SQL2 descriptor, using the
SET DESCRIPTOR statement. The buffers for the indicator variables are not needed
with the SQL2 descriptor. Instead, the information about whether a column contains
a NULL value can be obtained from the descriptor for each row as it is fetched, as seen
later in the program example.

In this particular example, the number of columns in the query results are calculated
by the program as it builds the query. The program could also obtain the number of
columns from the SQL2 descriptor with this form of the GET DESCRIPTOR statement:

GET DESCRIPTOR qrydesc :colcount = COUNT;

Having obtained the description of the query results, the program performs the
query by opening the cursor at callout 6. The simple form of the OPEN statement,
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without any input parameters, conforms to the SQL2 standard. If the dynamic query
specified parameters, they could be passed to the DBMS either as a series of host
variables or via a SQL2 descriptor. The SQL2 OPEN statement using host variables
is identical to the DB2 style, shown in the program in Figure 18-13. The SQL2 OPEN
statement using a descriptor is parallel to the SQL2 EXECUTE statement using a descriptor,
and differs from the DB2 style. For example, the OPEN statement of Figure 18-14:

OPEN qrycursor USING DESCRIPTOR :parmda;

is changed for SQL2 into this OPEN statement:

OPEN qrycursor USING SQL DESCRIPTOR parmdesc;

The technique for passing input parameters to the OPEN statement via the SQL2
descriptor is exactly the same as that described earlier for the EXECUTE statement.

Like the Oracle implementation of dynamic SQL, the SQL2 standard provides a
way for the host program to obtain a description of the parameters in a dynamic query
as well as a description of the query results. For the program fragment in Figure 18-14,
this DESCRIBE statement:

DESCRIBE INPUT querystmt USING SQL DESCRIPTOR parmdesc;

will return, in the SQL2 descriptor named parmdesc, a description of each of the
parameters that appears in the dynamic query. The number of parameters can be
obtained with the GET DESCRIPTOR statement, retrieving the COUNT item from the
descriptor. As with the Oracle implementation, the SQL2 standard can have two
descriptors associated with a dynamic query. The input descriptor, obtained with the
DESCRIBE INPUT statement, contains descriptions of the parameters. The output
descriptor contains descriptions of the query results columns. The standard allows you
to explicitly ask for the output description:

DESCRIBE OUTPUT querystmt USING SQL DESCRIPTOR qrydesc;

but the DESCRIBE OUTPUT form of the statement is the default, and the most common
practice is to omit the keyword OUTPUT.

Returning to the dynamic query example of Figure 18-9, the cursor has been opened
at callout 7, and it’s time to fetch rows of query results at callout 8. Again, the SQL2 form
of the FETCH statement is slightly modified to use the SQL2-style descriptor:

FETCH sqlcurs USING SQL DESCRIPTOR qrydesc;
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The FETCH statement advances the cursor to the next row of query results and brings
the values for that row into the program buffers, as specified within the descriptor
structure. The program must still use the descriptor to determine information about
each column of returned results, such as its length or whether it contains a NULL value.
For example, to determine the returned length of a column of character data, the program
might use the statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :length = RETURNED_LENGTH;

To determine whether the value in the column was NULL, the program can use the
statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :indbuf = INDICATOR;

and similarly to determine the data type of the column, the program can use the statement:

GET DESCRIPTOR qrydesc VALUE(:i + 1) :type = TYPE;

As you can see, the details of row-by-row query processing within the for loop of
the program will differ dramatically from those in Figure 18-9.

Having processed all rows of query results, the program closes the cursor at callout
8. The CLOSE statement remains unchanged under SQL2. Following the closing of the
cursor, it would be good practice to deallocate the SQL2 descriptor(s), which would
have been allocated at the very beginning of the program.

The changes required to the dynamic SQL programs in Figures 18-8, 18-9, and 18-14
to make them conform to the SQL2 standard illustrate, in detail, the new features specified
by the standard and the degree to which they differ from common dynamic SQL usage
today. In summary, the changes from DB2-style dynamic SQL are:

� The SQLDA structure is replaced with a named SQL2 descriptor.

� The ALLOCATE DESCRIPTOR and DEALLOCATE DESCRIPTOR statements are
used to create and destroy descriptors, replacing allocation and deallocation
of host program SQLDA data structures.

� Instead of directly manipulating elements of the SQLDA, the program specifies
parameter values and information through the SET DESCRIPTOR statement.

� Instead of directly manipulating elements of the SQLDA, the program obtains
information about query results and obtains the query result data itself through
the GET DESCRIPTOR statement.
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� The DESCRIBE statement is used both to obtain descriptions of query results
(DESCRIBE OUTPUT) and to obtain descriptions of parameters (DESCRIBE
INPUT).

� The EXECUTE, OPEN, and FETCH statements are slightly modified to specify
the SQL2 descriptor by name instead of the SQLDA.

Summary
This chapter described dynamic SQL, an advanced form of embedded SQL. Dynamic
SQL is rarely needed to write simple data processing applications, but it is crucial for
building general-purpose database front-ends. Static SQL and dynamic SQL present a
classic trade-off between efficiency and flexibility, which can be summarized as follows:

� Simplicity. Static SQL is relatively simple; even its most complex feature,
cursors, can be easily understood in terms of familiar file input/output
concepts. Dynamic SQL is complex, requiring dynamic statement generation,
variable-length data structures, and memory management, with memory
allocation/deallocation, data type alignment, pointer management, and
associated issues.

� Performance. Static SQL is compiled into an application plan at compile-time;
dynamic SQL must be compiled at runtime. As a result, static SQL performance
is generally much better than that of dynamic SQL. The performance of dynamic
SQL is dramatically impacted by the quality of the application design; a design
that minimizes the amount of compilation overhead can approach static SQL
performance.

� Flexibility. Dynamic SQL allows a program to decide at runtime which specific
SQL statements it will execute. Static SQL requires that all SQL statements be
coded in advance, when the program is written, limiting the flexibility of the
program.

Dynamic SQL uses a set of extended embedded SQL statements to support its
dynamic features:

� The EXECUTE IMMEDIATE statement passes the text of a dynamic SQL
statement to the DBMS, which executes it immediately.

� The PREPARE statement passes the text of a dynamic SQL statement to the
DBMS, which compiles it into an application plan but does not execute it. The
dynamic statement may include parameter markers whose values are specified
when the statement is executed.



� The EXECUTE statement asks the DBMS to execute a dynamic statement
previously compiled by a PREPARE statement. It also supplies parameter
values for the statement that is to be executed.

� The DESCRIBE statement returns a description of a previously prepared
dynamic statement into a SQLDA. If the dynamic statement is a query, the
description includes a description of each column of query results.

� The DECLARE CURSOR statement for a dynamic query specifies the query
by the statement name assigned to it when it was compiled by the PREPARE
statement.

� The OPEN statement for a dynamic query passes parameter values for the
dynamic SELECT statement and requests query execution.

� The FETCH statement for a dynamic query fetches a row of query results into
program data areas specified by a SQLDA structure.

� The CLOSE statement for a dynamic query ends access to the query results.
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T
he embedded SQL technique for programmatic access to SQL-based databases was
pioneered by the early IBM relational database prototypes and was widely adopted
by mainstream SQL products. However, several major DBMS products, led by

Sybase’s first SQL Server implementation, took a very different approach. Instead of
trying to blend SQL with another programming language, these products provide a
library of function calls as an application programming interface (API) for the DBMS. To
pass SQL statements to the DBMS, an application program calls functions in the API, and
it calls other functions to retrieve query results and status information from the DBMS.

For many programmers, a SQL API is a very straightforward way to use SQL. Most
programmers have some experience in using function libraries for other purposes, such
as string manipulation, mathematical functions, file input/output, and screen forms
management. Modern operating systems, such as UNIX and Windows, extensively use
API suites to extend the core capabilities provided by the OS itself. The SQL API thus
becomes just another library for the programmer to learn.

Over the last several years, SQL APIs have become very popular, equaling if not
surpassing the popularity of the embedded SQL approach for new applications
development. This chapter describes the general concepts used by all SQL API
interfaces. It also describes specific features of some of the proprietary APIs used by
popular SQL-based DBMS systems, and both the ANSI/ISO SQL Call-Level Interface
standard and Microsoft’s Open Database Connectivity (ODBC) standard on which
it is based. Finally, it describes JDBC, which is the API standard for SQL access from
programs written in Java, and is used by all of the popular Internet application servers.

API Concepts
When a DBMS supports a function call interface, an application program communicates
with the DBMS exclusively through a set of calls that are collectively known as an
application programming interface, or API. The basic operation of a typical DBMS API is
illustrated in Figure 19-1.

� The program begins its database access with one or more API calls that connect
the program to the DBMS and often to a specific database.

� To send a SQL statement to the DBMS, the program builds the statement as a
text string in a buffer and then makes an API call to pass the buffer contents to
the DBMS.

� The program makes API calls to check the status of its DBMS request and to
handle errors.

� If the request is a query, the program uses API calls to retrieve the query results
into the program’s buffers. Typically, the calls return data a row at a time or a
column at a time.

� The program ends its database access with an API call that disconnects it from
the DBMS.
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A SQL API is often used when the application program and the database are on
two different systems in a client/server architecture, as shown in Figure 19-2. In this
configuration, the code for the API functions is located on the client system, where the
application program executes. The DBMS software is located on the server system,
where the database resides. Calls from the application program to the API take place
locally within the client system, and the API code translates the calls into messages that
it sends to and receives from the DBMS over a network. A SQL API offers particular
advantages for a client/server architecture because it can minimize the amount of
network traffic between the API and the DBMS.

The early APIs offered by various DBMS products differed substantially from one
another. Like many parts of the SQL language, proprietary SQL APIs proliferated long
before there was an attempt to standardize them. In addition, SQL APIs tend to expose
the underlying capabilities of the DBMS more than the embedded SQL approach,

Figure 19-1. Using a SQL API for DBMS access
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leading to even more differences. Nonetheless, all of the SQL APIs available in
commercial SQL products are based on the same fundamental concepts illustrated
in Figures 19-1 and 19-2. These concepts also apply to the ODBC API and more
recent ANSI/ISO standards based on it.

The dblib API (SQL Server)
The first major DBMS product to emphasize its callable API was SQL Server, in versions
from both Sybase and Microsoft. For many years, the SQL Server callable API was the
only interface offered by these products. Both Microsoft and Sybase now offer embedded
SQL capabilities and have added newer or higher-level callable APIs, but the original SQL
Server API remains a very popular way to access these DBMS brands. The SQL Server
API also provided the model for much of Microsoft’s ODBC API. SQL Server and its
API are also an excellent example of a DBMS designed from the ground up around a
client/server architecture. For all of these reasons, it’s useful to begin our exploration of
SQL APIs by examining the basic SQL Server API.

The original SQL Server API, which is called the database library or dblib, consists of
about 100 functions available to an application program. The API is very comprehensive,
but a typical program uses only about a dozen of the function calls, which are summarized
in Table 19-1. The other calls provide advanced features, alternative methods of interacting
with the DBMS, or single-call versions of features that otherwise would require multiple calls.

Figure 19-2. A SQL API in an client/server architecture
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A simple SQL Server program that updates a database can use a very small set of
dblib calls to do its work. The program in Figure 19-3 implements a simple quota
update application for the SALESREPS table in the sample database. It is identical to

Function Description

Database connection/disconnection

dblogin() Provides a data structure for login information

Dbopen() Opens a connection to SQL Server

dbuse() Establishes the default database

Dbexit() Closes a connection to SQL Server

Basic statement processing

dbcmd() Passes SQL statement text to dblib

dbsqlexec() Requests execution of a statement batch

dbresults() Obtains results of next SQL statement in a batch

dbcancel() Cancels the remainder of a statement batch

Error handling

dbmsghandle() Establishes a user-written message-handler procedure

dberrhandle() Establishes a user-written error-handler procedure

Query results processing

Dbbind() Binds a query results column to a program variable

dbnextrow() Fetches the next row of query results

dbnumcols() Obtains the number of columns of query results

dbcolname() Obtains the name of a query results column

dbcoltype() Obtains the data type of a query results column

dbcollen() Obtains the maximum length of a query results column

Dbdata() Obtains a pointer to a retrieved data value

dbdatlen() Obtains the actual length of a retrieved data value

dbcanquery() Cancels a query before all rows are fetched

Table 19-1. Basic dblib API Functions
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the program in Figure 17-17, but uses the SQL Server API instead of embedded SQL.
The figure illustrates the basic interaction between a program and SQL Server:

main()

{

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

char amount_str[31]; /* amount entered by user (as a string) */

int status; /* dblib call return status */

/* Get a login structure and set user name & password */

loginrec = dblogin();

DBSETLUSER(loginrec, “scott”);

DBSETLPWD (loginrec, “tiger”);

/* Connect to SQL Server */

dbproc = dbopen(loginrec, “”);

/* Prompt the user for the amount of quota increase/decrease */

printf(“Raise/lower by how much: ”);

gets(amount_str);

/* Pass SQL statement to dblib */

dbcmd(dbproc, “update salesreps set quota = quota +”);

dbcmd(dbproc, amount_str);

/* Ask SQL Server to execute the statement */

dbsqlexec(dbproc);

/* Get results of statement execution */

status = dbresults(dbproc);

if (status ! = SUCCEED)

printf(“Error during update.\n”);

else

printf(“Update successful.\n”);

/* Break connection to SQL Server */

dbexit(dbproc);

exit();

}

Figure 19-3. A simple program using dblib

➀

➁

➂

➃

➄
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1. The program prepares a login record, filling in the user name, password,
and any other information required to connect to the DBMS.

2. The program calls dbopen() to establish a connection to the DBMS. A
connection must exist before the program can send SQL statements to SQL
Server.

3. The program builds a SQL statement in a buffer and calls dbcmd() to pass the
SQL text to dblib. Successive calls to dbcmd() add to the previously passed
text; there is no requirement that a complete SQL statement be sent in a single
dbcmd() call.

4. The program calls dbsqlexec(), instructing SQL Server to execute the
statement previously passed with dbcmd().

5. The program calls dbresults() to determine the success or failure of the
statement.

6. The program calls dbexit() to close down the connection to SQL Server.

It’s instructive to compare the programs in Figure 19-3 and Figure 17-17 to see the
differences between the embedded SQL and the dblib approach:

� The embedded SQL program either implicitly connects to the only available
database (as in DB2), or it includes an embedded SQL statement for connection
(such as the CONNECT statement specified by the SQL2 standard). The dblib
program connects to a particular SQL Server with the dbopen() call.

� The actual SQL UPDATE statement processed by the DBMS is identical in both
programs. With embedded SQL, the statement is part of the program’s source
code. With dblib, the statement is passed to the API as a sequence of one or
more character strings. In fact, the dblib approach more closely resembles the
dynamic SQL EXECUTE IMMEDIATE statement than static SQL.

� In the embedded SQL program, host variables provide the link between the
SQL statements and the values of program variables. With dblib, the program
passes variable values to the DBMS in the same way that it passes program
text—as part of a SQL statement string.

� With embedded SQL, errors are returned in the SQLCODE or SQLSTATE field of
the SQLCA structure. With dblib, the dbresults() call retrieves the status of
each SQL statement.

Overall, the embedded SQL program in Figure 17-17 is shorter and probably easier
to read. However, the program is neither purely C nor purely SQL, and a programmer
must be trained in the use of embedded SQL to understand it. The use of host variables
means that the interactive and embedded forms of the SQL statement are different. In
addition, the embedded SQL program must be processed both by the SQL precompiler
and by the C compiler, lengthening the compilation cycle. In contrast, the SQL Server
program is a plain vanilla C program, directly acceptable to the C compiler, and does
not require special coding techniques.



Statement Batches
The program in Figure 19-3 sends a single SQL statement to SQL Server and checks
its status. If an application program must execute several SQL statements, it can repeat
the dbcmd() / dbsqlexec() / dbresults() cycle for each statement. Alternatively,
the program can send several statements as a single statement batch to be executed by
SQL Server.

Figure 19-4 shows a program that uses a batch of three SQL statements. As in
Figure 19-3, the program calls dbcmd() to pass SQL text to dblib. The API simply
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main()

{

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

•

•

•

/* Delete salespeople with low sales */

dbcmd(dbproc, “delete from salesreps where sales < 10000.00");

/* Increase quota for salespeople with moderate sales */

dbcmd(dbproc, ”update salesreps set quota = quota + 10000.00");

dbcmd(dbproc, “where sales <= 150000.00");

/* Increase quota for salespeople with high sales */

dbcmd(dbproc, ”update salesreps set quota = quota + 20000.00");

dbcmd(dbproc, “where sales > 150000.00");

/* Ask SQL Server to execute the statement batch */

dbsqlexec(dbproc);

/* Check results of each of the three statements */

if (dbresults(dbproc) != SUCCEED) goto do_error;

if (dbresults(dbproc) != SUCCEED goto do_error;

if (dbresults(dbproc) != SUCCEED goto do_error;

•

•

•

}

Figure 19-4. Using a dblib statement batch



concatenates the text from each call. Note that it’s the program’s responsibility to
include any required spaces or punctuation in the passed text. SQL Server does not
begin executing the statements until the program calls dbsqlexec(). In this example,
three statements have been sent to SQL Server, so the program calls dbresults()
three times in succession. Each call to dbresults() advances the API to the results of
the next statement in the batch and tells the program whether the statement succeeded
or failed.

In the program shown in Figure 19-4, the programmer knows in advance that three
statements are in the batch, and the programmer can code three corresponding calls to
dbresults(). If the number of statements in the batch is not known in advance, the
program can call dbresults() repeatedly until it receives the error code NO_MORE_
RESULTS. The program excerpt in Figure 19-5 illustrates this technique.

Error Handling
The value returned by the dbresults() function tells the program whether the corre-
sponding statement in the statement batch succeeded or failed. To get more detailed
information about a failure, your program must provide its own message-handling
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•

•

•

/* Execute statements previously with dbcmd() calls */

dbsqlexec(dbproc);

/* Loop checking results of each statement in the batch */

while (status = dbresults(dbproc) != NO_MORE_RESULTS {

if (status == FAIL)

goto handle_error;

else

printf(“Statement succeeded.\n”);

}

/* Done with loop; batch completed successfully */

printf(“Batch complete.\n”);

exit();

•

•

•

Figure 19-5. Processing the results of a dblib statement batch



function. The dblib software automatically calls the message-handling function when
SQL Server encounters an error while executing SQL statements. Note that dblib calls
the message-handling function during its processing of the dbsqlexec() or
dbresults() function calls, before it returns to your program (i.e., it is a callback func-
tion, called back by the SQL Server software). This allows the message-handling function
to do its own error processing.

Figure 19-6 shows an excerpt from a SQL Server program that includes a message-
handling function called msg_rtn(). When the program begins, it activates the
message-handling function by calling msghandle(). Suppose an error occurs later,
while SQL Server is processing the DELETE statement. When the program calls
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•

•

•

/* External variables to hold error information */

int  errcode;                       /* saved error code */

char errmsg[256];                   /* saved error message */

/* Define our own message-handling function */

int msg_rtn(dbproc, msgno, msgstate, severity, msgtext)

DBPROCESS   *dbproc;

DBINT        msgno;

int          msgstate;

int          severity;

char        *msgtext;

extern int   errcode;

extern char *errmsg;

{

/* Print out the error number and message */

printf(“*** Error: %d Message: %s\n”, msgno, msgtext);

/* Save the error information for the application program */

errcode = msgno;

strcpy(errmsg, msgtext);

/* Return to dlib to complete the API call */

return(0);

}

Figure 19-6. Error handling in a dblib program



dbsqlexec() or dbresults() and dblib receives the error message from SQL
Server, it upcalls the msg_rtn() routine in the program, passing it five parameters:

� dbproc. The connection on which the error occurred

� msgno. The SQL Server error number identifying the error

� msgstate. A parameter providing information about the error context

� severity. A number indicating the seriousness of the error

� msgtext. An error message corresponding to msgno

The msg_rtn() function in this program handles the message by printing it and
saving the error number in a program variable for use later in the program. When the
message-handling function returns to dblib (which called it), dblib completes its
own processing and then returns to the program with a FAIL status. The program can
detect this return value and perform further error processing, if appropriate.

The program excerpt in the figure actually presents a simplified view of SQL Server
error handling. In addition to SQL statement errors detected by SQL Server, errors can
also occur within the dblib API itself. For example, if the network connection to the
SQL Server is lost, a dblib call may time out waiting for a response from SQL Server,
resulting in an error. The API handles these errors by upcalling a separate error-handling
function, which operates much like the message-handling function described here.
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main()

{

DBPROCESS *dbproc;          /* data structure for connection */

•

•

•

/* Install our own error handling function */

dberrhandle(msg_rtn)

•

•

•

/* Execute a DELETE statement */

dbcmd(dbproc, “delete from salesreps where quota < 100000.00");

dbsqlexec(dbproc);

dbresults(dbproc);

•

•

•

Figure 19-6. Error handling in a dblib program (continued)



A comparison of Figure 19-6 with Figures 17-10 and 17-13 illustrates the differences
in error-handling techniques between dblib and embedded SQL:

� In embedded SQL, the SQLCA structure is used to signal errors and warnings
to the program. SQL Server communicates errors and warnings by upcalling
special functions within the application program and returning a failure status
for the API function that encountered the error.

� In embedded SQL, error processing is synchronous. The embedded SQL
statement fails, control returns to the program, and the SQLCODE or SQLSTATE
value is tested. SQL Server error processing is asynchronous. When an API call
fails, SQL Server calls the application program’s error-handling or message-
handling function during the API call. It returns to the application program
with an error status later.

� Embedded SQL has only a single type of error and a single mechanism
for reporting it. The SQL Server scheme has two types of errors and two
parallel mechanisms.

In summary, error handling in embedded SQL is simple and straightforward, but
the application program can make only a limited number of responses when an error
occurs. A SQL Server program has more flexibility in handling errors. However, the
upcall scheme used by dblib is more sophisticated, and while it is familiar to systems
programmers, it may be unfamiliar to application programmers.

SQL Server Queries
The SQL Server technique for handling programmatic queries is very similar to its
technique for handling other SQL statements. To perform a query, a program sends a
SELECT statement to SQL Server and uses dblib to retrieve the query results row by
row. The program in Figure 19-7 illustrates the SQL Server query-processing technique.

1. The program uses the dbcmd() and dbsqlexec() calls to pass a SELECT
statement to SQL Server and request its execution.

2. When the program calls dbresults() for the SELECT statement, dblib
returns the completion status for the query and also makes the query results
available for processing.

3. The program calls dbbind() once for each column of query results, telling
dblib where it should return the data for that particular column. The arguments
to dbbind() indicate the column number, the buffer to receive its data, the size
of the buffer, and the expected data type.

4. The program loops, calling dbnextrow() repeatedly to obtain the rows of
query results. The API places the returned data into the data areas indicated
in the previous dbbind() calls.
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main()

{

LOGINREC  *loginrec;           /* data structure for login information */

DBPROCESS *dbproc;             /* data structure for connection */

char       repname[16];        /* retrieved city for the office */

short      repquota;           /* retrieved employee number of mgr */

float      repsales;           /* retrieved sales for office */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, “scott”);

DBSETLPWD (loginrec, “tiger”);

dbproc = dbopen(loginrec, “”);

/* Pass query to dblib and ask SQL Server to execute it */

dbcmd(dbproc, “select name, quota, sales from salesreps ”);

dbcmd(dbproc, “where sales > quota order by name ”);

dbsqlexec(dbproc);

/* Get first statement in the batch */

dbresults(dbproc);

/* Bind each column to a variable in this program */

dbbind(dbproc, 1, NTBSTRINGBIND, 16, &repname);

dbbind(dbproc, 2, FLT4BIND,       0, &repquota);

dbbind(dbproc, 3, FLT4BIND,       0, &repsales);

/* Loop retrieving rows of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Print data for this salesperson */

printf(“Name:  %s\n”,   repname);

printf(“Quota: %f\n\n”, repquota);

printf(“Sales: %f\n”,   repsales);

}

/* Check for errors and close connection */

if (status == FAIL) {

printf(“SQL error.\n”);

dbexit(dbproc);

exit();

}

Figure 19-7. Retrieving query results using dblib

➀

➁

➂

➃
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5. When no more rows of query results are available, the dbnextrow() call
returns the value NO_MORE_ROWS. If more statements were in the statement
batch following the SELECT statement, the program could call dbresults()
to advance to the next statement.

Two of the dblib calls in Figure 19-7, dbbind() and dbnextrow(), support
processing of the SQL Server query results. The dbbind() call sets up a one-to-one
correspondence between each column of query results and the program variable that
is to receive the retrieved data. This process is called binding the column. In the figure,
the first column (NAME) is bound to a 16-byte character array and will be returned as a
NULL-terminated string. The second and third columns, QUOTA and SALES, are both
bound to floating point numbers. It is the programmer’s responsibility to make sure
that the data type of each column of query results is compatible with the data type of
the program variable to which it is bound.

Once again, it is useful to compare the SQL Server query processing in Figure 19-7
with the embedded SQL queries in Figure 17-20 and Figure 17-23:

� Embedded SQL has two different query-processing techniques—one for
single-row queries (singleton SELECT) and one for multirow queries (cursors).
The dblib API uses a single technique, regardless of the number of rows of
query results.

� To specify the query, embedded SQL replaces the interactive SELECT statement
with the singleton SELECT statement or the DECLARE CURSOR statement. With
SQL Server, the SELECT statement sent by the program is identical to the
interactive SELECT statement for the query.

� With embedded SQL, the host variables that receive the query results are
named in the INTO clause of the singleton SELECT or the FETCH statement.
With SQL Server, the variables to receive query results are specified in the
dbbind() calls.

� With embedded SQL, row-by-row access to query results is provided by
special-purpose embedded SQL statements (OPEN, FETCH, and CLOSE).
With SQL Server, access to query results is through dblib function
calls (dbresults() and dbnextrow()), which keep the SQL language
itself more streamlined.

Because of its relative simplicity and its similarity to the interactive SQL interface,
many programmers find the SQL Server interface easier to use for query processing
than the embedded SQL interface.

Retrieving NULL Values
The dbnextrow() and dbbind() calls shown in Figure 19-7 provide a simple way to
retrieve query results, but they do not support NULL values. When a row retrieved by



dbnextrow() includes a column with a NULL value, SQL Server replaces the NULL
with a NULL substitution value. By default, SQL Server uses zero as a substitution
value for numeric data types, a string of blanks for fixed-length strings, and an empty
string for variable-length strings. The application program can change the default
value for any data type by calling the API function dbsetnull().

In the program shown in Figure 19-7, if one of the offices had a NULL value in its
QUOTA column, the dbnextrow() call for that office would retrieve a zero into the
quota_value variable. Note that the program cannot tell from the retrieved data
whether the QUOTA column for the row really has a zero value, or whether it is NULL.
In some applications, the use of substitution values is acceptable, but in others, it is
important to be able to detect NULL values. These latter applications must use an
alternative scheme for retrieving query results, described in the next section.

Retrieval Using Pointers
With the basic SQL Server data retrieval technique, the dbnextrow() call copies the
data value for each column into one of your program’s variables. If there are many
rows of query results or many long columns of text data, copying the data into your
program’s data areas can create a significant overhead. In addition, the dbnextrow()
call lacks a mechanism for returning NULL values to your program.

To solve these two problems, dblib offers an alternate method of retrieving query
results. Figure 19-8 shows the program excerpt from Figure 19-7, rewritten to use this
alternate method:

1. The program sends the query to SQL Server and uses dbresults() to access
the results, as it does for any SQL statement. However, the program does not
call dbbind() to bind the columns of query results to program variables.

2. The program calls dbnextrow() to advance, row by row, through the
query results.

3. For each column of each row, the program calls dbdata() to obtain a pointer to
the data value for the column. The pointer points to a location within dblib’s
internal buffers.

4. If a column contains variable-length data, such as a VARCHAR data item, the
program calls dbdatlen() to find out the length of the data item.

5. If a column has a NULL value, the dbdata() function returns a null pointer (0),
and dbdatlen() returns 0 as the length of the item. These return values give
the program a way to detect and respond to NULL values in the query results.

The program in Figure 19-8 is more cumbersome than the one in Figure 19-7. In
general, it’s easier to use the dbbind() function than the dbdata() approach, unless
your program needs to handle NULL values or will be handling a large volume of
query results.
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main()

{

LOGINREC  *loginrec;         /* data structure for login information */

DBPROCESS *dbproc;           /* data structure for connection */

char      *namep;            /* pointer to NAME column data */

int        citylen;          /* length of NAME column data */

float     *quotap;           /* pointer to QUOTA column data */

float     *salesp;           /* pointer to SALES column data */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, “scott”);

DBSETLPWD (loginrec, “tiger”);

dbproc = dbopen(loginrec, “”);

/* Pass query to dblib and ask SQL Server to execute it */

dbcmd(dbproc, “select name, quota, sales from salesreps ”);

dbcmd(dbproc, “where sales > quota order by name ”);

dbsqlexec(dbproc);

/* Get to first statement in the batch */

dbresults(dbproc);

/* Retrieve the single row of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Get the address of each data item in this row */

namep   = dbdata(dbproc, 1);

quotap  = dbdata(dbproc, 2);

salesp  = dbdata(dbproc, 3);

namelen = dbdatlen(dbproc, 1);

/* Copy NAME value into our own buffer & null-terminate it */

strncpy(namebuf, namep, namelen);

*(namebuf + namelen) = (char) 0;

Figure 19-8. Retrieval using the dbdata() function

➀

➁

➂
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Random Row Retrieval
A program normally processes SQL Server query results by moving through them
sequentially using the dbnextrow() call. For browsing applications, dblib also
provides limited random access to the rows of query results. Your program must
explicitly enable random row access by turning on a dblib option. The dbgetrow()
call can then be used to retrieve a row by its row number.

To support random row retrieval, dblib stores the rows of query results in an
internal buffer. If the query results fit entirely within the dblib buffer, dbgetrow()
supports random retrieval of any row. If the query results exceed the size of the buffer,
only the initial rows of query results are stored. The program can randomly retrieve these
rows, but a dbnextrow() call that attempts to retrieve a row past the end of the buffer
returns the special BUF_FULL error condition. The program must then discard some of
the saved rows from the buffer, using the dbclrbuf() call, to make room for the new
row. Once the rows are discarded, they cannot be reretrieved with the dbgetrow()
function. Thus, dblib supports random retrieval of query results within a limited
window, dictated by the size of the row buffer, as shown in Figure 19-9. Your program
can specify the size of the dblib row buffer by calling the dblib routine dbsetopt().

The random access provided by dbgetrow() is similar to the scroll cursors
supported by several DBMS products and specified by the SQL2 standard. In both

/* Print data for this salesperson */

printf(“Name:  %s\n”, namebuf);

if (quotap == 0)

printf(“Quota is NULL.\n”);

else

printf(“Quota: %f\n”, *quotap);

printf(“Sales: %f\n”, *salesp);

}

/* Check for successful completion */

if (status == FAIL)

printf(“SQL error.\n”);

dbexit(dbproc);

exit();

}

Figure 19-8. Retrieval using the dbdata() function (continued)

➄



cases, random retrieval by row number is supported. However, a scroll cursor is a true
pointer into the entire set of query results; it can range from the first to the last row,
even if the query results contain thousands of rows. By contrast, the dbgetrow()
function provides random access only within a limited window. This is adequate for
limited browsing applications but cannot easily be extended to large queries.

Positioned Updates
In an embedded SQL program, a cursor provides a direct, intimate link between the
program and the DBMS query processing. The program communicates with the DBMS
row by row as it uses the FETCH statement to retrieve query results. If the query is a
simple single-table query, the DBMS can maintain a direct correspondence between the
current row of query results and the corresponding row within the database. Using this
correspondence, the program can use the positioned update statements (UPDATE…

WHERE CURRENT OF and DELETE… WHERE CURRENT OF) to modify or delete the
current row of query results.

SQL Server query processing uses a much more detached, asynchronous connection
between the program and the DBMS. In response to a statement batch containing one
or more SELECT statements, SQL Server sends the query results back to the dblib
software, which manages them. Row-by-row retrieval is handled by the dblib API calls,
not by SQL language statements. As a result, early versions of SQL Server could not
support positioned updates because its notion of a current row applied to query results
within the dblib API, not to rows of the actual database tables.
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Figure 19-9. Random row retrieval with dblib



Later versions of SQL Server (and Sybase) added complete support for standard
SQL cursors, with their associated DECLARE/OPEN/FETCH/CLOSE SQL statements.
Cursors actually operate within Transact-SQL stored procedures, and the action
of the FETCH statement is to fetch data from the database into the stored procedure
for processing—not to actually retrieve it into the application program that called the
stored procedure. Stored procedures and their operation within various popular SQL
DBMS products are discussed in Chapter 20.

Dynamic Queries
In the program examples thus far in this chapter, the queries to be performed were
known in advance. The columns of query results could be bound to program variables
by explicit dbbind() calls hard-coded in the program. Most programs that use SQL
Server can be written using this technique. (This static column binding corresponds
to the fixed list of host variables used in the static SQL FETCH statement in standard
embedded SQL, described in Chapter 17.)

If the query to be carried out by a program is not known at the time the program is
written, the program cannot include hard-coded dbbind() calls. Instead, the program
must ask dblib for a description of each column of query results, using special API
functions. The program can then bind the columns on the fly to data areas that it
allocates at runtime. (This dynamic column binding corresponds to the use of the
dynamic SQL DBNUMCOLS() statement and SQLDA, in dynamic embedded SQL, as
described in Chapter 18.)

Figure 19-10 shows an interactive query program that illustrates the dblib
technique for handling dynamic queries. The program accepts a table name entered by
the user and then prompts the user to choose which columns are to be retrieved from
the table. As the user selects the columns, the program constructs a SELECT statement
and then uses these steps to execute the SELECT statement and display the data from
the selected columns:

1. The program passes the generated SELECT statement to SQL Server using the
dbcmd() call, requests its execution with the dbsqlexec() call, and calls
dbresults() to advance the API to the query results, as it does for all queries.

2. The program calls dbnumcols() to find out how many columns of query
results were produced by the SELECT statement.

3. For each column, the program calls dbcolname() to find out the name of the
column, calls dbcoltype() to find out its data type, and calls dbcollen() to
find out its maximum length.

4. The program allocates a buffer to receive each column of query results and calls
dbbind() to bind each column to its buffer.

5. When all columns have been bound, the program calls dbnextrow() repeatedly
to retrieve each row of query results.
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main()

{

/* This is a simple general-purpose query program. It prompts

the user for a table name and then asks the user which columns

of the table are to be included in the query. After the user’s

selections are complete, the program runs the requested query and

displays the results.

*/

LOGINREC *loginrec; /* data structure for login information */

DBPROCESS *dbproc; /* data structure for connection */

char stmbuf[2001]; /* SQL text to be executed */

char querytbl[32]; /* user-specified table */

char querycol[32]; /* user-specified column */

int status; /* dblib return status */

int first_col = 0; /* is this the first column chosen? */

int colcount; /* number of columns of query results */

int i; /* index for columns */

char inbuf[101]; /* input entered by user */

char *item_name[100]; /* array to track column names */

char *item_data[100]; /* array to track column buffers */

int item_type[100]; /* array to track column data types */

char *address; /* address of buffer for current column */

int length; /* length of buffer for current column */

/* Open a connection to SQL Server */

loginrec = dblogin();

DBSETLUSER(loginrec, “scott”);

DBSETLPWD (loginrec, “tiger”);

dbproc = dbopen(loginrec, “”);

/* Prompt the user for which table to query */

printf(“*** Mini-Query Program ***\n”);

printf(“Enter name of table for query: ”);

gets(querytbl);

/* Start the SELECT statement in the buffer */

strcpy(stmbuf, “select ”);

Figure 19-10. Using dblib for a dynamic query
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/* Query the SQL Server system catalog to get column names */

dbcmd(dbproc, “select name from syscolumns ”);

dbcmd(dbproc, “where id = (select id from sysobjects ”);

dbcmd(dbproc, “where type = ‘U’ and name = ”);

dbcmd(dbproc, querytbl);

dbcmd(dbproc, “)”);

dbsqlexec(dbproc);

/* Process the results of the query */

dbresults(dbproc);

dbbind(dbproc, querycol);

while (status = dbnextrow(dbproc) == SUCCEED) {

printf(“Include column %s (y/n)? ”, querycol);

gets(inbuf);

if (inbuf[0] == ‘y’) {

/* User wants the column; add it to the select list */

if (first_col++ > 0) strcat(stmbuf, “, ”);

strcat(stmbuf, querycol);

}

}

/* Finish the SELECT statement with a FROM clause */

strcat(stmbuf, “from ”);

strcat(stmbuf, querytbl);

/* Execute the query and advance to the query results */

dbcmd(dbproc, stmbuf);

dbsqlexec(dbproc);

dbresults(dbproc);

/* Ask dblib to describe each column, allocate memory & bind it */

colcount = dbnumcols(dbproc);

for (i = 0; i < colcount; i++) {

item_name[i] = dbcolname(dbproc, i);

type = dbcoltype(dbproc, i);

switch(type) {

case SQLCHAR:

case SQLTEXT:

Figure 19-10. Using dblib for a dynamic query (continued)

➀
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case SQLDATETIME:

length = dbcollen(dbproc, i) + 1;

item_data[i] = address = malloc(length);

item_type[i] = NTBSTRINGBIND;

dbind(dbproc, i, NTBSTRINGBIND, length, address);

break;

case SQLINT1:

case SQLINT2:

case SQLINT4:

item_data[i] = address = malloc(sizeof(long)):

item_type[i] = INTBIND;

dbbind(dbproc, i, INTBIND, sizeof(long), address);

break;

case SQLFLT8:

case SQLMONEY:

item_data[i] = address = malloc(sizeof(double));

item_type[i] = FLT8BIND;

dbbind(dbproc, i, FLT8BIND, sizeof(double), address);

break;

}

}

/* Fetch and display the rows of query results */

while (status = dbnextrow(dbproc) == SUCCEED) {

/* Loop, printing data for each column of the row */

printf(“\n”);

for (i = 0; i < colcount; i++) {

/* Find the SQLVAR for this column; print column label */

printf(“Column # %d (%s): ”, i+1, item_name[i];

/* Handle each data type separately */

switch(item_type[i]) {

case NTBSTRINGBIND:

/* Text data — just dispay it */

puts(item_data[i]);

break;

Figure 19-10. Using dblib for a dynamic query (continued)

➃
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The dblib-based program in Figure 19-10 performs exactly the same function as
the dynamic embedded SQL program in Figure 18-9. It’s instructive to compare the
two programs and the techniques they use:

� For both embedded SQL and dblib, the program builds a SELECT statement
in its buffers and submits it to the DBMS for processing. With dynamic SQL,
the special PREPARE statement handles this task; with the SQL Server API, the
standard dbcmd() and dbsqlexec() functions are used.

� For both interfaces, the program must request a description of the columns of
query results from the DBMS. With dynamic SQL, the special DBNUMCOLS()
statement handles this task, and the description is returned in a SQLDA data
structure. With dblib, the description is obtained by calling API functions.
Note that the program in Figure 19-10 maintains its own arrays to keep track
of the column information.
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case INTBIND:

/* Four-byte integer data — convert & display it */

printf(“%lf”, *((double *) (item_data[i])));

break;

case FLT8BIND:

/* Floating-point data — convert & display it */

printf(“%lf”, *((double *) (item_data[i])));

break;

}

}

}

printf(“\nEnd of data.\n”);

/* Clean up allocated storage */

for (i = 0; i < colcount; i++) {

free(item_data[i]);

}

dbexit(dbproc);

exit();

}

Figure 19-10. Using dblib for a dynamic query (continued)



� For both interfaces, the program must allocate buffers to receive the query
results and must bind individual columns to those buffer locations. With
dynamic SQL, the program binds columns by placing the buffer addresses into
the SQLVAR structures in the SQLDA. With SQL Server, the program uses the
dbbind() function to bind the columns.

� For both interfaces, the query results are returned into the program’s buffers,
row by row. With dynamic SQL, the program retrieves a row of query results
using a special version of the FETCH statement that specifies the SQLDA. With
SQL Server, the program calls dbnextrow() to retrieve a row.

Overall, the strategy used to handle dynamic queries is very similar for both
interfaces. The dynamic SQL technique uses special statements and data structures that
are unique to dynamic SQL; they are quite different from the techniques used for static
SQL queries. In contrast, the dblib techniques for dynamic queries are basically the
same as those used for all other queries. The only added features are the dblib functions
that return information about the columns of query results. This tends to make the
callable API approach easier to understand for the less-experienced SQL programmer.

ODBC and the SQL/CLI Standard
Open Database Connectivity (ODBC) is a database-independent callable API suite
originally developed by Microsoft. Although Microsoft plays an important role as a
database software vendor, its development of ODBC was motivated even more by its
role as a major operating system developer. Microsoft wanted to make it easier for
developers of Windows applications to incorporate database access. But the large
differences between the various database systems and their APIs made this very difficult.
If an application developer wanted a program to work with several different DBMS
brands, it had to provide a separate, specially written database interface module (usually
called a driver) for each one. Each application program that wanted to provide access to
multiple databases had to provide a set of drivers.

Microsoft’s solution to this problem was to create ODBC as a uniform, standardized
database access interface, and incorporate it into the Windows operating system. For
application developers, ODBC eliminated the need to write custom database drivers.
For database vendors, ODBC provided a way to gain support from a broader range of
application programs.

The Call-Level Interface Standardization
ODBC would have been important even as a Microsoft-only standard. However,
Microsoft worked to make it a vendor-independent standard as well. A database vendor
association called the SQL Access Group was working on standardizing client/server
protocols for remote database access at about the same time as Microsoft’s original
development of ODBC. Microsoft persuaded the SQL Access Group to expand their
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focus and adopt ODBC as their standard for vendor-independent database access.
Management of the SQL Access Group standard was eventually turned over to the
European X/Open consortium, another standards organization, as part of its overall
standards for a Common Application Environment (CAE).

With the growing popularity of call-level APIs for database access, the official SQL
standards groups eventually turned their attention to standardization of this aspect
of SQL. The X/Open standard (based on Microsoft’s earlier ODBC work) was taken
as a starting point and slightly modified to create an official ANSI/ISO standard.
The resulting SQL/Call-Level Interface (SQL/CLI) standard was published in 1995
as ANSI/ISO/IEC 9075-3-1995. With a few modifications, SQL/CLI became Part 3
of the SQL:1999 standard.

Microsoft has evolved ODBC to conform to the official SQL/CLI standard. The CLI
standard roughly forms the core level of Microsoft’s ODBC 3 revision. Other, higher-
level capabilities of ODBC 3 go beyond the CLI specification to provide more API
functionality and to deal with the specific problems of managing ODBC as part of the
Windows operating system. In practice, the core-level ODBC capabilities and the
SQL/CLI specification form the effective callable API standard.

Because of its substantial advantages for both application developers and database
vendors, ODBC/CLI has become a very widely supported standard. Virtually all
SQL-based database systems provide an ODBC/CLI interface as one of their supported
interfaces. Some DBMS brands have even adopted ODBC/CLI as their standard database
API. Thousands of application programs support ODBC/CLI, including all of the leading
programming tools packages, query- and forms-processing tools and report writers, and
popular productivity software such as spreadsheets and graphics programs.

The SQL/CLI standard includes about 40 different API calls, summarized in
Table 19-2. The calls provide a comprehensive facility for establishing connections to
a database server, executing SQL statements, retrieving and processing query results,
and handling errors in database processing. They provide all of the capabilities available
through the standard’s embedded SQL interface, including both static SQL and dynamic
SQL capabilities.

The simple CLI program in Figure 19-11 repeats the program in Figure 19-3 and
17-14, but it uses the CLI functions. It follows the sequence of steps used by most
CLI-based applications:

1. The program connects to the CLI and allocates data structures for its use.

2. It connects to a specific database server.

3. The program builds SQL statements in its memory buffers.

4. It makes CLI calls to request statement execution and check status.

5. Upon successful completion, it makes a CLI call to commit the database
transaction.

6. It disconnects from the database and releases its data structures.

C h a p t e r 1 9 : S Q L A P I s 623
P

R
O

G
R

A
M

M
IN

G

W
IT

H
S
Q

L



624 S Q L : T h e C o m p l e t e R e f e r e n c e

Function Description

Resource and connection management

SQLAllocHandle() Allocates resources for environment, connection,
descriptor, or statement

SQLFreeHandle() Frees previously allocated resources

SQLAllocEnv() Allocates resources for a SQL environment

SQLFreeEnv() Frees resources for a SQL environment

SQLAllocConnect() Allocates resources for a database connection

SQLFreeConnect() Frees resources for a database connection

SQLAllocStmt() Allocates resources for a SQL statement

SQLFreeStmt() Frees resources for a SQL statement

SQLConnect() Establishes a database connection

SQLDisconnect() Ends an established database connection

Statement execution

SQLExecDirect() Directly executes a SQL statement

SQLPrepare() Prepares a SQL statement for subsequent execution

SQLExecute() Executes a previously prepared SQL statement

SQLRowCount() Gets number of rows affected by last SQL statement

Transaction management

SQLEndTran() Ends a SQL transaction

SQLCancel() Cancels execution of a SQL statement

Parameter handling

SQLBindParam() Binds program location to a parameter value

SQLParamData() Processes deferred parameter values

SQLPutData() Provides deferred parameter value or a portion of a
character string value

Query results processing

SQLSetCursorName() Sets the name of a cursor

SQLGetCursorName() Obtains the name of a cursor

SQLFetch() Fetches a row of query results

Table 19-2. SQL/CLI API Functions
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Function Description

Query results processing (continued)

SQLFetchScroll() Fetches a row of query results with scrolling

SQLCloseCursor() Closes an open cursor

SQLGetData() Obtains the value of a query results column

Query results description

SQLNumResultCols() Determines the number of query results columns

SQLDescribeCol() Describes a single query results column

SQLColAttribute() Gets attribute of a query results column

SQLGetDescField() Gets value of a descriptor field

SQLSetDescField() Sets value of a descriptor field

SQLGetDescRec() Gets values from a descriptor record

SQLSetDescRec() Sets values in a descriptor record

SQLCopyDesc() Copies descriptor area values

Error handling

SQLError() Obtains error information

SQLGetDiagField() Gets value of a diagnostic record field

SQLGetDiagRec() Gets value of the diagnostic record

Attribute management

SQLSetEnvAttr() Sets attribute value for a SQL environment

SQLGetEnvAttr() Retrieves attribute value for a SQL environment

SQLSetStmtAttr() Sets descriptor area to be used for a SQL statement

SQLGetStmtAttr() Gets descriptor area for a SQL statement

Driver management

SQLDataSources() Gets a list of available SQL servers

SQLGetFunctions() Gets information about supported features of a
SQL implementation

SQLGetInfo() Gets information about supported features of a
SQL implementation

Table 19-2. SQL/CLI API Functions (continued)
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/* Program to raise all quotas by a user-specified amount */

#include <sqlcli.h> /* header file with CLI definitions */

main()

{

SQLHENV env_hdl; /* SQL-environment handle */

SQLHDBC conn_hdl; /* connection handle */

SQLHSTMT stmt_hdl; /* statement handle */

SQLRETURN status; /* CLI routine return status */

char *svr_name = “demo”; /* server name */

char *user_name = “joe”; /* user name for connection */

char *user_pswd = “xyz”; /* user password for connection */

char amount_str[31]; /* amount entered by user */

char stmt_buf[128]; /* buffer for SQL statement */

/* Allocate handles for SQL environment, connection, statement */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

/* Connect to the database, passing server name, user, password */

/* SQL_NTS says NULL-terminated string instead of passing length */

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Prompt the user for the amount of quota increase/decrease */

printf(“Raise/lower quotas by how much: ”);

gets(amount_str);

/* Assemble UPDATE statement and ask DBMS to execute it */

strcpy(stmt_buf, “update salesreps set quota = quota + ”);

strcat(stmt_buf, amount_str);

status = SQLExecDirect(stmt_hdl, stmt_buf, SQL_NTS);

if (status)

printf(“Error during update\n”);

else

printf(“Update successful.\n”);

Figure 19-11. A simple program using SQL/CLI
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All of the CLI routines return a status code indicating either successful completion of
the routine or some type of error or warning about its execution. The values for the CLI
return status codes are summarized in Table 19-3. Some of the program examples in
this book omit the checking of return status codes to shorten the example and focus
on the specific features being illustrated. However, production programs that call CLI
functions should always check the return value to ensure that the function was completed
successfully. Symbolic constant names for the return status codes as well as many other
values, such as data type codes and statement-id codes, are typically defined in a header
file that is included at the beginning of a program that uses the CLI.

/* Commit updates and disconnect from database server */

SQLEndTran(SQL_HANDLE_ENV, env_hdl, SQL_COMMIT);

SQLDisconnect(conn_hdl);

/* Deallocate handles and exit */

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

}

Figure 19-11. A simple program using SQL/CLI (continued)

CLI Return Value Meaning

0 Statement completed successfully

1 Successful completion with warning

100 No data found (when retrieving query results)

99 Data needed (required dynamic parameter missing)

–1 Error during SQL statement execution

–2 Error—invalid handle supplied in call

Table 19-3. CLI Return Status Codes
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CLI Structures
The CLI manages interactions between an application program and a supported database
through a hierarchy of concepts, reflected in a hierarchy of CLI data structures:

� SQL-environment. The highest-level environment within which database access
takes place. The CLI uses the data structure associated with a SQL-environment
to keep track of the various application programs that are using it.

� SQL-connection. A logical connection to a specific database server. Conceptually,
the CLI allows a single application program to connect to several different
database servers concurrently. Each connection has its own data structure, which
the CLI uses to track connection status.

� SQL-statement. An individual SQL statement to be processed by a database
server. A statement may move through several stages of processing, as the
DBMS prepares (compiles) it, executes it, processes any errors, and in the case
of queries, returns the results to the application program. Conceptually, an
application program may have multiple SQL statements moving through these
processing stages in parallel. Each statement has its own data structure, which
the CLI uses to track its progress.

The CLI uses a technique commonly used by modern operating systems and library
packages to manage these conceptual entities. A symbolic pointer called a handle is
associated with the overall SQL environment, with a SQL connection to a specific
database server, and with the execution of a SQL statement. The handle identifies
an area of storage managed by the CLI itself. Some type of handle is passed as one of
the parameters in every CLI call. The CLI routines that manage handles are shown
in Figure 19-12.

A handle is created (allocated) using the CLI SQLAllocHandle() routine. One
of the parameters of the routine tells the CLI which type of handle is to be allocated.
Another parameter returns the handle value to the application program. Once
allocated, a handle is passed to subsequent CLI routines to maintain a context for the
CLI calls. In this way, different threads of execution within a program or different
concurrently running programs (processes) can each establish their own connection to
the CLI and can maintain their own contexts, independent of one another. Handles also
allow a single program to have multiple CLI connections to different database servers,
and to process more than one SQL statement in parallel. When a handle is no longer
needed, the application calls SQLFreeHandle() to tell the CLI.

In addition to the general-purpose handle management routines, SQLAllocHandle()
and SQLFreeHandle(), the CLI specification includes separate routines to create
and free an environment, connection, or statement handle. These routines
(SQLAllocEnv(), SQLAllocStmt(), and so on) were a part of the original ODBC
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/* Allocate a handle for use in subsequent CLI calls */

short SQLAllocHandle (

short  HdlType,               /* IN:  integer handle type code */

long   inHdl,                 /* IN:  environment or conn handle */

long  *rtnHdl)                /* OUT: returned handle */

/* Free a handle previously allocated by SQLAllocHandle() */

short SQLFreeHandle (

short  HdlType,               /* IN:  integer handle type code */

long   inHdl)                 /* IN:  handle to be freed */

/* Allocate a handle for a new SQL-environment */

short SQLAllocEnv (

long  *envHdl)                /* OUT: returned environment handle */

/* Free an environment handle previously allocated by SQLAllocEnv() */

short SQLFreeEnv (

long   envHdl)                /* IN:  environment handle */

/* Allocate a handle for a new SQL-connection */

short SQLAllocConnect (

long   envHdl,                /* IN:  environment handle */

long  *connHdl)               /* OUT: returned handle */

/* Free a connection handle previously allocated */

short SQLFreeConnect (

long   connHdl)               /* IN:  connection handle */

short SQLAllocStmt (

long   envHdl,                /* IN:  environment handle */

long  *stmtHdl)               /* OUT: statement handle */

/* Free a connection handle previously allocated */

short SQLFreeStmt (

long   stmtHdl,               /* IN:  statement handle */

long   option)                /* IN:  cursor and unbind options */

Figure 19-12. SQL/CLI handle management routines
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API and are still supported in current ODBC implementations for backward
compatibility. However, Microsoft has indicated that the general handle-management
routines are now the preferred ODBC functions, and the specific routines may be
dropped in future ODBC releases. For maximum cross-platform portability, it’s best
to use the general-purpose routines.

SQL-Environment
The SQL-environment is the highest-level context used by an application program
in its calls to the CLI. In a single-threaded application, there will typically be one
SQL-environment for the entire program. In a multithreaded application, there may
be one SQL-environment per thread or one overall SQL-environment, depending on
the architecture of the program. The CLI conceptually permits multiple connections,
possibly to several different database servers, from within one SQL-environment.
A specific CLI implementation for a specific DBMS may or may not actually support
multiple connections.

SQL-Connections
Within a SQL-environment, an application program may establish one or more SQL-
connections. A SQL-connection is a linkage between the program and a specific SQL
server (database server) over which SQL statements are processed. In practice, a
SQL-connection often is actually a virtual network connection to a database server
located on another computer system. However, a SQL-connection may also be a logical
connection between a program and a DBMS located on the same computer system.

Figure 19-13 shows the CLI routines that are used to manage SQL-connections. To
establish a connection, an application program first allocates a connection handle by
calling SQLAllocHandle() with the appropriate handle type. It then attempts to
connect to the target SQL server with a SQLConnect() call. SQL statements can
subsequently be processed over the connection. The connection handle is passed as
a parameter to all of the statement-processing calls to indicate which connection is
being used. When the connection is no longer needed, a call to SQLDisconnect()
terminates it, and a call to SQLFreeHandle() releases the associated connection
handle in the CLI.

Normally, an application program knows the name of the specific database server
(in terms of the standard, the “SQL server”) that it wants to access. In certain applications
(such as general-purpose query or data entry tools), it may be desirable to let the user
choose which database server is to be used. The CLI SQLDataSources() call returns
the names of the SQL servers that are known to the CLI—that is, the data sources that can
be legally specified as server names in SQLConnect() calls. To obtain the list of server
names, the application repeatedly calls SQLDataSources(). Each call returns a single
server description, until the call returns an error indicating no more data. A parameter to
the call can be optionally used to alter this sequential retrieval of server names.
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CLI Statement Processing
The CLI processes SQL statements using a technique very similar to that described for
dynamic embedded SQL in Chapter 18. The SQL statement is passed to the CLI in text
form, as a character string. It can be executed in a one- or two-step process.

Figure 19-14 shows the basic SQL statement-processing calls. The application program
must first call SQLAllocHandle()to obtain a statement handle, which identifies the
statement to the program and the CLI. All subsequent SQLExecDirect(), SQLPrepare(),
and SQLExecute() calls reference this statement handle. When the handle is no longer
needed, it is freed with a SQLFreeHandle() call.

For one-step execution, the application program calls SQL SQLExecDirect(),
passing the SQL statement text as one of the parameters to the call. The DBMS

/* Initiate a connection to a SQL-server */

short SQLConnect(

long connHdl, /* IN: connection handle */

char *svrName, /* IN: name of target SQL-server */

short svrnamlen, /* IN: length of SQL-server name */

char *userName, /* IN: user name for connection */

short usrnamlen, /* IN: length of user name */

char *passwd, /* IN: connection password */

short pswlen) /* IN: password length */

/* Disconnect from a SQL-server */

short SQLDisconnect(

long connHdl) /* IN: connection handle */

/* Get the name(s) of accessible SQL-servers for connection */

short SQLDataSources (

long envHdl, /* IN: environment handle */

short direction, /* IN: indicates first/next request */

char *svrname, /* OUT: buffer for server name */

short buflen, /* IN: length of server name buffer */

short *namlen, /* OUT: actual length of server name */

char *descrip, /* OUT: buffer for description */

short buf2len, /* IN: length of description buffer */

short *dsclen) /* OUT: actual length of description */

Figure 19-13. SQL/CLI connection management routines
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/* Directly execute a SQL statement */

short SQLExecDirect (

long stmtHdl, /* IN: statement handle */

char *stmttext, /* IN: SQL statement text */

short textlen) /* IN: statement text length */

/* Prepare a SQL statement */

short SQLPrepare (

long stmtHdl, /* IN: statement handle */

char *stmttext, /* IN: SQL statement text */

short textlen) /* IN: statement text length */

/* Execute a previously-prepared SQL statement */

short SQLExecute (

long stmtHdl) /* IN: statement handle */

/* Bind a SQL statement parameter to a program data area */

short SQLBindParam (

long stmtHdl, /* IN: statement handle */

short parmnr, /* IN: parameter number (1,2,3...) */

short valtype, /* IN: data type of value supplied */

short parmtype, /* IN: data type of parameter */

short colsize, /* IN: column size */

short decdigits, /* IN: number of decimal digits */

void *value, /* IN: pointer to parameter value buf */

long *lenind) /* IN: pointer to length/indicator buf */

/* Get parameter-tag for next required dynamic parameter */

short SQLParamData (

long stmtHdl, /* IN: stmt handle w/dynamic parms */

void *prmtag) /* OUT: returned parameter-tag value */

/* Obtain detailed info about an item described by a CLI descriptor

*/

short SQLPutData (

long stmtHdl, /* IN: stmt handle w/dynamic parms */

void *prmdata, /* IN: buffer with data for parameter */

short prmlenind) /* IN: parameter length or NULL ind */

Figure 19-14. CLI statement-processing routines
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processes the statement as a result of the call and returns the completion status of the
statement. This one-step process was used in the simple example program in Figure 19-11.
It corresponds to the one-step EXECUTE IMMEDIATE statement in embedded dynamic
SQL, described in Chapter 18.

For two-step execution, the application program calls SQLPrepare(), passing
the SQL statement text as one of the parameters to the call. The DBMS analyzes the
statement, determines how to carry it out, and retains this information. It does not
immediately carry out the statement. Instead, subsequent calls to the SQLExecute()
routine cause the statement to actually be executed. This two-step process corresponds
exactly to the PREPARE and EXECUTE embedded dynamic SQL statements described
in Chapter 18. You should always use it for any SQL operations that will be carried
out repeatedly, because it causes the DBMS to go through the overhead of statement
analysis and optimization only once, in response to the SQLPrepare() call.
Parameters can be passed through the CLI to tailor the operation of the multiple
SQLExecute() calls that follow.

Statement Execution with Parameters
In many cases, a SQL statement must be repeatedly executed with only changes in
some of the values that it specifies. For example, an INSERT statement to add an order
to the sample database is identical for every order except for the specific information
about the customer number, product and manufacturer, and quantity ordered.
As described in Chapter 18, for dynamic embedded SQL, such statements can be
processed efficiently by specifying the variable parts of the statement as input
parameters. The statement text passed to the SQLPrepare() call has a parameter
marker—a question mark (?)—in its text at each position where a parameter value
is to be inserted. When the statement is later executed, values must be supplied
for each of its input parameters.

The most straightforward way to supply input parameter values is with the
SQLBindParam() call. Each call to SQLBindParam() establishes a linkage between
one of the parameter markers in the SQL statement (identified by number) and a
variable in the application program (identified by its memory address). In addition,
an association is optionally established with a second application program variable (an
integer) that provides the length of variable-length input parameters. If the parameter
is a NULL-terminated string like those used in C programs, a special negative code
value, defined in the header file as the symbolic constant SQL_NTS, can be passed,
indicating that the string length can be obtained from the data itself by the CLI routines.
Similarly, a negative code is used to indicate a NULL value for an input parameter. If
there are three input parameter markers in the statement, there will be three calls to
SQLBindParam(), one for each input parameter.

Once the association between application program variables (more accurately,
program storage locations) and the statement parameters is established, the statement
can be executed with a call to SQLExecute(). To change the parameter values for
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subsequent statements, it is only necessary to place new values in the application
program buffer areas before the next call to SQLExecute(). Alternatively, the parameters
can be rebound to different data areas within the application program by subsequent
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/* Program to raise selected user-specified customer credit limits */

#include <sqlcli.h>                   /* header file with CLI defs */

main()

{

SQLHENV    env_hdl;                /* SQL-environment handle */

SQLHDBC    conn_hdl;               /* connection handle */

SQLHSTMT   stmt_hdl;               /* statement handle */

SQLRETURN  status;                 /* CLI routine return status */

char      *svr_name  = “demo”;     /* server name */

char      *user_name = “joe”;      /* user name for connection */

char      *user_pswd = “xyz”;      /* user password for connection */

char       amt_buf[31];            /* amount entered by user */

int        amt_ind = SQL_NTS;      /* amount ind (NULL-term string) */

char       cust_buf[31];           /* cust # entered by user */

int        cust_ind = SQL_NTS;     /* cust # ind (NULL-term string) */

char       stmt_buf[128];          /* buffer for SQL statement */

/* Allocate handles for SQL environment, connection, statement */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

/* Connect to the database, passing server name, user, password */

/* SQL_NTS says NULL-terminated string instead of passing length */

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Prepare an UPDATE statement with parameter markers */

strcpy(stmt_buf, “update customers set credit_limit = ? ”);

strcat(stmt_buf, “where cust_num = ?”);

SQLPrepare(stmt_hdl, stmt_buf, SQL_NTS);

Figure 19-15. CLI program using input parameters



calls to SQLBindParam(). Figure 19-15 shows a program that includes a SQL statement
with two input parameters. The program repeatedly prompts the user for a customer
number and a new credit limit for the customer. The values provided by the user become
the input parameters to an UPDATE statement for the CUSTOMERS table.
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/ * Bind parameters to the program’s buffers */

SQLBindParam(stmt_hdl,1,SQL_C_CHAR,SQL_DECIMAL,9,2,&amt_buf,&amt_ind);

SQLBindParam(stmt_hdl,2,SQL_C_CHAR,SQL_INTEGER,0,0,&cust_buf,&cust_ind);

/ * Loop to process each credit limit change */

for ( ; ; ) {

/* Prompt the user for the customer and new credit limit */

printf(“Enter customer number: ”);

gets(cust_buf);

if (strlen(cust_buf) == 0)

break;

printf(“Enter new credit limit: ”);

gets(amt_buf);

/ * Execute the statement with the parameters */

status = SQLExecute(stmt_hdl);

if (status)

printf(“Error during update\n”);

else

printf(“Credit limit change successful.\n”);

/* Commit the update */

SQLEndTran(SQL_HANDLE_ENV, env_hdl, SQL_COMMIT);

}

/ * Disconnect, deallocate handles and exit */

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

Figure 19-15. CLI program using input parameters (continued)
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The SQLParamData() and SQLPutData() calls in Figure 19-15 provide an
alternative method of passing parameter data at runtime, called deferred parameter
passing. The selection of this technique for a particular statement parameter is indicated
in the corresponding call to SQLBindParam(). Instead of actually supplying a program
data location to which the parameter is bound, the SQLBindParam() call indicates
that deferred parameter passing will be used and provides a value that will later be
used to identify the particular parameter being processed in this way.

After statement execution is requested (by a SQLExecute() or
SQLExecDirect() call), the program calls SQLParamData() to determine whether
deferred parameter data is required by the statement. If so, the CLI returns a status
code (SQL_NEED_DATA) along with an indicator of which parameter needs a value.
The program then calls SQLPutData() to actually provide the value for the parameter.
Typically, the program then calls SQLParamData() again to determine if another
parameter requires dynamic data. The cycle repeats until all required dynamic data
has been supplied, and SQL statement execution then continues normally.

This alternative parameter-passing method is considerably more complex than the
straightforward process of binding parameters to application program locations. It has
two advantages. The first is that the actual passing of data values (and the allocation
of storage to contain those values) can be delayed until the last possible moment when
the data is actually needed. The second advantage is that the technique can be used
to pass very long parameter values piece by piece. For selected long data types, the
CLI allows repeated calls to SQLPutData() for the same parameter, with each call
passing the next part of the data. For example, the text of a document that is supplied
as a parameter for the VALUES clause of an INSERT statement might be passed in
1000-character pieces through repeated SQLPutData() calls until all of the document
has been passed. This avoids the need to allocate a single very large memory buffer
within the application program to hold the entire parameter value.

CLI Transaction Management
The COMMIT and ROLLBACK functions for SQL transaction processing also apply to
SQL operation via the CLI. However, because the CLI itself must be aware that a
transaction is being completed, the COMMIT and ROLLBACK SQL statements are
replaced by the CLI SQLEndTran() call, shown in Figure 19-16. This call was used to
commit the transactions in the program examples of Figures 19-11 and 19-15. The same
CLI routine is used to execute either a COMMIT or a ROLLBACK operation; the particular
operation to be performed is specified by the completion type parameter to the call.

The CLI SQLCancel() call, also shown in Figure 19-16, does not actually provide
a transaction management function, but in practice, it is almost always used in
conjunction with a ROLLBACK operation. It is used to cancel the execution of a SQL
statement that was previously initiated by a SQLExecDirect() or SQLExecute()
call. This would be appropriate in a program that is using deferred parameter
processing, as described in the previous section. If the program determines that it
should cancel the statement execution instead of supplying a value for a deferred
parameter, the program can call SQLCancel() to achieve this result.



The SQLCancel() call can also be used in a multithreaded application to cancel
the effect of a SQLExecute() or SQLExecDirect() call that has not yet completed.
In this situation, the thread making the original execute call will still be waiting for the
call to complete, but another concurrently executing thread may call SQLCancel()
using the same statement handle. The specifics of this technique, and how interruptible
a CLI call is, tend to be very implementation dependent.

Processing Query Results with CLI
The CLI routines described thus far can be used to process SQL data definition
statements or SQL data manipulation statements other than queries (that is, UPDATE,
DELETE, and INSERT statements). For query processing, some additional CLI calls,
shown in Figure 19-17, are required. The simplest way to process query results is with
the SQLBindCol()and SQLFetch() calls. To carry out a query using these calls,
the application program goes through the following steps (assuming a connection has
already been established):

1. The program allocates a statement handle using SQLAllocHandle().

2. The program calls SQLPrepare(), passing the text of the SQL SELECT
statement for the query.

3. The program calls SQLExecute() to carry out the query.

4. The program calls SQLBindCol() once for each column of query results that
will be returned. Each call associates a program buffer area with a returned
data column.

5. The program calls SQLFetch() to fetch a row of query results. The data value
for each row in the newly fetched row is placed into the appropriate program
buffer as indicated in the previous SQLBindCol() calls.
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/* COMMIT or ROLLBACK a SQL transaction */

short SQLEndTran (

short  hdltype,          /* IN:  type of handle */

long   txnHdl,           /* IN:  env, conn or stmt handle */

short  compltype)        /* IN:  txn typ (COMMIT/ROLLBACK) */

/* Cancel a currently-executing SQL statement */

short SQLCancel (

short  stmtHdl)          /* IN:  statement handle */

Figure 19-16. CLI transaction management routines



6. If the query produces multiple rows, the program repeats Step 5 until the
SQLFetch() call returns a value indicating that there are no more rows.

7. When all query results have been processed, the program calls
SQLCloseCursor() to end access to the query results.
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/* Bind a query results column to a program data area */

short SQLBindCol (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: column number to be bound */

short tgttype, /* IN: data type of program data area */

void value, /* IN: ptr to program data area */

long buflen, /* IN: length of program buffer */

long lenind) /* IN: ptr to length/indicator buffer */

/* Advance the cursor to the next row of query results */

short SQLFetch (

long stmtHdl) /* IN: statement handle */

/* Scroll the cursor up or down through the query results */

short SQLFetchScroll (

long stmtHdl, /* IN: statement handle */

short fetchdir, /* IN: direction (first/next/prev) */

long offset) /* IN: offset (number of rows) */

/* Get the data for a single column of query results */

short SQLGetData (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: column number to be retrieved */

short tgttype, /* IN: data type to return to program */

void *value, /* IN: ptr to buffer for column data */

long buflen, /* IN: length of program buffer */

long *lenind) /* OUT: actual length and/or NULL ind */

/* Close a cursor to end access to query results */

short SQLCloseCursor (

long stmtHdl) /* IN: statement handle */

Figure 19-17. CLI query results processing routines
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technique. The program is identical in function to the dblib-based program example
in Figure 19-7. It’s instructive to compare the two programs. The specifics of the calls
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/* Establish a cursor name for an open cursor */

short SQLSetCursorName (

long stmtHdl, /* IN: statement handle */

char cursname, /* IN: name for cursor */

short namelen) /* IN: length of cursor name */

/* Retrieve the name of an open cursor */

short SQLGetCursorName (

long stmtHdl, /* IN: statement handle */

char cursname, /* OUT: buffer for returned name */

short buflen, /* IN: length of buffer */

short *namlen) /* OUT: actual length of returned name */

Figure 19-17. CLI query results processing routines (continued)

/* Program to display a report of sales reps over quota */

#include <sqlcli.h>                /* header file with CLI definitions */

main()

{

SQLHENV    env_hdl;             /* SQL-environment handle */

SQLHDBC    conn_hdl;            /* connection handle */

SQLHSTMT   stmt_hdl;            /* statement handle */

SQLRETURN  status;              /* CLI routine return status */

char      *svr_name =  “demo”;  /* server name */

char      *user_name = “joe”;   /* user name for connection */

char      *user_pswd = “xyz”;   /* user password for connection */

char       repname[16];         /* retrieved salesperson’s name */

float      repquota;            /* retrieved quota */

float      repsales;            /* retrieved sales */

short      repquota_ind;        /* NULL quota indicator */

char       stmt_buf[128];       /* buffer for SQL statement */

Figure 19-18. Retrieving CLI query results
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/* Allocate handles and connect to the database */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt_hdl);

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

/* Request execution of the query */

strcpy(stmt_buf, “select name, quota, sales from salesreps ”);

strcat(stmt_buf, “where sales > quota order by name”);

SQLExecDirect(stmt_hdl, stmt_buf, SQL_NTS);

/ * Bind retrieved columns to the program’s buffers */

SQLBindCol(stmt_hdl,1,SQL_C_CHAR,repname,15,NULL);

SQLBindCol(stmt_hdl,2,SQL_C_FLOAT,&repquota,0,&quota_ind);

SQLBindCol(stmt_hdl,3,SQL_C_FLOAT,&repsales,0,NULL);

/ * Loop through each row of query results */

for ( ; ; ) {

/* Fetch the next row of query results */

if (SQLFetch(stmt_hdl) != SQL_SUCCESS)

break;

/* Display the retrieved data */

printf(“Name: %s\n”, repname);

if (repquota_ind < 0)

printf(“Quota is NULL\n”);

else

printf(“Quota: %f\n”, repquota);

printf(“Sales: %f\n”, repsales);

}

/ * Disconnect, deallocate handles and exit */

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

Figure 19-18. Retrieving CLI query results (continued)
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and their parameters are quite different, but the flow of the programs and the logical
sequence of calls that they make are the same.

Each call to SQLBindCol() establishes an association between one column of
query results (identified by column number) and an application program buffer
(identified by its address). With each call to SQLFetch(), the CLI uses this binding to
copy the appropriate data value for the column into the program’s buffer area. When
appropriate, a second program data area is specified as the indicator-variable buffer for
the column. Each call to SQLFetch() sets this program variable to indicate the actual
length of the returned data value (for variable-length data) and to indicate when a
NULL value is returned. When the program has finished processing all of the query
results, it calls SQLCloseCursor().

The CLI routines in Figure 19-17 can also be used to implement an alternative method
of processing query results. In this technique, the columns of query results are not bound
to locations in the application program in advance. Instead, each call to SQLFetch()
only advances the cursor to the next row of query results. It does not actually cause
retrieval of data into host program data areas. Instead, a call to SQLGetData() is made
to actually retrieve the data. One of the parameters of SQLGetData() specifies which
column of query results is to be retrieved. The other parameters specify the data type to
be returned and the location of the buffer to receive the data and an associated indicator
variable value.

At the basic level, the SQLGetData()call is simply an alternative to the host-variable
binding approach provided by SQLBindCol(), but SQLGetData() provides an
important advantage when processing very large data items. Some databases support
long binary or character-valued columns that can contain thousands or millions of bytes
of data. It’s usually impractical to allocate a program buffer to hold all of the data in such
a column. Using SQLGetData(), the program can allocate a buffer of reasonable size
and work its way through the data a few thousand bytes at a time.

It’s possible to intermix the SQLBindCol() and SQLGetData() styles to process
the query results of a single statement. In this case, the SQLFetch() call actually
retrieves the data values for the bound columns (those for which a SQLBindCol()
call has been made), but the program must explicitly call SQLGetData() to process
the other columns. This technique may be especially appropriate if a query retrieves
several columns of typical SQL data (names, dates, money amounts) and a column or
two of long data, such as the text of a contract. Note that some CLI implementations
severely restrict the ability to intermix the two styles of processing. In particular, some
implementations require that all of the bound columns appear first in the left-to-right
order of query results, before any columns retrieved using SQLGetData().
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Scrolling Cursors
The SQL/CLI standard specifies CLI support for scrolling cursors that parallels the
scrolling-cursor support originally included in the SQL2 standard for embedded SQL.
The SQLFetchScroll() call, shown in Figure 19-17, provides the extended FETCH
functions needed for forward/backward and random retrieval of query results. One
of its parameters specifies the statement handle for the query, just as for the simple
SQLFetch() call. The other two parameters specify the direction of FETCH motion
(PREVIOUS, NEXT, and so on) and the offset for FETCH motions that require it
(absolute and relative random row retrieval). The operation of SQLBindCol()
and SQLGetData() for processing returned values is identical to that described for
the SQLFetch() call.

Named Cursors
Note that the CLI doesn’t include an explicit cursor declaration call to parallel the embedded
SQL DECLARE CURSOR statement. Instead, SQL query text (that is, a SELECT statement)
is passed to the CLI for execution in the same manner as any other SQL statement, using
either a SQLExecDirect() call or SQLPrepare() / SQLExecute() call sequence. The
results of the query are identified by the statement handle in subsequent SQLFetch(),
SQLBindCol(), and similar calls. For these purposes, the statement handle takes the
place of the cursor name used in embedded SQL.

A problem with this scheme arises in the case of positioned (cursor-based) updates
and positioned deletes. As described in Chapter 17, a positioned database UPDATE or
DELETE statement (UPDATE… WHERE CURRENT OF or DELETE… WHERE CURRENT OF)
can be used to modify or delete the current (that is, just fetched) row of query results.
These embedded SQL statements use the cursor name to identify the particular row to
be processed, since an application program may have more than one cursor open at a
time to process more than one set of query results.

To support positioned updates, the CLI provides the SQLSetCursorName() call
shown in Figure 19-17. The call is used to assign a cursor name, specified as one of its
parameters, to a set of query results, identified by the statement handle that produced
them. Once the call has been made, the cursor name can be used in subsequent positioned
UPDATE or DELETE statements, which can be passed to the CLI for execution. A
companion call, SQLGetCursorName(), can be used to obtain a previously assigned
cursor name, given its statement handle.

Dynamic Query Processing with CLI
If the columns to be retrieved by a SQL query are not known in advance when a
program is developed, the program can use the query-processing calls in Figure 19-19
to determine the characteristics of the query results at runtime. These calls implement
the same type of dynamic SQL query-processing capability that was described for
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/* Determine the number of result columns in a query */

short SQLNumResultCols (

long   stmtHdl,             /* IN:  statement handle */

short *colcount)            /* OUT: returned number of columns */

/* Determine the characteristics of a column of query results */

short SQLDescribeCol (

long   stmtHdl,             /* IN:  statement handle */

short  colnr,               /* IN:  number of column to describe */

char  *colname,             /* OUT: name of query results column */

short  buflen,              /* IN:  length of column name buffer */

short *namlen,              /* OUT: actual column name length */

short *coltype,             /* OUT: returned column data type code */

short *colsize,             /* OUT: returned column data length */

short *decdigits,           /* OUT: returned # of digits in column */

short *nullable)            /* OUT: can column have NULL values */

/* Obtain detailed info about a column of query results */

short SQLColAttribute (

long   stmtHdl,             /* IN:  statement handle */

short  colnr,               /* IN:  number of column to describe */

short  attrcode,            /* IN:  code of attribute to retrieve */

char  *attrinfo,            /* OUT: buffer for string attr. info */

short  buflen,              /* IN:  length of col attribute buffer */

short *actlen,              /* OUT: actual attribute info length */

int   *numattr)             /* OUT: returned integer attr. info */

/* Retrieve frequently used info from a CLI descriptor */

short SQLGetDescRec (

long   descHdl,             /* IN:  descriptor handle */

short  recnr,               /* IN:  descriptor record number */

char  *name,                /* OUT: name of item being described */

short  buflen,              /* IN:  length of name buffer */

short *namlen,              /* OUT: actual length of returned name */

short *datatype,            /* OUT: data type code for item */

short *subtype,             /* OUT: data type subcode for item */

short *length,              /* OUT: length of item */

short *precis,              /* OUT: precision of item, if numeric */

short *scale,               /* OUT: scale of item, if numeric */

short *nullable)            /* OUT: can item have NULL values */

Figure 19-19. CLI dynamic query-processing calls
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/* Set frequently used info in a CLI descriptor */

short SQLSetDescRec (

long   descHdl,             /* IN:  descriptor handle */

short  recnr,               /* IN:  descriptor record number */

short  datatype,            /* IN:  data type code for item */

short  subtype,             /* IN:  data type subcode for item */

short  length,              /* IN:  length of item */

short  precis,              /* IN:  precision of item, if numeric */

short  scale,               /* IN:  scale of item, if numeric */

void  *databuf,             /* IN:  data buffer address for item */

short  buflen,              /* IN:  data buffer length */

short *indbuf)              /* IN:  indicator buffer addr for item */

/* Get detailed info about an item described by a CLI descriptor */

short SQLGetDescField (

long   descHdl,             /* IN:  descriptor handle */

short  recnr,               /* IN:  descriptor record number */

short  attrcode,            /* IN:  code of attribute to describe */

void  *attrinfo,            /* IN:  buffer for attribute info */

short  buflen,              /* IN:  length of attribute info */

short *actlen)              /* OUT: actual length of returned info */

/* Set value of an item described by a CLI descriptor */

short SQLSetDescField (

long   descHdl,             /* IN:  descriptor handle */

short  recnr,               /* IN:  descriptor record number */

short  attrcode,            /* IN:  code of attribute to describe */

void  *attrinfo,            /* IN:  buffer with attribute value */

short  buflen)              /* IN:  length of attribute info */

/* Copy a CLI descriptor contents into another descriptor */

short SQLCopyDesc (

long   indscHdl,            /* IN:  source descriptor handle */

long   outdscHdl)           /* IN:  destination descriptor handle */

Figure 19-19. CLI dynamic query-processing calls (continued)
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dynamic embedded SQL in Chapter 18. Here are the steps for dynamic query
processing using CLI:

1. The program allocates a statement handle using SQLAllocHandle().

2. The program calls Prepare(), passing the text of the SQL SELECT statement
for the query.

3. The program calls SQLExecute() to carry out the query.

4. The program calls SQLNumResultCols() to determine the number of
columns of query results.

5. The program calls SQLDescribeCol() once for each column of returned
query results to determine its data type, size, whether it may contain NULL
values, and so on.

6. The program allocates memory to receive the returned query results and
binds these memory locations to the columns by calling SQLBindCol()
once for each column.

7. The program calls SQLFetch() to fetch a row of query results. The
SQLFetch() call advances the cursor to the next row of query results and
returns each column of results into the appropriate area in the application
program, as specified in the SQLBindCol() calls.

8. If the query produces multiple rows, the program repeats Step 7 until the
SQLFetch() call returns a value indicating that there are no more rows.

9. When all query results have been processed, the program calls
SQLCloseCursor() to end access to the query results.

Figure 19-20 shows a program that uses these techniques to process a dynamic
query. The program is identical in its concept and purpose to the embedded dynamic
SQL query program shown in Figure 18-9 and the dblib-based dynamic SQL query
program shown in Figure 19-10. Once again, it’s instructive to compare the program
examples to enhance your understanding of dynamic query processing. The API calls
have quite different names, but the sequence of functions calls for the dblib program
(Figure 19-10) and the CLI program (Figure 19-20) are nearly identical. The dbcmd() /
dbsqlexec() / dbresults() call sequence is replaced by SQLExecDirect().
(In this case, the query will be executed only once, so there’s no advantage to using
SQLPrepare() and SQLExecute() separately.) The dbnumcols() call becomes
SQLNumResultCols(). The calls to obtain column information (dbcolname(),
dbcoltype(), dbcollen()) become a single call to SQLDescribeCol(). The
dbnextrow() call becomes SQLFetch(). All of the other changes in the program
are made to support these changes in the API functions.
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main()

{

/* This is a simple general-purpose query program.  It prompts

the user for a table name, and then asks the user which

columns of the table are to be included in the query.  After

the user’s selections are complete, the program runs the

requested query and displays the results.

*/

SQLHENV     env_hdl;             /* SQL-environment handle */

SQLHDBC     conn_hdl;            /* connection handle */

SQLHSTMT    stmt1_hdl;           /* statement handle for main query */

SQLHSTMT    stmt2_hdl;           /* statement handle for col name query */

SQLRETURN   status;              /* CLI routine return status */

char       *svr_name = “demo”;   /* server name */

char       *user_name = “joe”;   /* user name for connection */

char       *user_pswd = “xyz”;   /* user password for connection */

char        stmtbuf[2001];       /* main SQL query text to be executed */

char        stmt2buf[2001];      /* SQL text for column name query */

char        querytbl[32];        /* user-specified query table */

char        querycol[32];        /* user-specified column */

int         first_col = 0;       /* is this the first column chosen? */

short       colcount;            /* number of columns of query results */

char       *nameptr;             /* address for CLI to return column name */

short       namelen;             /* returned CLI column name length */

short       type;                /* CLI data type code for column */

short       size;                /* returned CLI column size */

short       digits;              /* returned CLI column # digits */

short       nullable;            /* returned CLI nullability */

short       i;                   /* index for columns */

char        inbuf[101];          /* inp  ut entered by user */

char       *item_name[100];      /* array to track column names */

char       *item_data[100];      /* array to track column buffers */

int         item_ind[100];       /* array of indicator variables */

short       item_type[100];      /* array to track column data types */

char       *dataptr;             /* address of buffer for current column */

/* Open a connection to the demo database via CLI */

SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env_hdl);

SQLAllocHandle(SQL_HANDLE_DBC, env_hdl, &conn_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt1_hdl);

SQLAllocHandle(SQL_HANDLE_STMT, conn_hdl, &stmt2_hdl);

SQLConnect(conn_hdl, svr_name, SQL_NTS,

user_name, SQL_NTS,

user_pswd, SQL_NTS);

Figure 19-20. Using CLI for a dynamic query
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/* Prompt the user for which table to query * /

printf(“*** Mini-Query Program ***\n”);

printf(“Enter name of table for query: ”);

gets(querytbl);

/* Start the SELECT statement in the buffer */

strcpy(stmtbuf, “select ”);

/* Query the Information Schema to get column names */

strcpy(stmt2buf, “select column_name from columns where table_name = ”);

strcat(stmt2buf, querytbl);

SQLExecDirect(stmt2_hdl, stmt2buf, SQL_NTS);

/* Process the results of the query */

SQLBindCol(stmt2_hdl, 1, SQL_C_CHAR, querycol, 31, (int *)0);

while (status = SQLFetch(stmt2_hdl) == SQL_SUCCESS) {

printf(“Include column %s (y/n)? ”, querycol);

gets(inbuf);

if (inbuf[0] == ‘y’) {

/* User wants the column, add it to the select list */

if (first_col++ > 0) strcat(stmtbuf,", “);

strcat(stmtbuf, querycol);

}

}

/* Finish the SELECT statement with a FROM clause */

strcat(stmtbuf, ”from “);

strcat(stmtbuf, querytbl);

/* Execute the query and get ready to fetch query results */

SQLExecDirect(stmt1_hdl, stmtbuf, SQL_NTS);

/* Ask CLI to describe each column, allocate memory & bind it */

SQLNumResultCols(stmt1_hdl, &colcount);

for (i =0; i < colcount; i++) {

item_name[i] = nameptr = malloc(32);

indptr = &item_ind[i];

SQLDescribeCol(stmt1_hdl, i, nameptr, 32, &namelen, &type, &size,

&digits, &nullable);

switch(type) {

case SQL_CHAR:

case SQL_VARCHAR:

/* Allocate buffer for string & bind the column to it */

item_data[i] = dataptr = malloc(size+1);

Figure 19-20. Using CLI for a dynamic query (continued)
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item_type[i] = SQL_C_CHAR;

SQLBindCol(stmt1_hdl, i, SQL_C_CHAR, dataptr, size+1, indptr);

break;

case SQL_TYPE_DATE:

case SQL_TYPE_TIME:

case SQL_TYPE_TIME_WITH_TIMEZONE:

case SQL_TYPE_TIMESTAMP:

case SQL_TYPE TIMESTAMP_WITH_TIMEZONE:

case SQL_INTERVAL_DAY:

case SQL_INTERVAL_DAY_TO_HOUR:

case SQL_INTERVAL_DAY_TO_MINUTE:

case SQL_INTERVAL_DAY_TO_SECOND:

case SQL_INTERVAL_HOUR:

case SQL_INTERVAL_HOUR_TO_MINUTE:

case SQL_INTERVAL_HOUR_TO_SECOND:

case SQL_INTERVAL_MINUTE:

case SQL_INTERVAL_MINUTE_TO_SECOND:

case SQL_INTERVAL_MONTH:

case SQL_INTERVAL_SECOND:

case SQL_INTERVAL_YEAR:

case SQL_INTERVAL_YEAR_TO_MONTH:

/* Request ODBC/CLI conversion of these types to C-strings */

item_data[i] = dataptr = malloc(31);

item_type[i] = SQL_C_CHAR;

SQLBindCol(stmt1_hdl, i, SQL_C_CHAR, dataptr, 31, indptr);

break;

case SQL_INTEGER:

case SQL_SMALLINT:

/* Convert these types to C long integers */

item_data[i] = dataptr = malloc(sizeof(integer));

item_type[i] = SQL_C_SLONG;

SQLBindCol(stmt1_hdl, i, SQL_C_SLONG, dataptr, sizeof(integer), indptr);

break;

case SQL_NUMERIC:

case SQL_DECIMAL:

case SQL_FLOAT:

case SQL_REAL:

case SQL_DOUBLE:

/* For illustration, convert these types to C double floats */

item_data[i] = dataptr = malloc(sizeof(long));

item_type[i] = SQL_C_DOUBLE;

SQLBindCol(stmt1_hdl, i, SQL_C_DOUBLE, dataptr, sizeof(double), indptr);

break;

Figure 19-20. Using CLI for a dynamic query (continued)
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default:

/* For simplicity, we don’t handle bit strings, etc. */

printf(”Cannot handle data type %d\n", (integer)type);

exit();

}

}

/* Fetch and display the rows of query results */

while (status = SQLFetch(stmt1_hdl) == SQL_SUCCESS) {

/* Loop, printing data for each column of the row /

printf(“\n”);

for(i = 0; i < colcount; i++) {

/* Print column label */

printf(“Column # %d (%s): ”, i+1, item_name[i]);

/* Check indicator variable for NULL indication */

if (item_ind[i] == SQL_NULL_DATA){

puts(“is NULL!\n”);

continue;

}

/* Handle each returned (maybe converted) data type separately /

switch(item_type[i]) {

case SQL_C_CHAR:

/* Returned as text data - just display it */

puts(item_data[i]);

break;

case SQL_C_SLONG:

/* Four-byte integer data - convert & display it */

printf(“%ld”, *((int *)(item_data[i])));

break;

case SQL_C_DOUBLE:

/* Floating-point data  convert & display it */

printf(“%lf”, *((double *)(item_data[i])));

break;

}

}

}

Figure 19-20. Using CLI for a dynamic query (continued)
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If you compare the program in Figure 19-20 with the corresponding embedded
dynamic SQL program in Figure 18-9, one of the major differences is embedded SQL’s
use of the special SQL Data Area (SQLDA) for column binding and column description.
The CLI splits these functions between the SQLNumResultCols(), SQLDescribeCol(),
and SQLBindCol() functions, and most programmers find the CLI structure easier to
use and understand. However, the CLI provides an alternative, lower-level method that
offers capabilities like those provided by the embedded SQLDA.

The alternative CLI method for dynamic query processing involves CLI descriptors. A
CLI descriptor contains low-level information about a statement parameter (a parameter
descriptor) or a column of query results (a row descriptor). The information in the descriptor
is like that contained in the variable area of the SQLDA—the column or parameter’s name,
data type and subtype, length, data buffer location, NULL indicator location, and so on.
The parameter descriptors and row descriptors thus correspond to the input and output
SQLDAs provided by some DBMS brands in their embedded dynamic SQL implementations.

CLI descriptors are identified by descriptor handles. The CLI provides a default set
of descriptors for parameters and query results columns when a statement is prepared.
Alternatively, the program can allocate its own descriptors and use them. The handles
of the descriptors for a statement are considered statement attributes, and they are
associated with a particular statement handle. The descriptor handle values can be
retrieved and set by the application program using the attribute management routines,
described later in the section “CLI Attributes.”

Two calls are used to retrieve information from a descriptor, given its handle. The
SQLGetDescField() call retrieves a particular field of a descriptor, which is identified

printf(“\nEnd of data.\n”):

/* Clean up allocated storage */

for (i = 0; i < colcount; i++) {

free(item_data[i]);

free(item_name[i]);

}

SQLDisconnect(conn_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt1_hdl);

SQLFreeHandle(SQL_HANDLE_STMT, stmt2_hdl);

SQLFreeHandle(SQL_HANDLE_DBC, conn_hdl);

SQLFreeHandle(SQL_HANDLE_ENV, env_hdl);

exit();

}

Figure 19-20. Using CLI for a dynamic query (continued)



by a code value. It is typically used to obtain the data type or length of a query results
column, for example. The SQLGetDescRec() call retrieves many pieces of information
in one call, including the column or parameter name, data type and subtype, length,
precision and scale, and whether it may contain NULL values. A corresponding set of
calls is used to place information into a descriptor. The SQLSetDescField() call sets
the value of a single piece of information within a descriptor. The SQLSetDescRec()
sets multiple values in a single call, including the data type and subtype, length, precision
and scale, and nullability. For convenience, the CLI provides a SQLCopyDesc() call
that copies all of the values from one descriptor to another.

CLI Errors and Diagnostic Information
Each CLI function returns a short integer value that indicates its completion status.
If the completion status indicates an error, the error-handling CLI calls shown in
Figure 19-21 can be used to obtain more information about the error and diagnose it.
The most basic error-handling call is SQLError(). The application program passes the
environment, connection, and statement handles and is returned the SQL2 SQLSTATE
result code, the native error code of the subsystem producing the error, and an error
message in text form.

The SQLError() routine actually retrieves specific, frequently used information
from the CLI diagnostics area. The other error-handling routines provide more
complete information through direct access to the diagnostic records created and
maintained by the CLI. In general, a CLI call can produce multiple errors, which result
in multiple diagnostic records. The SQLGetDiagRec() call retrieves an individual
diagnostic record, by record number. Through repeated calls, the application program
can retrieve complete information about all error records produced by a CLI call. Even
more complete information can be obtained by interrogating individual diagnostic
fields within the record. This capability is provided by the SQLGetDiagField() call.

Although not strictly an error-processing function, the SQLRowCount() function,
like the error-handling functions, is called after a previous CLI SQLExecute() call. It
is used to determine the impact of the previous statement when it was successful.
A returned value indicates the number of rows of data affected by the previously
executed statement. (For example, the value 4 would be returned for a searched
UPDATE statement that updates four rows.)

CLI Attributes
The CLI provides a number of options that control some of the details of its processing.
Some of these control relatively minor but critical details, such as whether the CLI should
automatically assume that parameters passed as string values are NULL-terminated.
Others control broader aspects of CLI operation, such as the scrollability of cursors.

The CLI gives application programs the capability to control these processing options
through a set of CLI attributes. The attributes are structured in a hierarchy, paralleling the
environment/connection/statement hierarchy of the CLI handle structure. Environment
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attributes control overall operational options. Connection options apply to a particular
connection created by the SQLConnect() call but may vary from one connection to
another. Statement attributes apply to the processing of an individual statement,
identified by a CLI statement handle.

A set of CLI calls, shown in Figure 19-22, is used by an application program
to control attributes. The get calls (SQLGetEnvAttr(), SQLGetConnectAttr(),

/* Retrieve error information associated with a previous CLI call */

short SQLError (

long   envHdl,            /* IN:  environment handle */

long   connHdl,           /* IN:  connection handle */

long   stmtHdl,           /* IN:  statement handle */

char  *sqlstate,          /* OUT: five-character SQLSTATE value */

long  *nativeerr,         /* OUT: returned native error code */

char  *msgbuf,            /* OUT: buffer for err message text */

short  buflen,            /* IN:  length of err msg text buffer */

short *msglen)            /* OUT: returned actual msg length */

/* Determine number of rows affected by previous SQL statement */

short SQLRowCount (

long   stmtHdl,           /* IN:  statement handle */

long  *rowcnt)            /* OUT: number of rows */

/* Retrieve info from one of the CLI diagnostic error records */

short SQLGetDiagRec (

short  hdltype,           /* IN:  handle type code */

long   inHdl,             /* IN:  CLI handle */

short  recnr,             /* IN:  requested err record number */

char  *sqlstate,          /* OUT: returned 5-char SQLSTATE code */

long  *nativeerr,         /* OUT: returned native error code */

char  *msgbuf,            /* OUT: buffer for err message text */

short  buflen,            /* IN:  length of err msg text buffer */

short *msglen)            /* OUT: returned actual msg length */

/* Retrieve a field from one of the CLI diagnostic error records */

short SQLGetDiagField (

short  hdltype,           /* IN:  handle type code */

long   inHdl,             /* IN:  CLI handle */

short  recnr,             /* IN:  requested err record number */

short  diagid,            /* IN:  diagnostic field id */

void  *diaginfo,          /* OUT: returned diagnostic info */

short  buflen,            /* IN:  length of diagonal info buffer */

short *actlen)            /* OUT: returned actual info length */

Figure 19-21. CLI error-handling routines



and SQLGetStmtAttr()) obtain current attribute values. The set calls
(SQLSetEnvAttr(), SQLSetConnectAttr(), and SQLSetStmtAttr()) modify
the current attribute values. In all of the calls, the particular attribute being processed
is indicated by a code value.

Although the CLI standard provides this elaborate attribute structure, it actually
specifies relatively few attributes. The single environment attribute specified is NULL
TERMINATION; it controls null-terminated strings. The single connection attribute
specified controls whether the CLI automatically populates a parameter descriptor
when a statement is prepared or executed. Statement-level attributes control the
scrollability and sensitivity of cursors. Perhaps the most important of the CLI-specified
attributes are the handles of the four CLI descriptors that may be associated with a
statement (two parameter descriptors and two row descriptors). The calls in Figure 19-22
are used to obtain and set these descriptor handles when using descriptor-based
statement processing.

The ODBC API, on which the SQL/CLI standard was originally based, includes
many more attributes. For example, ODBC connection attributes can be used to specify
a read-only connection, to enable asynchronous statement processing, to specify the
timeout for a connection request, and so on. ODBC environment attributes control
automatic translation of ODBC calls from earlier versions of the ODBC standard.
ODBC statement attributes control transaction isolation levels, specify whether a cursor
is scrollable, and limit the number of rows of query results that might be generated by
a runaway query.

CLI Information Calls
The CLI includes three specific calls that can be used to obtain information about the
particular CLI implementation. In general, these calls will not be used by an application
program written for a specific purpose. They are needed by general-purpose programs (such
as a query or report writing program) that need to determine the specific characteristics
of the CLI they are using. The calls are shown in Figure 19-23.

The SQLGetFunctions() call is used to determine whether a specific implemen-
tation supports a particular CLI function call. It is called with a function code value
corresponding to one of the CLI functions, and returns a parameter indicating whether
the function is supported. The SQLGetInfo() call is used to obtain much more detailed
information about a CLI implementation, such as the maximum lengths of table and
user names, whether the DBMS supports outer joins or transactions, and whether SQL
identifiers are case-sensitive.

The SQLGetTypeInfo() call is used to obtain information about a particular
supported data type or about all types supported via the CLI interface. The call actually
behaves as if it were a query against a system catalog of data type information. It
produces a set of query results rows, each row containing information about one
specific supported type. The supplied information indicates the name of the type, its
size, whether it is nullable, whether it is searchable, and so on.
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/* Obtain the value of a SQL-environment attribute */

short SQLGetEnvAttr(

long   envHdl,            /* IN:  environment handle */

long   attrCode,          /* IN:  integer attribute code */

void  *rtnVal,            /* OUT: return value */

long   bufLen,            /* IN:  length of rtnVal buffer */

long  *strLen)            /* OUT: length of actual data */

/* Set the value of a SQL-environment attribute */

short SQLSetEnvAttr(

long   envHdl,            /* IN:  environment handle */

long   attrCode,          /* IN:  integer attribute code */

void  *attrVal,           /* IN:  new attribute value */

long  *strLen)            /* IN:  length of data */

/* Obtain the value of a SQL-connection attribute */

short SQLGetConnectAttr(

long   connHdl,           /* IN:  connection handle */

long   attrCode,          /* IN:  integer attribute code */

void  *rtnVal,            /* OUT: return value */

long   bufLen,            /* IN:  length of rtnVal buffer */

long  *strLen)            /* OUT: length of actual data */

/* Set the value of a SQL-connection attribute */

short SQLSetConnectAttr(

long   connHdl,           /* IN:  connection handle */

long   attrCode,          /* IN:  integer attribute code */

void  *attrVal,           /* IN:  new attribute value */

long  *strLen)            /* IN:  length of data */

/* Obtain the value of a SQL-statement attribute */

short SQLGetStmtAttr(

long   stmtHdl,           /* IN:  statement handle */

long   attrCode,          /* IN:  integer attribute code */

void  *rtnVal,            /* OUT: return value */

long   bufLen,            /* IN:  length of rtnVal buffer */

long  *strLen)            /* OUT: length of actual data */

/* Set the value of a SQL-statement attribute */

short SQLSetStmtAttr(

long   stmtHdl,           /* IN:  statement handle */

long   attrCode,          /* IN:  integer attribute code */

void  *attrVal,           /* IN:  new attribute value */

long  *strLen)            /* IN:  length of data */

Figure 19-22. CLI attribute management routines



The ODBC API
Microsoft originally developed the Open Database Connectivity (ODBC) API to
provide a database-brand-independent API for database access on its Windows
operating systems. The early ODBC API became the foundation for the SQL/CLI
standard, which is now the official ANSI/ISO standard for a SQL call-level interface.
The original ODBC API was extended and modified during the standardization
process to create the SQL/CLI specification. With the introduction of ODBC release 3.0,
Microsoft brought ODBC into conformance with the SQL/CLI standard. With this
revision, ODBC becomes a superset of the SQL/CLI specification.

ODBC goes beyond the SQL/CLI capabilities in several areas, in part because
Microsoft’s goals for ODBC were broader than simply creating a standardized database
access API. Microsoft also wanted to allow a single Windows application program to
be able to concurrently access several different databases using the ODBC API. It also
wanted to provide a structure where database vendors could support ODBC without
giving up their proprietary APIs, and where the software that provided ODBC support
for a particular brand of DBMS could be distributed by the database vendor and
installed on Windows-based client systems as needed. The layered structure of ODBC
and special ODBC management calls provide these capabilities.
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/* Retrieve detailed info about capabilities of a CLI implementation */

short SQLGetInfo (

long   connHdl,           /* IN:  connection handle */

short  infotype,          /* IN:  type of info requested */

void  *infoval,           /* OUT: buffer for retrieved info */

short  buflen,            /* IN:  length of info buffer */

short *infolen)           /* OUT: returned info actual length */

/* Determine number of rows affected by previous SQL statement */

short SQLGetFunctions (

long   connHdl,           /* IN:  connection handle */

short  functid,           /* IN:  function id code */

short *supported)         /* OUT: whether function supported */

/* Determine information about supported data types */

short SQLGetTypeInfo (

long   stmtHdl,           /* IN:  statement handle */

short  datatype)          /* IN:  ALL TYPES or type requested */

Figure 19-23. CLI implementation information routines



The Structure of ODBC
The structure of ODBC as it is provided on Windows-based or other operating systems
is shown in Figure 19-24. There are three basic layers to the ODBC software:

� Callable API. At the top layer, ODBC provides a single callable database access
API that can be used by all application programs. The API is packaged as a
dynamic-linked library (DLL), which is an integral part of the various Windows
operating systems.

� ODBC drivers. At the bottom layer of the ODBC structure is a collection of
ODBC drivers. There is a separate driver for each of the DBMS brands. The
purpose of the driver is to translate the standardized ODBC calls into the
appropriate call(s) for the specific DBMS that it supports. Each driver can be
independently installed on a particular computer system. This allows the DBMS
vendors to provide an ODBC driver for their particular brand of DBMS and
distribute the driver independent of the Windows operating system software.
If the database resides on the same system as the ODBC driver, the driver is
usually linked directly to the database’s native API code. If the database is
to be accessed over a network, the driver may call a native DBMS client to
handle the client/server connection, or the driver might handle the network
connection itself.

� Driver manager. In the middle layer of the ODBC structure is the ODBC
driver manager. Its role is to load and unload the various ODBC drivers, on
request from application programs. The driver manager is also responsible
for routing the API calls made by application programs to the appropriate
driver for execution.

When an application program wants to access a database via ODBC, it goes through
the same initiation sequence specified by the SQL/CLI standard. The program allocates
an environment handle, then a connection handle, and then calls SQLConnect(),
specifying the particular data source to be accessed. When it receives the SQLConnect()
call, the ODBC driver manager examines the connection information provided and
determines the appropriate ODBC driver that is needed. The driver manager loads the
driver into memory if it’s not already being used by another application program.

Subsequent calls by the application program on this particular CLI/ODBC connection
are routed to this driver. The application program can, if appropriate, make other
SQLConnect() calls for other data sources that will cause the driver manager to
concurrently load other drivers for other DBMS brands. The application program can
then use ODBC to communicate with two or more different databases, of different
brands, using a uniform API.
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ODBC and DBMS Independence
By providing a uniform API and its driver manager architecture, ODBC goes a long
way toward providing a cross-vendor API for database access, but it’s impossible to
provide fully transparent access. The ODBC drivers for the various database systems
can easily mask cosmetic differences in their SQL dialects and API suites, but more
fundamental differences are difficult or impossible to mask. ODBC provides a partial
solution to this problem by providing several different levels of ODBC capability, and
by making each ODBC driver self-describing through the ODBC/CLI calls that return
information about general functionality, supported functions, and supported data
types. However, the existence of different capability levels and profiles effectively
pushes the DBMS differences right back into the application program, which must deal
with this nonuniformity of ODBC drivers. In practice, the vast majority of application
programs rely on only the basic, core set of ODBC functionality and don’t bother with
more advanced features or profiles.
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Figure 19-24. ODBC architecture



ODBC Catalog Functions
One of the areas where ODBC offers capability beyond the SQL/CLI standard is the
retrieval of information about the structure of a database from its system catalog. As a
part of the ANSI/ISO SQL standard, the CLI assumes that this information (about tables,
columns, privileges, and so forth) is available through the SQL2 Information Schema,
as described in Chapter 16. ODBC doesn’t assume the presence of an Information
Schema. Instead, it provides a set of specialized functions, shown in Table 19-4, that
provide information about the structure of a data source. By calling these functions and
processing their results, an application program can determine, at runtime, information
about the tables, columns, privileges, primary keys, foreign keys, and stored procedures
that form the structure of a data source.

The ODBC catalog functions typically aren’t needed by an application program that
is written for a specific purpose. However, they are essential for a general-purpose
program, such as a query program, report generator, or data analysis tool. The catalog
functions can be called any time after a connection to a data source has been made. For
example, a report writing program might call SQLConnect() and then immediately
call SQLTables() to determine which tables are available in the target data source.
The tables could then be presented in a list on the screen, allowing the user to select
which table should be used to generate a report.

All of the catalog functions return their information as if they were a set of query
results. The application program uses the techniques already described for CLI query
processing to bind the columns of returned information to program variable areas. The
program then calls SQLFetch() to work its way through the returned information. For
example, in the results returned by the SQLTables() call, each SQLFetch()retrieves
information about one table in the data source.
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CLI Return Value Meaning

0 Statement completed successfully

1 Successful completion with warning

100 No data found (when retrieving query results)

99 Data needed (required dynamic parameter missing)

–1 Error during SQL statement execution

–2 Error—invalid handle supplied in call

Table 19-4. ODBC Catalog Functions



Extended ODBC Capabilities
ODBC provides a set of extended capabilities beyond those specified in the SQL/CLI
standard. Many of the capabilities are designed to improve the performance of
ODBC-based applications by minimizing the number of ODBC function calls an
application program must make and/or the amount of network traffic generated by
the ODBC calls. Other capabilities provide useful features for maintaining database
independence or aid an application program in the database connection process.
Some of the capabilities are provided through the additional set of ODBC function calls
shown in Table 19-5. Others are provided through statement or connection attributes.
Many of these additional capabilities were introduced in the 3.0 revision of ODBC and
are not yet supported by most ODBC drivers or ODBC-based applications.
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Function Description

SQLBrowseConnect() Supplies information about available ODBC data
sources and the attributes required to connect to each

SQLDrivers() Returns a list of the available drivers and driver
attribute names

SQLDriverConnect() Works as an extended form of the SQLConnect() call
for passing additional connection information

SQLNumParams() Returns the number of parameters in a previously
prepared SQL statement

SQLBindParameter() Provides extended functionality beyond the SQL/CLI
SQLBindParam() call

SQLDescribeParam() Returns information about a parameter

SQLBulkOperations() Performs bulk insertion and bookmark operations

SQLMoreResults() Determines whether more results are available for a
statement

SQLSetPos() Sets the cursor position within a retrieved set of query
results for positioned operations

SQLNativeSQL() Returns the native SQL translation of a supplied
ODBC-compliant SQL statement text

Table 19-5. Additional ODBC Functions



Extended Connection Capabilities
Two of the extended ODBC features are focused on the connection process. Connection
browsing is designed to simplify the data source connection process and make it more
database independent. SQLBrowseConnect() supports an iterative style of connection
for access to ODBC data sources. An application program first calls the function with
basic information about the target data source, and the function returns additional
connection attributes needed (such as a user name or password). The application
program can obtain this information (for example, by prompting the user) and then
recalls SQLBrowseConnect() with the additional information. The cycle continues
until the application has determined all of the information required for a successful
SQLConnect() call.

The connection pooling capability is designed to improve the efficiency of ODBC
connect/disconnect processing in a client/server environment. When connection
pooling is activated, ODBC does not actually terminate network connections upon
receiving a SQLDisconnect() call. Instead, the connections are held open in an idle
state for some period of time and reused if a SQLConnect() call is made for the same
data source. This reuse of connections can significantly cut down the network and
login/logout overhead in client/server applications that involve short transactions
and high transaction rates.

SQL Dialect Translation
ODBC specifies not just a set of API calls, but also a standard SQL language dialect
that is a subset of the SQL2 standard. It is the responsibility of ODBC drivers to
translate the ODBC dialect into statements appropriate for the target data source
(for example, modifying date/time literals, quote conventions, keywords, and so on).
The SQLNativeSQL() call allows the application program to see the effect of this
translation. ODBC also supports escape sequences that allow an application program
to more explicitly direct the translation of SQL features that tend to be less consistent
across SQL dialects, such as outer joins and pattern-matching search conditions.

Asynchronous Execution
An ODBC driver may support asynchronous execution of ODBC functions. When an
application program makes an asynchronous mode ODBC call, ODBC initiates the
required processing (usually statement preparation or execution) and then immediately
returns control to the application program. The application program can proceed with
other work and later resynchronize with the ODBC function to determine its completion
status. Asynchronous execution can be requested on a per-connection or a per-statement
basis. In some cases, asynchronously executing functions can be terminated with a
SQLCancel() call, giving the application program a method for aborting long-running
ODBC operations.
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Statement-Processing Efficiency
Each ODBC call to execute a SQL statement can involve a significant amount of
overhead, especially if the data source involves a client/server network connection.
To reduce this overhead, an ODBC driver may support statement batches. With this
capability, an application program can pass a sequence of two or more SQL statements
as a batch to be executed in a single SQLExecDirect() or SQLExecute() call.
For example, a series of a dozen INSERT or UPDATE statements could be executed
as a batch in this way. It can significantly reduce network traffic in a client/server
environment, but it complicates error detection and recovery, which tend to become
driver-specific when statement batches are used.

Many DBMS products address the efficiency of multistatement transactions in a
different way. They support stored procedures within the database itself, which can
collect a sequence of SQL operations, together with the associated flow-control logic,
and allow the statements to be invoked with a single call to the procedure. ODBC
provides a set of capabilities that allow an application program to directly call a stored
procedure in the target data source. For databases that allow stored procedure parameters
to be passed by name, ODBC allows parameters to be bound by name instead of by
position. For data sources that provide metadata information about stored procedure
parameters, the SQLDescribeParam() call allows the application program to
determine, at runtime, the required parameter data type. Output parameters of a
stored procedure are supported either through SQLBindParam() (in which case, the
application program’s data buffer is modified upon return from the SQLExecute()
or SQLExecDirect() call) or through SQLGetData(), which allows retrieval of
long returned data.

Two other extended ODBC capabilities provide efficiency when a single SQL
statement (such as an INSERT or UPDATE statement) is to be executed repeatedly. Both
address the binding of parameters for this situation. With the binding offset feature, once
a statement parameter has been bound and the statement has been executed, ODBC
allows the application program to change its binding for the next statement execution
by specifying a new memory location as an offset from the original location. This is
an effective way of binding a parameter to individual items in an array for repeated
statement execution. In general, modifying an offset value is much more efficient than
rebinding the parameter with repeated calls to SQLBindParam().

ODBC parameter arrays provide an alternative mechanism for an application
program to pass multiple sets of parameter values in a single call. For example, if an
application program needs to insert multiple rows into a table, it can request execution
of a parameterized INSERT statement and bind the parameters to arrays of data values.
The effective result is as if multiple INSERT statements are performed—one for each
set of parameter values. ODBC supports both row-wise parameter arrays (each array
element holds one set of parameter values) or columnwise parameter arrays (each
parameter value is bound to its own individual array, which holds its values).
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Query-Processing Efficiency
In a client/server environment, the network overhead involved in fetching many rows
of query results can be very substantial. To cut this overhead, an ODBC driver may
support multirow fetches through the ODBC block cursor capability. With a block
cursor, each SQLFetch() or SQLFetchScroll() call retrieves multiple rows (termed
the current rowset of the cursor) from the data source. The application must bind the
returned columns to arrays to hold the multiple rows of fetched data. Either row-wise
or columnwise binding of the rowset data is supported, using the same techniques as
those used for parameter arrays. In addition, the SQLSetPos() function may be used
to establish one of the rows of the rowset as the current row for positioned update and
delete operations.

ODBC bookmarks provide a different efficiency boost for an application program
that needs to operate on retrieved rows of data. An ODBC bookmark is a database-
independent unique row-id for SQL operations. (A driver may actually use primary
keys or DBMS-specific row-ids or other methods to support bookmarks, but it is
transparent to the application program.) When bookmarks are enabled, the bookmark
(row-id) is returned for each row of query results. The bookmark can be used with
scrolling cursors to return to a particular row. Additionally, it can be used to perform
a positioned update or delete based on a bookmark.

Bookmarks can also be used to determine if a particular row retrieved by two
different queries is, in fact, the same row or two different rows with the same data
values. Bookmarks can make some operations much more efficient (for example,
performing positioned updates via a bookmark rather than respecifying a complex
search condition to identify the row). However, there can be substantial overhead for
some DBMS brands and ODBC drivers in maintaining the bookmark information, so
this trade-off must be considered carefully.

ODBC bookmarks form the basis for ODBC bulk operations, another
efficiency-related feature. The SQLBulkOperations() call allows an application
program to efficiently update, insert, delete or refetch multiple rows based on their
bookmarks. It operates in conjunction with block cursors and works on the rows in the
current rowset. The application program places the bookmarks for the rows to be
affected into an array, and places into other arrays the values to be inserted or deleted.
It then calls SQLBulkOperations() with a function code indicating whether the
identified rows are to be updated, deleted, or refetched, or whether a set of new rows is
to be added. This call completely bypasses the normal SQL statement syntax for these
operations, and because it can operate on multiple rows in a single call, can be a very
efficient mechanism for bulk insertion, deletion, or update of data.
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The Oracle Call Interface (OCI)
The most popular programmatic interface to Oracle is embedded SQL. However, Oracle
also provides an alternative callable API, known as the Oracle Call Interface, or OCI. OCI
has been available for many years and remained fairly stable through a number of major
Oracle upgrade cycles, including all of the Oracle7 versions. With the introduction of
Oracle8, OCI underwent a major revision, and many of the original OCI calls were
replaced by new, improved versions. Moving forward with Oracle9 and beyond, this
“new OCI” (the Oracle8 version) is effectively the Oracle Call Interface for new programs.

The “old OCI”(from Oracle7 and before) is relevant only for legacy programs
that were originally developed using it. For reference, the “old OCI” routines are
summarized in Table 19-6, so that you can recognize a program that may be using this
old version. Conceptually, the routines closely parallel the embedded dynamic SQL
interface, described in Chapter 18.

The new OCI uses many of the same concepts as the SQL/CLI standard and ODBC,
including the use of handles to identify interface objects. Several hundred routines are
defined in the API, and a complete description of them is beyond the scope of this
book. The following sections identify the major routines that will be used by most
application programs and their functions.

OCI Handles
The new OCI uses a hierarchy of handles to manage interaction with an Oracle
database, like the handle hierarchy of the SQL/CLI described earlier in the section
“CLI Structures” The handles are:

� Environment handle. The top-level handle associated with an OCI interaction

� Service context handle. Identifies an Oracle server connection for statement
processing

� Server handle. Identifies an Oracle database server (for multisession
applications)

� Session handle. Identifies an active user session (for multisession applications)

� Statement handle. Identifies an Oracle-SQL statement being processed

� Bind handle. Identifies an Oracle statement input parameter

� Define handle. Identifies an Oracle query results column

� Transaction handle. Identifies a SQL transaction in progress

� Complex object handle. Retrieves data from an Oracle object

� Error handle. Reports and processes OCI errors
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Function Description

Database connection/disconnection

olon() Logs on to an Oracle database

oopen() Opens a cursor (connection) for SQL statement processing

oclose() Closes an open cursor (connection)

ologof() Logs off from an Oracle database

Basic statement processing

osql3() Prepares (compiles) a SQL statement string

oexec() Executes a previously compiled statement

oexn() Executes with an array of bind variables

obreak() Aborts the current Oracle call interface function

oermsg() Obtains error message text

Statement parameters

obndrv() Binds a parameter to a program variable (by name)

obndrn() Binds a parameter to a program variable (by number)

Transaction processing

ocom() Commits the current transaction

orol() Rolls back the current transaction

ocon() Turns on autocommit mode

ocof() Turns off autocommit mode

Query results processing

odsc() Obtains a description of a query results column

oname() Obtains the name of a query results column

odefin() Binds a query results column to a program variable

ofetch() Fetches the next row of query results

ofen() Fetches multiple rows of query results into an array

ocan() Cancels a query before all rows are fetched

Table 19-6. Old Oracle Call Interface Functions (Oracle7 and Earlier)



An application program manages OCI handles using the routines shown in Table 19-7.
The allocate and free routines function like their SQL/CLI counterparts. The get attribute
and set attribute functions operate like the similarly named SQL/CLI routines that get
and set environment, connection, and statement attributes.

An error handle is used to pass information back from OCI to the application. The
error handle to be used for error reporting is typically passed as a parameter to OCI
calls. If the return status indicates an error, information about the error can be retrieved
from the error handle using OCIErrorGet().

Oracle Server Connection
The initialization and connection sequence for OCI parallels those already illustrated
for CLI/ODBC and dblib. The OCI routines associated with connection management
are shown in Table 19-8. An application program first calls OCIInitialize() to
initialize the Oracle Call Interface. This call also indicates whether OCI will be used in
multithreaded mode, whether the application program will use OCI object-mode
functions, and other options. After initialization, the application program calls
OCIEnvInit() to initialize an environment handle. As with CLI/ODBC, all OCI
interactions take place within the context of the environment defined by this handle.

After these initial steps, most applications call OCILogon() to establish a session
with an Oracle database server. Subsequent OCI calls take place within the context of this
session and use the supplied user-id to determine their privileges within the Oracle
database. A call to OCILogoff() terminates the session. The other calls provide more
advanced session management for multithreaded and multiconnection applications. The
OCIServerVersion() call can be used to determine the version of the Oracle server
software. The OCIChangePassword() call can be used to change an expired password.
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Routine Function

OCIHandleAlloc() Allocates a handle for use

OCIHandleFree() Frees a handle previously allocated

OCIAttrGet() Retrieves a particular attribute of a handle

OCIAttrSet() Sets the value of a particular handle attribute

Table 19-7. OCI Handle Management Routines



Statement Execution
The OCI functions shown in Table 19-9 implement SQL statement execution.
OCIStmtPrepare() and OCIStmtExecute() support the two-step prepare/execute
process. The OCIStmtExecute() function can also be used to describe query results
(similar to the embedded SQL DESCRIBE statement) without actually executing the
query by passing a specific flag. OCI automatically provides a description of query results
when OCIStmtExecute() is called in the normal statement execution mode. The
description is available as an attribute of the statement handle for the executed query.

The OCIBindbyPos() and OCIBindbyName() functions are used to bind
application program locations to statement parameters, using either parameter
positions or parameter names. These calls automatically allocate bind handles for the
parameters when they are called, or they may be called with explicitly allocated bind
handles. The other calls implement more advanced binding techniques, including
binding of multiple parameter values (arrays) and binding of complex object data
types. They also provide execute-time parameter (and query results) processing,
corresponding to the deferred parameter mode supported by CLI/ODBC and
described earlier in the “CLI Statement Processing” section. The piece info calls
support this mode of operation.
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Routine Function

OCIInitialize() Initializes the Oracle Call Interface for use

OCIEnvInit() Establishes an environment handle for OCI interaction

OCILogon() Connects to an Oracle database server for an
OCI session

OCILogoff() Terminates a previous logon connection

OCIServerAttach() Attaches to an Oracle server for multisession operations

OCIServerDetach() Detaches from an Oracle server

OCIServerVersion() Returns server version information

OCISessionBegin() Begins a user session on a previously attached server

OCIPasswordChange() Changes a user’s password on the server

OCISessionEnd() Ends a previously begun user session

Table 19-8. OCI Initialization and Connection Management Routines



Query Results Processing
The OCI functions shown in Table 19-10 are used to process query results. The
OCIDefineByPos() function is used to bind a query results column (identified by
column number) to an application program storage location. (The OCI terminology
refers to this as the define process; the term binding is reserved for input parameters.)
The other define calls support dynamic (execute-time) binding, array binding
(for multirow fetch operations), and binding of complex object data types. The
OCIStmtFetch() call retrieves a row of query results, and provides the SQL FETCH
statement functionality.
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Routine Function

OCIStmtPrepare() Prepares a statement for execution

OCIStmtExecute() Executes a previously prepared statement

OCIBreak() Aborts current OCI operation on a server

OCIBindbyPos() Binds a parameter based on its position

OCIBindbyName() Binds a parameter based on its name

OCIStmtGetBindInfo() Obtains the names of bind and indicator variables

OCIBindArrayOfStruct() Sets up array binding for passing multiple
parameter values

OCIBindDynamic() Registers a callback routine for a previously bound
parameter that will use runtime binding

OCIBindObject() Provides additional information for a previously
bound parameter with a complex object data type

OCIStmtGetPieceInfo() Obtains information about a dynamic piecewise
parameter value needed at execute-time by OCI
(or a dynamic piecewise query results column
being returned)

OCIStmtSetPieceInfo() Sets information (buffer, length, indicator, etc.) for a
dynamic piecewise parameter value being supplied
at execute-time to OCI (or a dynamic piecewise
query results column being accepted at runtime)

Table 19-9. OCI Statement-Processing and Parameter-Handling Routines



Descriptor Handling
OCI uses descriptors to provide information about parameters, Oracle database objects
(tables, views, stored procedures, and so on), large objects, complex objects, row-ids,
and other OCI objects. A descriptor provides information to the application program
and is used in some cases to manage the details of the processing of these objects. The
routines shown in Table 19-11 are used to manage descriptors. They allocate and free
the descriptors and retrieve and set individual data values within the descriptors.
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Routine Function

OCIStmtFetch() Fetches a row or rows of query results

OCIDefineByPos() Binds a query results column

OCIDefineArrayofStruct() Sets up array binding for multirow
results retrieval

OCIDefineDynamic() Registers a callback routine for dynamic
processing of query results column

OCIDefineObject() Provides additional information for a
previously bound query results column
with a complex object type

Table 19-10. OCI Query Results Processing Routines

Routine Function

OCIDescriptorAlloc() Allocates a descriptor or LOB locator

OCIDescriptorFree() Frees a previously allocated descriptor

OCIParamGet() Gets a descriptor for a parameter

OCIParamSet() Sets a parameter descriptor in a complex
object-retrieval handle

Table 19-11. OCI Descriptor Management Routines



Transaction Management
Application programs use the functions shown in Table 19-12 to implement SQL
transaction management. The OCITransCommit() and OCITransRollback() calls
provide the basic capability to commit and roll back transactions, and correspond
to the usual SQL COMMIT and ROLLBACK statements. The other functions provide a
very rich and complex transaction scheme, including the specification of read-only,
serializable, and loosely or tightly coupled transactions, and control over distributed
transactions. The transaction management routines take a service context handle that
identifies a current connection as an input parameter.

Error Handling
The OCI functions return a status code indicating whether they completed successfully.
In addition, most OCI functions accept an error handle as an input parameter. If an
error occurs during processing, error information is associated with this handle. Upon
return from the function, the application program can call OCIErrorGet() on the
error handle to obtain further information about the error, including the error number
and error message.

Catalog Information
The OCIDescribeAny() call provides access to Oracle system catalog information.
An application program calls this routine with the name of a table, view, synonym,
stored procedure, data type, or other Oracle schema object. The routine populates a
descriptor (identified by a descriptor handle) with information about the attributes
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Routine Function

OCITransCommit() Commits a transaction

OCITransRollback() Rolls back a transaction

OCITransStart() Initiates or reattaches a special transaction

OCITransPrepare() Prepares to commit for a distributed transaction

OCITransForget() Forgets a previously prepared transaction

OCITransDetach() Detaches a distributed transaction

Table 19-12. OCI Transaction Management Routines



of the object. Subsequent calls to OCIAttrGet() on the descriptor handle can be used
to obtain complete data about the object at runtime.

Large Object Manipulation
OCI includes a large group of routines, shown in Table 19-13, for processing Oracle large
object (LOB) data types and large objects stored in files referenced in Oracle columns.
Because large objects may be tens of thousands to millions of bytes in length, they
typically cannot be bound directly to application program buffers in their entirety.
Instead, OCI uses a LOB locator, which functions like a handle for the LOB data item.
The locator is returned for LOB data in query results and used as an input parameter for
LOB data being inserted or updated. The LOB handling routines support piece-by-piece
processing of LOB data, allowing it to be transferred between an Oracle database and
an application program. The routines accept one or more LOB locators as parameters.
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Routine Function

OCILobRead() Reads a piece of a LOB into application
program data area

OCILobWrite() Writes data from an application program
data area into a LOB

OCILobAppend() Appends data to the end of a LOB

OCILobErase() Erases data within a LOB

OCILobTrim() Truncates data from the end of a LOB

OCILobGetLength() Obtains the length of a LOB

OCILobLocatorIsInit() Checks whether a LOB locator is valid

OCILobCopy() Copies data from one LOB to another

OCILobAssign() Assigns one LOB locator to another

OCILobIsEqual() Compares two LOB locators

OCILobFileOpen() Opens a file containing LOB data

OCILobFileClose() Closes a previously opened LOB file

OCILobFileCloseAll() Closes all previously opened LOB files

Table 19-13. OCI Large Object Processing Routines



Java Database Connectivity (JDBC)
JDBC is a callable SQL API for the Java programming language. JDBC is both the official
and de facto standard for SQL database access from Java. For the C programming
language, the DBMS vendors developed their own proprietary APIs well before the
development of ODBC or SQL-CLI API. For Java, the JDBC API was developed by
Sun Microsystems as part of a suite of Java APIs, embodied in various Java editions.
As a result, all of the major DBMS products provide Java support via JDBC; there
are no important competing APIs.

JDBC History and Versions
The JDBC API has been through several major revisions since its original introduction.
JDBC 1.0 provided the basic core of data access functionality, including a driver
manager to arbitrate connections to multiple DBMS’s, connection management to
access individual databases, statement management to send SQL commands to
the DBMS, and result set management to provide Java access to the query results.

The JDBC 2.0 API and its incremental versions extended JDBC 1.0, and divided
the functionality into a Core API and Extensions API. The 2.0 version added:

� Batch operations. A Java program can pass many rows of data to be inserted
or updated via a single API call, improving performance and efficiency of
bulk operations.

� Scrollable result sets. Like the scrollable cursors provided in other APIs, this new
capability permitted both forward and backward motion through query results.

C h a p t e r 1 9 : S Q L A P I s 671
P

R
O

G
R

A
M

M
IN

G

W
IT

H
S
Q

L

Routine Function

OCILobFileIsOpen() Checks whether a LOB file is open

OCILobFileGetName() Obtains the name of a LOB file, given a
LOB locator

OCILobFileSetName() Sets the name of a LOB file in a LOB locator

OCILobFileExists() Checks if a LOB file exists

OCILobLoadFromFile() Loads a LOB from a LOB file

Table 19-13. OCI Large Object Processing Routines (continued)



� Updateable result sets. A Java program can update the database by updating
a specific row of query results or inserting a new row through the results.

� Connection pooling. Connections to the database can be shared across Java
programs, reducing the overhead of frequent connecting and disconnecting.

� Distributed transactions. The API provides the capability to synchronize
updates across multiple databases, with all or nothing transactions that span
database boundaries.

� Data sources. A new type of object encapsulates the details of a database
connection, reducing the need for an application programmer to understand
connection specifics.

� Rowsets. An abstraction of query results, rowsets allow query results
processing even when a program is disconnected from the source database
and later resynchronization.

� Java Naming & Directory Interface (JNDI) support. Databases and drivers
can be named and cataloged in a network directory, and accessed via those
directory entries.

The JDBC 3.0 API is a relatively new version of JDBC. It was finalized and formally
announced by Sun in February 2002, and packaged as part of Java2 Standard Edition
(J2SE) 1.4. New capabilities introduced in the 3.0 version include:

� Object-relational SQL extensions. The API adds support for abstract data
types and the associated capabilities that were added in the SQL:1999 standard.

� Savepoints. The API allows a partial rollback to a specifically marked savepoint
partway through a transaction.

� Cursor preservation. API options allow cursors to remain open across
transactions.

� Prepared statement metadata. Programs can determine information about
prepared statements, such as the number and data types of parameters and
of query results columns.

JDBC Implementations and Driver Types
JDBC assumes a driver architecture like that provided by the ODBC standard, on
which it is broadly based. Figure 19-25 shows the main building blocks. A Java
program connects to the JDBC driver manager via the JDBC API. The JDBC system
software is responsible for loading one or more JDBC drivers, typically on demand
from Java programs that request them. Conceptually, each driver provides access to
one particular DBMS brand, making whatever brand-specific API calls and sending the
SQL statements needed to carry out the JDBC request. The JDBC software is delivered
as a Java package, which is imported into a Java program that wants to use JDBC.
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The JDBC specification does not deal with the specific details of how a JDBC driver
is implemented. However, since the introduction of JDBC, developers have tended
to characterize JDBC drivers into four driver types. The type descriptions assume a
client/server connection from the JDBC API (on the client system) to a database server.
While this is a common enterprise deployment architecture, it’s worth noting that
JDBC is used to access local databases on systems as small as handheld devices; in
this context, the driver types have less meaning. The driver types differ in how they
translate JDBC calls (method invocations) into specific actions against the DBMS.

A Type 1 driver is also called a JDBC/ODBC bridge, shown in Figure 19-26. The driver
translates JDBC calls into a vendor-neutral API, which in practice is always ODBC. The
request passes to a specific ODBC driver for the target DBMS. (Optionally, the ODBC
driver manager may be eliminated, since the ODBC API to the driver manager is the
same as the API to the driver itself.) Ultimately, the ODBC driver calls the DBMS’
proprietary API. If the database is on a local system, the DBMS carries out the request.
If it’s on a remote (server) system, the DBMS code on the client is a network access
stub, which translates the request into a network message (proprietary to the DBMS)
and sends it to the DBMS server.

Figure 19-25. JDBC architecture building blocks



A Type 1 driver has one significant advantage. Because nearly all popular DBMS
products support ODBC, a single Type 1 driver can provide access to dozens of
different DBMS brands. Type 1 drivers are widely available, including one that is
distributed by Sun.

A Type 1 driver also has several disadvantages. Each JDBC request passes through
many layers on its way to and from the DBMS, so a Type 1 driver typically carries a lot
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Figure 19-26. A JDBC Type 1 driver



of computing overhead and its performance suffers as a result. The use of ODBC as an
intermediate stage also may limit the functionality provided by the driver—features of
the underlying DBMS that might be able to be delivered via the JDBC interface directly
may not be accessible via ODBC. Finally, the ODBC driver required by a Type 1 driver
will be delivered in binary form, not as a Java executable. Thus, any given Type 1
driver is specific to the client computer’s hardware and operating system, and will lack
the portability of Java.

A Type 2 driver is also called a Native API driver. The driver translates JDBC requests
directly into the native API of the DBMS, as shown in Figure 19-27. Unlike the Type 1
driver, there is no ODBC or other vendor-neutral layer involved. If the database is
located on the same system as the Java program, the Type 2 driver’s calls to the native
API will go directly to the DBMS. In a client/server network, the DBMS code on the
client is again a network access stub, and the requests flow over the network in a
DBMS-proprietary protocol, as in the Type 1 driver.
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Figure 19-27. A JDBC Type 2 driver



Type 2 drivers present a different set of trade-offs than Type 1 drivers. A Type 2
driver has fewer layers, so performance is typically higher. It still has the disadvantage
of requiring binary code to be installed on the client system, so each Type 1 driver will
still be specific to a hardware architecture and operating system. Unlike a Type 1
driver, a Type 2 driver is also specific to a DBMS brand. If you want to communicate
with several different DBMS’, you will need multiple drivers. Finally, it’s worth noting
that the Type 1/Type 2 distinction assumes that the native DBMS API is not ODBC.
If a DBMS presents a native ODBC interface, then the use of ODBC does not imply
an additional layer, and its Type 2 driver will, in fact, use ODBC to access the DBMS.

A Type 3 driver is a Network-Neutral driver. The driver translates JDBC requests into
network messages in a vendor-neutral format, and sends them across the network to
the server, as shown in Figure 19-28. On the server, a middleware layer receives the
network requests and translates them into calls to the DBMS’ native API. Query results
are passed back across the network, again in a vendor-neutral format.
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Figure 19-28. A JDBC Type 3 driver



Type 3 drivers once again present a different set of trade-offs. One major advantage
claimed for the Type 3 architecture is that the client-side code can be written in Java,
using the network interfaces provided by other Java APIs. Notice also that the client-side
code is DBMS neutral; it does the same work no matter what the target DBMS on the
server. This means that the client-side code is very portable, able to run on any system
that supports a Java Virtual Machine (JVM) and Java network APIs. Type 3 drivers share
one disadvantage with Type 1 drivers: the use of a vendor-neutral network layer, just like
the use of a vendor-neutral ODBC layer, means that some capabilities of the underlying
DBMS may be inaccessible through the intermediate layer. A Type 3 architecture also
involves a double translation of each JDBC request, just as in Type 1; however, one of
the translations takes place on the server system, minimizing the client-side impact.

A Type 4 driver is a Network-Proprietary driver. The driver translates JDBC requests
into network messages, but this time in a DBMS-proprietary format, as shown in
Figure 19-29. The driver is written in Java, and implements a network client for the
DBMS’ networking software, such as Oracle’s SQL*Net. On the server, there is no need
for a middleware layer, since the DBMS server already provides support for the DBMS
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Figure 19-29. A JDBC Type 4 driver



vendor’s own client/server networking. Query results flow back across the network,
again in vendor-proprietary format, and supplied back to the requesting program.

Type 4 drivers preserve one of the important advantages of Type 3 drivers. They can
be implemented in pure Java, so like Type 3, they are portable across computer hardware
and operating systems. However, unlike Type 3 drivers, they are DBMS-specific, so
different client-side code is required for each DBMS brand you want to access. A Type 4
architecture involves less overhead on the server system, and may therefore deliver
slightly better performance. In practice, the overhead of the network messaging will
almost always swamp this advantage, except in very high transaction rate applications.

Figure 19-30 summarizes the four JDBC driver types and shows how they relate to
one another. The two columns divide the driver types based on whether they use a
vendor-neutral intermediate layer (left column) or translate directly from the JDBC API
to a DBMS-proprietary interface. The two rows divide the driver types based on whether
the translation to a specific DBMS API occurs on the client side (left column) or on the
server side. As the figure shows, each of these two decisions creates trade-offs, and
they result in four (2×2) driver types.

The JDBC API
Java is an object-oriented language, so it’s probably no surprise that JDBC organizes
its API functions around a collection of database-related objects and the methods that
they provide:

� Driver Manager object. The entry-point to JDBC

� Connection objects. Represent individual active connections to target databases

� Statement objects. Represent SQL statements to be executed
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Figure 19-30. JDBC driver types and trade-offs



� ResultSet objects. Represent the results of a SQL query

� MetaData objects. Represent metadata about databases, query results,
and statements

� Exception objects. Represent errors in SQL statement execution

These objects have the logical relationship shown in Figure 19-31, based on which
objects provide methods to create other objects. The following sections describe each
of these objects, and how their methods are used to connect to databases, execute SQL
statements, and process query results. A complete explanation of the JDBC API is beyond
the scope of this book, but the concepts described should allow you to make effective
use of JDBC and to understand the documentation that is delivered with the package.

The DriverManager object is the main interface to the JDBC package. Some
of the most important methods that it provides are shown in Table 19-14. After loading
the JDBC driver class that you want to use (typically using the Class.forName()
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Figure 19-31. Key objects used by the JDBC API



method), your program will ask the DriverManager object to connect you to that
specific driver and a specific database with the getConnection() method:

// Create a connection to the Oracle JDBC driver

String url = “… will vary depending on OS, etc.”

String user = “Scott”;

String pswd = “Tiger”;

Connection dbconn =

DriverManager.getConnection(url, user, pswd);

The getConnection() method returns an object, the Connection object, which
embodies the connection that has just been created and the database on the other end
of that connection. Other DriverManager methods provide programmatic control
over connection timeouts, switch on JDBC call logging for debugging, and other utility
functions. If it encounters an error while attempting to make the connection, the
DriverManager object will throw an exception. Error handling is described in the
“Error Handling in JDBC” section later in this chapter.

JDBC Basic Statement Processing
The major functions of the JDBC Connection object are to manage the connection
to the database, to create SQL statements for processing by that database, and to
manage transactions over the connection. Table 19-15 shows the Connection object
methods that provide these functions. In most simple JDBC programs, the next
step after a connection has been established will be to call the Connection object’s
createStatement() method to create a Statement object.
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Method Description

getConnection() Creates and returns a database connection object,
given a URL for the datasource, and optionally a
user name and password, and connection properties

registerDriver() Registers a driver with JDBC driver manager

setLoginTimeout() Sets timeout for connection login

getLoginTimeout() Obtains login timeout value

setLogWriter() Enables tracing of JDBC calls

Table 19-14. DriverManager Object Methods
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The major function of a Statement object is to actually execute SQL statements.
Table 19-16 shows the Statement object methods that you use to control statement
execution. There are several different execute() methods, depending on the specific
type of SQL statement. Simple statements that do not produce query results (e.g.,
UPDATE, DELETE, INSERT, CREATE TABLE) can use the executeUpdate method.
Queries use the executeQuery() method, because it provides a mechanism for
returning the query results. Other execute methods support prepared SQL
statements, statement parameters, and stored procedures.

To illustrate the basic use of Connection and Statement objects, here is a simple
Java program excerpt that creates a connection to a database, performs two database
updates, commits the changes, and then closes the connection.

// The connection object and strings we will use

Connection dbconn;       // the database connection

String str1 = “UPDATE OFFICES SET TARGET = 0";

String str2 = ”DELETE FROM SALESREPS WHERE EMPL_NUM = 106";

<code in here creates the connection>
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Method Description

Close() Closes the connection to the datasource

createStatement() Creates a Statement object for the connection

prepareStatement() Prepares a parameterized SQL statement into a
PreparedStatement for execution

prepareCall() Prepares a parameterized call to a stored procedure or
function into a CallableStatement for execution

commit() Commits the current transaction on the connection

rollback() Rolls back the current transaction on the connection

setAutoCommit() Sets/resets autocommit mode on the connection

getWarnings() Retrieves SQL warning(s) associated with a connection

GetMetaData Returns a DatabaseMetadata object with info
about database

Table 19-15. JDBC Connection Object Methods



// Create a statement object for executing SQL

Statement stmt = dbconn.createStatement();

// Update the OFFICES table with the statement object

stmt.executeUpdate(str1);

// Update the SALESREPS table with the statement object

stmt.executeUpdate(str2);

// Commit the changes to the database

dbconn.commit();

// Update the SALESREPS table using the same statement object

stmt.executeUpdate(str2);

// Finally, close the connection

dbconn.close();

As the example shows, the SQL transaction-processing operations (commit and
rollback) are handled by method calls to the Connection object, rather than by
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Method Description

Basic statement execution

executeUpdate() Executes a nonquery SQL statement and
returns the number of rows affected

executeQuery() Executes a single SQL query and returns
a result set

execute() General-purpose execution of one or more
SQL statements

Statement batch execution

addBatch() Stores previously supplied parameter values
as part of a batch of values for execution

executeBatch() Executes a sequence of SQL statements;
returns an array of integers indicating the
number of rows impacted by each one

Table 19-16. JDBC Statement Object Methods



executing COMMIT and ROLLBACK statements. This allows the JDBC driver to know the
status of the transactions that it is processing without examining the specific SQL being
executed. JDBC also supports an autocommit mode, in which every statement is treated
as an individual transaction. A Connection object method also controls this option.

Note that the Connection and Statement methods called in this program
excerpt can cause errors, and the excerpt does not show any error-handling code. If an
error occurs, the JDBC driver will throw a SQLException exception. Normally, an
excerpt like the previous one (or parts of it) will appear within a try / catch structure
to handle the possible exception. For simplicity, the enclosing try / catch structure is
suppressed in this and the next several examples. Error-handling techniques are described
in the “Error Handling in JDBC” section later in this chapter.

Simple Query Processing
As with the other SQL APIs and embedded SQL, query processing requires
an additional mechanism beyond those used for database updates to handle
the returned query results. In JDBC, the ResultSet object provides that
additional mechanism. To execute a simple query, a Java program invokes the
executeQuery() method of a Statement object, passing the text of the query
in the method call. The executeQuery() method returns a ResultSet object
that embodies the query results. The Java program then invokes the methods
of this ResultSet object to access the query results, row by row and column
by column. Table 19-17 shows the methods provided by the ResultSet object.
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Method Description

Query results limitation

setMaxRows() Limits number of rows retrieved by a query

getMaxRows() Retrieves current maximum row limit setting

setMaxFieldSize() Limits maximum size of any retrieved column

getMaxFieldSize() Retrieves current maximum field size limit

setQueryTimeout() Limits maximum time of query execution

getQueryTimeout() Retrieves current maximum query time limit

Error handling

getWarnings() Retrieves SQL warning(s) associated with
statement execution

Table 19-16. JDBC Statement Object Methods (continued)
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Method Description

Cursor motion

next() Moves cursor to next row of query results

close() Ends query processing; closes the cursor

Basic column-value retrieval

getInt() Retrieves integer value from specified column

getShort() Retrieves short integer value from specified column

getLong() Retrieves long integer value from specified column

getFloat() Retrieves floating point numeric value from
specified column

getDouble() Retrieves double-precision floating point value from
specified column

getString() Retrieves character string value from specified column

getBoolean() Retrieves true/false value from specified column

getDate() Retrieves date value from specified column

getTime() Retrieves time value from specified column

getTimestamp() Retrieves timestamp value from specified column

getByte() Retrieves byte value from specified column

getBytes() Retrieves fixed-length or variable-length BINARY
data from specified column

getObject() Retrieves any type of data from specified column

Large object retrieval

getAsciiStream() Gets input stream object for processing a character
large object (CLOB)column

GetBinaryStream() Gets input stream object for processing a binary
large object (BLOB) column

Other functions

getMetaData() Returns a ResultSetMetaData object with meta
data for query

getWarnings() Retrieves SQL warnings associated with the ResultSet

Table 19-17. JDBC ResultSet Object Methods



Here is a very simple Java program excerpt that shows how the objects and
methods you have seen so far combine to perform simple query processing. It retrieves
and prints out the office number, city, and region for each office in the OFFICES table:

// The connection object, strings and variables

Connection dbconn;       // the database connection

Int num;             // returned office number

String city;         // returned city

String reg;          // returned region

String str1 = “SELECT OFFICE, CITY, REGION FROM OFFICES”;

<code in here creates the connection>

// Create a statement object for executing the query

Statement stmt = dbconn.createStatement();

// Carry out query – method returns a ResultSet object

ResultSet answer = stmt.executeQuery(str1);

// Loop through ResultSet a row at a time

while (answer.next()) {

// Retrieve each column of data

num  = answer.getInt(“OFFICE”);

city = answer.getString(“CITY”);

reg  = answer.getString(3);

// Print the row of results

System.out.println(city + “  ” + num + “  ” + reg);

}

// Explicitly close the cursor and connection

answer.close();

dbconn.close();

The methods used are straightforward and parallel the query-processing steps
already seen for embedded SQL and C/C++ APIs. The ResultSet object maintains a
cursor to note its current position within the query results. Its next method advances
the cursor, row by row, through them. There is an explicit JDBC get method call to
retrieve each column of data for each row. Java’s strong typing and memory-protection
schemes make this approach a requirement, but it carries significantly higher overhead
than the C/C++ approach of binding program variables and having the database API
automatically populate those variables when a next row is fetched. Finally, the close
method call ends query processing.
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The example also shows the two alternative methods for specifying which column’s
value should be retrieved by each get method call. You can specify the name of the
column to be retrieved (used for the OFFICE and CITY columns), or its ordinal
position within the columns of results (used for the REGION column). JDBC delivers
this capability by overloading each of the get methods—one version takes a string
(column name) argument; the other takes an integer (column number) argument.

Using Prepared Statements in JDBC
The executeQuery() and executeUpdate() methods of the Statement object
provide a dynamic SQL capability. They parallel the SQLExecDirect() call in the
CLI standard. The database on the other end of the JDBC connection doesn’t know in
advance which SQL text will be presented when the execute method is called. It must
parse the statement on the fly and determine how to execute it. The dynamic SQL
approach makes this part of the JDBC interface quite easy to use, but it creates the high
overhead usually associated with dynamic SQL for the underlying DBMS. For high
transaction rate applications where performance is important, an alternative prepared
statement interface is more appropriate.

The prepared statement approach uses the same concepts as the PREPARE /
EXECUTE statements of embedded dynamic SQL and the SQLPrepare() and
SQLExecute() calls of the CLI standard. A SQL statement that is to be executed
repeatedly (such as an UPDATE statement that will be used on many rows or a query
that will be executed hundreds of times during a program) is first prepared by passing it
to the DBMS for parsing and analysis. Later, the statement may be executed repeatedly
with very little overhead. You can vary the specific values used by the statement
during each execution by passing parameter values for the execution. For example, you
can change the values to be used for each UPDATE operation, or change the value to be
matched in the WHERE clause of a query using parameters.

To use a prepared statement with JDBC, your program invokes the
prepareStatement() method on a connection instead of the createStatement()
method. Unlike createStatement(), the prepareStatement() method takes an
argument—a string containing the SQL statement that is to be prepared. Within the
statement string, parameters to be supplied at statement execution are indicated by a
question mark (?), which serves as a parameter marker. A parameter can be used within
the statement anywhere that a constant could legally appear in the statement. The
prepareStatement() method returns a PreparedStatement object, which
includes some additional methods beyond those provided by a Statement object.
Table 19-18 shows some of these additional methods, nearly all of which are for
parameter processing.

The additional set() methods of the PreparedStatement object take two
parameters. One indicates the parameter number for which a value is being supplied.
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The other provides the parameter value itself. With these methods, the typical
sequence for JDBC prepared statement processing can be summarized as follows:

1. The Java program establishes a connection to the DBMS in the usual way.

2. The program calls the prepareStatement() method with the text of the
statement to be prepared, including parameter markers. The DBMS analyzes
the statement and creates an internal, optimized representation of the statement
to be executed.

3. Later, when it’s time to execute the parameter statement, the program calls one
of the set methods in Figure 19-18 for each parameter, supplying a value for
the parameter.

Method Description

setInt() Sets value of an integer parameter

setShort() Sets value of a short integer parameter

setLong() Sets value of a long integer parameter

setFloat() Sets value of a floating point parameter

setDouble() Sets value of a double-precision floating point
parameter

setString() Sets value of a string parameter

setBoolean() Sets value of a BOOLEAN parameter

setDate() Sets value of a DATE parameter

setTime() Sets value of a TIME parameter

setTimeStamp() Sets value of a TIMESTAMP parameter

setByte() Sets value of a BYTE parameter

setBytes() Sets value of a BINARY or VARBINARY parameter

setBigDecimal() Sets value of a DECIMAL or NUMERIC parameter

setNull() Sets a NULL value for a parameter

setObject() Sets value of an arbitrary parameter

ClearParameters Clears all parameter values

getParameterMetaData() Returns ParameterMetaData object for a
prepared statement (JDBC 3.0 only)

Table 19-18. Additional Methods of a JDBC PreparedStatement Object
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4. When all parameter values have been supplied, the program calls executeQuery
or executeUpdate to execute the statement.

5. The program repeats Steps 3 and 4 over and over (typically dozens or hundreds
of times or more), varying the parameter values. If a particular parameter’s
value does not change from one execution to the next, the set method does not
need to be recalled.

Here is a program excerpt that illustrates the technique:

// The connection object, strings and variables

Connection dbconn;      // the database connection

String city;         // returned city

String str1 = “UPDATE OFFICES SET REGION = ? WHERE MGR = ?”;

String str2 = “SELECT CITY FROM OFFICES WHERE REGION = ?”;

<code in here creates the connection>

// Prepare the UPDATE statement

PreparedStatement pstmt1 = dbconn.prepareStatement(str1);

// Prepare the query

PreparedStatement pstmt2 = dbconn.prepareStatement(str2);

// Set parameters for UPDATE statement & execute it

pstmt1.setString(1,"Central");

pstmt1.setInt(2,108);

pstmt1.executeUpdate();

// Reset one of the parameters and execute again, then commit

pstmt1.setInt(2,104);

pstmt1.executeUpdate();

dbconn.commit()/

// Set parameter for query & execute it

pstmt2.setString(1,"Central");

ResultSet answer = pstmt2.executeQuery();

// Loop through ResultSet a row at a time

while (answer.next()) {

// Retrieve each column of data

city = answer.getString(1);



// Print the row of results

System.out.println(“Central city is ” + city);

}

answer.close();

// Set a different parameter for query & execute it

pstmt2.setString(1,"Eastern");

ResultSet answer = pstmt2.executeQuery();

// Loop through ResultSet a row at a time

while (answer.next()) {

// Retrieve each column of data

city = answer.getString(1);

// Print the row of results

System.out.println(“Eastern city is ” + city);

}

answer.close();

// Done – close the connection

dbconn.close();

Using Callable Statements in JDBC
The last several sections described how JDBC supports dynamic SQL statement
execution (via the Statement object created by the createStatement() method)
and prepared SQL statements (via the PreparedStatement object created by the
prepareStatement() method). JDBC also supports the execution of stored
procedures and stored functions through a third type of statement object, the
CallableStatement object created by the prepareCall() method.

Here is how a Java program invokes a stored function or stored procedure
using JDBC:

1. The Java program invokes the prepareCall() method, passing it a SQL
statement that invokes the stored routine. Parameters to the call are indicated
by parameter markers within the statement string, just as they are for a
prepared statement.

2. The method returns a CallableStatement object.

3. The Java program uses the set() methods of the CallableStatement object
to specify parameter values for the procedure or function call.

4. The Java program uses another method of the CallableStatement object to
specify the data types of returned values from the stored procedure or function.
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5. The Java program invokes one of the CallableStatement object’s execute()
methods to actually make the call to the stored procedure.

6. Finally, the Java program invokes one or more of the CallableStatement
object’s get() methods to retrieve the values returned by the stored procedure
(if any) or the return value of the stored function.

A CallableStatement object provides all of the methods of a PreparedStatement,
listed in Tables 19-16 and 19-18. The additional methods that it provides for registering
the data types of output or input/output parameters, and for retrieving the returned
values of those parameters after the call, are shown in Table 19-19.
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Function Description

registerOutParameter() Registers data type for output (or input/output)
parameter

getInt() Retrieves integer returned value

getShort() Retrieves short integer value from specified column

getLong() Retrieves long integer value from specified column

getFloat() Retrieves floating point numeric value from
specified column

getDouble() Retrieves double-precision floating point value from
specified column

getString() Retrieves character string value from specified column

getBoolean() Retrieves true/false value from specified column

getDate() Retrieves single date value from specified column

getTime() Retrieves single time value from specified column

getTimestamp() Retrieves single timestamp value from specified
column

getByte() Retrieves single byte value from specified column

getBytes() Retrieves fixed-length or variable-length BINARY data

getBigDecimal() Retrieves DECIMAL or NUMERIC data

getObject() Retrieves any type of data

Table 19-19. Additional Methods of the CallableStatement Object
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A short example is the best way to illustrate the technique for calling a stored pro-
cedure and stored function. Suppose the sample database contains a stored procedure
defined like this:

CREATE PROCEDURE CHANGE_REGION

(IN OFFICE INTEGER,

OUT OLD_REG VARCHAR(10),

IN NEW_REG VARCHAR(10))

that changes the region of an office, as requested by the two input parameters, and
returns the old region as an output parameter and a stored function, defined like this:

CREATE FUNCTION GET_REGION

(IN OFFICE INTEGER)

RETURNS VARCHAR(10)

that returns the region of an office, given its office number. This Java program excerpt
shows how to invoke the stored procedure and stored function using JDBC:

// The connection object, strings and variables

Connection dbconn;      // the database connection

String str1 = “{CALL CHANGE_REGION(?, ?, ?)}”;

String str2 = “{? = CALL GET_REGION(?)}”;

String oldreg;         // returned former region

String ansreg;           // returned current region

<code in here creates the connection>

// Prepare the two statements

CallableStatement cstmt1 = dbconn.prepareCall(str1);

CallableStatement cstmt2 = dbconn.prepareCall(str2);

// Specify param values & returned data types for stored procedure call

cstmt1.setInt(1,12);    // call with office number 12 (Chicago)

cstmt1.setString(3,"Central");  // and new Central region

cstmt1.registerOutParameter(2,Types.VARCHAR);  // returns a varchar param

// Go ahead and execute the call to the stored procedure

cstmt1.executeUpdate();

oldreg = cstmt.getString(2);  // returned (2nd) param is a string



// Specify param values & returned data type for stored function call

cstmt2.setInt(1,12);  // call with office number 12 (Chicago)

cstmt2.registerOutParameter(1,Types.VARCHAR);  // fcn returns a varchar

// Go ahead and execute the call to the stored function

cstmt2.executeUpdate();

ansreg = cstmt.getString(1); // returned value (1st param) is a string

// Done – close the connection

dbconn.close();

Note that the call invocations of the stored procedure or function in the statement
strings are enclosed in curly brackets. The input parameters passed to a stored
procedure or function are handled exactly the same way as parameters for a prepared
statement. Output parameters from a stored procedure require some new machinery:
the registerOutParameter() method call to specify their data types, and calls
to the get() methods to retrieve their values after the call is complete. These are
summarized in Table 19-19. Input/output parameters for a stored procedure require
both that values be passed into the procedure call, using the set() methods, and that
the output data type be specified with registerOutParameter() and the returned
data be retrieved with the get() methods.

For a stored function, there are only input parameters, and the set() methods are
once again used. The return value of the function is specified with a parameter marker
in the prepared statement string. Its data type is registered, and its value is retrieved,
just as if it were a regular output parameter.

Error Handling in JDBC
When an error occurs during JDBC operation, the JDBC interface throws a Java exception.
Most SQL statement execution errors throw a SQLException. The error can be handled
via the standard Java try / catch mechanism. When a SQLException error occurs, the
catch() method is called with a SQLException object, some of whose methods are
summarized in Table 19-20.

The SQLException methods allow you to retrieve the error message, SQLSTATE
error code, and DBMS-specific error code associated with the error. It is possible for a
single JDBC operation to create more than one error. In this case, the errors are
available to your program in sequence. Calling getNextException() on the first
reported error returns a SQLException for the second exception, and so on, until
there are no more exceptions to be handled.

Scrollable and Updateable Cursors in JDBC
Just as scrollable cursors have been added to the ANSI/ISO SQL standards, scrollable
cursors have been added to JDBC result sets in later versions of the specification. You
indicate that you want a query to produce results that are scrollable through a parameter
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to the executeQuery method. If you specify scrollability, the ResultSet returned by
the executeQuery call offers some additional methods for cursor control. The important
methods are listed in Table 19-21.

In addition to scrollable result sets, later versions of the JDBC specification added
support for updateable result sets. This capability corresponds to the UPDATE…WHERE
CURRENT OF capability in embedded SQL. It allows an update to specific columns of
this row, which is indicated by the current position of a cursor. Updateable result sets
also allow new rows of data to be inserted into a table via a result set.
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Method Description

getMessage() Retrieves error message describing the exception

getSQLState() Retrieves SQLSTATE value (5-char string, as
described in Chapter 17)

getErrorCode() Retrieves driver-specific or DBMS-specific error code

getNextException() Moves to next SQL exception in a series

Table 19-20. JDBC SQLException Methods

Function Description

Scrollable cursor motion

previous() Moves cursor to previous row of query results

beforeFirst() Moves cursor before the start of the results

first() Moves cursor to first row of query results

last() Moves cursor to last row of query results

afterLast() Moves cursor past end of the results

absolute() Moves cursor to absolute row number indicated

relative() Moves cursor to relative row number indicated

Table 19-21. JDBC ResultSet Object Extended Cursor Methods



694 S Q L : T h e C o m p l e t e R e f e r e n c e

Function Description

Cursor position sensing

isFirst() Determines whether the current row is the first row of
the result set

isLast() Determines whether the current row is the last row of
the result set

isBeforeFirst() Determines whether the cursor is positioned before the
beginning of the result set

isAfterLast() Determines whether the cursor is positioned past the
end of the result set

moveToInsertRow() Moves cursor to “empty” row for inserting new data

moveToCurrentRow() Moves cursor back to the current row before an
insertion

Update a column of current row (via cursor)

updateInt() Updates an integer column value

updateShort() Updates a short integer column value

updateLong() Updates a long integer column value

updateFloat() Updates a floating point column value

updateDouble() Updates a double-precision floating point column value

updateString() Updates a string column value

updateBoolean() Updates a true/false column value

updateDate() Updates a date column value

updateTime() Updates a time column value

updateTimeStamp() Updates a timestamp column value

updateByte() Updates a byte column value

updateBytes() Updates a fixed-length or variable-length column value

updateBigDecimal() Updates a DECIMAL or NUMERIC column value

updateNull() Updates a column to a NULL value

updateObject() Updates an arbitrary column value

Table 19-21. JDBC ResultSet Object Extended Cursor Methods (continued)



Retrieving Metadata with JDBC
The JDBC interface provides objects and methods for retrieving metadata about databases,
query results, and parameterized statements. A JDBC Connection object provides
access to metadata about the database that it represents. Invoking its getMetaData()
method returns a DatabaseMetaData object, described in Table 19-22. Each method
listed in the table returns a result set, containing information about a type of database
entity: tables, columns, primary keys, and so on. The result set can be processed using
the normal JDBC query results processing routines. Other metadata access methods
provide information about the database product name supported on this connection,
its version number, and similar information.

Metadata information about query results can also be very useful. A ResultSet
object provides a getMetaData method that can be invoked to obtain a description
of its query results. The method returns a ResultSetMetaData object, described in
Table 19-23. The methods let you determine how many columns there are in the query
results, and the name and data type of each column, identified by their ordinal position
within the query results.

Finally, metadata information about the parameters used in a prepared SQL statement
or a prepared call to a stored procedure can also be useful. The PreparedStatement
and the CallableStatement objects both provide a getParameterMetaData()
method that retrieves this information. The method returns a ParameterMetaData
object, described in Table 19-24. Invoking the methods of this object provides information
about how many parameters are used in the statement, their data types, whether each
parameter is an input, output or input/output parameter, and similar information.
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Function Description

getTables() Returns result set of table information of tables
in database

getColumns() Returns result set of column names and type
info, given table name

getPrimaryKeys() Returns result set of primary key info, given
table name

getProcedures() Returns result set of stored procedure info

getProcedureColumns() Returns result set of info about parameters for a
specific stored procedure

Table 19-22. DatabaseMetaData Methods for Database Information Retrieval



Advanced JDBC Capabilities
JDBC 2.0 and JDBC 3.0 introduced several capabilities that extend the basic database
access functionality of JDBC. JDBC data sources, first introduced in JDBC 2.0, provide a
higher-level method for finding available drivers and databases and connecting to them.
They mask the details of making a connection from the Java application programmer.
Basically, a data source is identified with some external directory or catalog that is able
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Function Description

getColumnCount() Returns number of query results columns

getColumnName() Retrieves name of specified results column

getColumnType() Retrieves data type of specified results column

Table 19-23. ResultSetMetaData Methods

Function Description

getParameterClassName() Returns name of the class (data type) for
specified parameter

getParameterCount() Returns number of parameters in the statement

getParameterMode() Returns mode (IN, OUT, INOUT) of parameter

getParameterType() Returns SQL data type of specified parameter

getParameterTypeName() Returns DBMS data type of specified parameter

getPrecision() Returns precision of specified parameter

getScale() Returns scale of specified parameter

isNullable() Determines whether the specified parameter
is nullable

isSigned() Determines whether the specified parameter is
a signed number

Table 19-24. JDBC ParameterMetaData Methods



to translate logical entity names into specific details. Using a data source, the application
programmer can specify a target database by an abstract name, and have the directory in
conjunction with the JDBC software handle the details of connections.

JDBC rowsets are another advanced concept enhanced and extended in the JDBC
revisions. A rowset extends the concept of a JDBC result set, which you will recall
represents a set of query results. Beyond the query results themselves, a rowset
encapsulates information about the underlying source database, the connection to
the database, its user name and password, and so on. The rowset retains its identity
independent of an active connection to the database. Thus, a rowset may exist in a
disconnected state, and it can be used to reestablish a connection to the database. When
connected to the database, the rowset can contain query results like a result set.

Rowsets have several other characteristics and capabilities. A rowset meets the
requirement for a JavaBeans component, and when connected to a database, provides
a way to make a result set look like an Enterprise Java Bean (EJB). Rowsets hold tabular
row/column query results, and those results can be retrieved, navigated, and even
updated whether the rowset is currently connected to the source database or not. If
disconnected updates are made, resynchronization is implied when the rowset once
again is connected to the source database. Finally, the concept of a rowset is not
necessarily tied to SQL and relational databases. The data in a rowset can conceptually
come from any tabular data source, such as a personal computer spreadsheet or even
a table within a word processing document. A complete discussion of JDBC rowsets is
beyond the scope of this book; see the JDBC documentation at http://www.java.sun.com/
products/jdbc/ for more information about this and other JDBC capabilities.

Summary
Many SQL-based DBMS products provide a callable API for programmatic
database access:

� Depending on the particular DBMS brand and its history, the callable API may
be an alternative to an embedded SQL approach, or it may be the primary
method by which an application program accesses the database.

� A callable interface puts query processing, parameter passing, statement
compilation, statement execution, and similar tasks into the call interface,
keeping the programmatic SQL language identical to interactive SQL. With
embedded SQL, these tasks are handled by special SQL statements (OPEN,
FETCH, CLOSE, PREPARE, EXECUTE, and so on) that are unique to
programmatic SQL.

� Microsoft’s ODBC is a widely supported, callable API that provides an effective
way for an application program to achieve independence from a particular
DBMS. However, differences between DBMS brands are reflected in varying
support for ODBC functions and capabilities.
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� The SQL/Call-Level Interface (SQL/CLI) standard is based on ODBC and
is compatible with it at the core level. SQL/CLI provides a callable API to
complement the embedded SQL interface specified in SQL2. Many DBMS
vendors already support the SQL/CLI because of their historical support
for ODBC.

� For Java programs, the JDBC interface is the de facto industry standard callable
API, supported by all of the major DBMS products and defined as the database
management API within the Java2 Enterprise Edition (J2EE) standard imple-
mented by all of the major application server products.

� The proprietary callable APIs of the different DBMS brands remain important in
the market (especially Oracle’s OCI). All of them offer the same basic features, but
they vary dramatically in the extended features that they offer and in the details
of the calls and data structures that they use.

� In general, DBMS vendors put considerable performance-tuning work into their
proprietary APIs and tend to offer ODBC and/or SQL/CLI support as a checkoff
feature. Thus, applications with higher performance requirements tend to use the
proprietary APIs, and are locked in to a particular DBMS brand when they do.
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Part VI
SQL Today and Tomorrow

The influence of SQL continues to expand as new SQL capabilities and

extensions to SQL address new types of data management

requirements. Chapters 20 through 25 describe several of these newer

areas. Chapter 20 describes stored procedures, which provide a

processing capability within the DBMS itself for implementing

business rules and creating well-defined database interactions.

Chapter 21 describes SQL’s role in analyzing data and the trend to

create SQL-based data warehouses. Chapter 22 describes the role of

SQL in creating interactive web sites, and especially its relationship to
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application server technology. Chapter 23 discusses how SQL is used to create
distributed databases that tap the power of computer networks. Chapter 24 discusses
one of the most important areas of SQL evolution—the interplay between SQL and
object-oriented technologies and the new generation of object-relational databases.
Chapter 25 focuses on the relationship between SQL and one of the most important of
these technologies, XML, and the emerging Internet web services architecture based on
XML. Finally, Chapter 26 highlights the key trends that will drive the evolution of SQL
for the coming decade.



Chapter 20
Database Processing
and Stored Procedures
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T
he long-term trend in the database market is for databases to take on a progressively
larger role in the overall data processing architecture. The prerelational database
systems basically handled only data storage and retrieval; applications programs

were responsible for navigating their way through the database, sorting and selecting
data, and handling all processing of the data. With the advent of relational databases
and SQL, the DBMS took on expanded responsibilities. Database searching and sorting
were embodied in SQL language clauses and provided by the DBMS, along with the
capability to summarize data. Explicit navigation through the database became
unnecessary. Subsequent SQL enhancements such as primary and foreign keys and
check constraints continued the trend, taking over data checking and data integrity
functions that had remained the responsibility of application programs with earlier
SQL implementations. At each step, having the DBMS take on more responsibility
provided more centralized control and reduced the possibility of data corruption due
to application programming errors.

In many information technology (IT) departments within large companies and
organizations, this DBMS trend paralleled an organizational trend. The corporate
database and the data it contains came to be viewed as a major corporate asset, and
in many IT departments, a dedicated database administration (DBA) group emerged,
with responsibility for maintaining the database, defining and updating the data it
contained, and providing structured access to it. Other groups within the IT department, or
elsewhere within the company, could develop application programs, reports, queries,
or other logic that accessed the database. But the security of the database, the permitted
forms of access, and in general, everything within the realm of the database, became
the province of the DBA.

Two important features of modern enterprise-scale relational databases—stored
procedures and triggers—have been a part of this trend. Stored procedures provide the
capability to perform database-related application processing within the database
itself. For example, a stored procedure might implement the application’s logic to
accept a customer order or to transfer money from one bank account to another. Triggers
are used to automatically invoke the processing capability of a stored procedure based
on conditions that arise within the database. For example, a trigger might automatically
transfer funds from a savings account to a checking account if the checking account
becomes overdrawn. This chapter describes the core concepts behind stored procedures
and triggers, and their implementation in several popular DBMS brands.

The stored procedure and trigger capability of the popular DBMS products have
been significantly expanded in their major revisions during the late 1990s and 2000s.
A complete treatment of stored procedure and trigger programming is well beyond
the scope of this book, but the concepts and comparisons here will give you an
understanding of the core capabilities and a foundation for beginning to use the
specific capabilities of your DBMS software. Stored procedures and triggers basically
extend SQL into a more complete programming language, and this chapter assumes
that you are familiar with basic programming concepts.
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Stored Procedure Concepts
In its original form, SQL was not envisioned as a complete programming language. It
was designed and implemented as a language for expressing database operations—
creating database structures, entering data into the database, updating database data—
and especially for expressing database queries and retrieving the answers. SQL could
be used interactively by typing SQL statements at a keyboard, one by one. In this case,
the sequence of database operations was determined by the human user. SQL could
also be embedded within another programming language, such as COBOL or C. In this
case, the sequence of database operations was determined by the flow of control within
the COBOL or C program.

With stored procedures, several capabilities normally associated with programming
languages are grafted onto the SQL language. Sequences of extended SQL statements
are grouped together to form SQL programs or procedures. The specifics vary from
one implementation to another, but generally, these capabilities are provided:

� Conditional execution. An IF…THEN…ELSE structure allows a SQL procedure
to test a condition and carry out different operations depending on the result.

� Looping. A WHILE or FOR loop or similar structure allows a sequence of SQL
operations to be performed repeatedly, until some terminating condition is met.
Some implementations provide a special cursor-based looping structure to
process each row of query results.

� Block structure. A sequence of SQL statements can be grouped into a single
block and used in other flow-of-control constructs as if the statement block
were a single statement.

� Named variables. A SQL procedure may store a value that it has calculated,
retrieved from the database, or derived in some other way into a program
variable, and later retrieve the stored value for use in subsequent calculations.

� Named procedures. A sequence of SQL statements may be grouped together,
given a name, and assigned formal input and output parameters, like a
subroutine or function in a conventional programming language. Once defined
in this way, the procedure may be called by name, passing it appropriate values
for its input parameters. If the procedure is a function returning a value, it may
be used in SQL value expressions.

Collectively, the structures that implement these capabilities form a stored
procedure language (SPL).

Stored procedures were first introduced by Sybase in the original Sybase SQL
Server product. Much of the original enthusiasm for stored procedures was because
of their performance impact in a client/server database architecture. Without stored
procedures, every SQL operation requested by an application program (running on the
client computer system) would be sent across the network to the database server, and
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would wait for a reply message to be returned across the network. If a logical transaction
required six SQL operations, six network round trips were required. With stored
procedures, the sequence of six SQL operations could be programmed into a procedure
and stored in the database. The application program would simply request the execution
of the stored procedure and await the results. In this way, six network round trips
could be cut to one round trip—the request and reply for executing the stored procedure.

Stored procedures proved to be a natural fit for the client/server model, and Sybase
used them to establish an early lead with this architecture. A competitive response
quickly followed from many of the other DBMS vendors. Today, most enterprise DBMS
products provide a stored procedure capability, and the benefits of stored procedures
in corporate databases has expanded considerably beyond the early focus on network
performance. Stored procedures are less relevant for other types of specialized DBMS
systems, such as data warehousing systems or in-memory databases. Some DBMS
products have modeled their SPL structures on C or Pascal language constructs. Others
have tried to match the style of the SQL Data Manipulation Language (DML) and Data
Definition Language (DDL) statements. As a result, while stored procedure concepts
are very similar from one SQL dialect to another, the specific syntax varies considerably.

A Basic Example
It’s easiest to explain the basics of stored procedures through an example. Consider
the process of adding a customer to the sample database. Here are the steps that may
be involved:

1. Obtain the customer number, name, credit limit, and target sales amount for the
customer, as well as the assigned salesperson and office.

2. Add a row to the customer table containing the customer’s data.

3. Update the row for the assigned salesperson, raising the quota target by the
specified amount.

4. Update the row for the office, raising the sales target by the specified amount.

5. Commit the changes to the database, if all were successful.

Without a stored procedure capability, here is a SQL statement sequence that does
this work for XYZ Corporation, new customer number 2137, with a credit limit of
$30,000 and first-year target sales of $50,000 to be assigned to Paul Cruz (employee
#103) of the Chicago office:

INSERT INTO CUSTOMERS (CUST_NUM, COMPANY, CUST_REP, CREDIT_LIMIT)

VALUES (2137, ‘XYZ Corporation’, 103, 30000.00);

UPDATE SALESREPS

SET QUOTA = QUOTA + 50000.00

WHERE EMPL_NUM = 103;



UPDATE OFFICES

SET TARGET = TARGET + 50000.00

WHERE CITY = ‘Chicago’;

COMMIT;

With a stored procedure, all of this work can be embedded into a single defined
SQL routine. Figure 20-1 shows a stored procedure for this task, expressed in Oracle’s
PL/SQL stored procedure dialect. The procedure is named ADD_CUST, and it accepts
six parameters—the customer name, number, credit limit, and target sales, the
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/* Add a customer procedure */

create procedure add_cust (

c_name   in varchar(20),            /* input customer name */

c_num    in integer,                /* input customer number */

cred_lim in number(16,2),           /* input credit limit */

tgt_sls  in number(16,2),           /* input target sales */

c_rep    in integer,                /* input salesrep emp # */

c_offc   in varchar(15))            /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep,

credit_limit)

values (c_num, c_name, c_rep, cred_lim);

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + tgt_sls

where empl_num = c_rep;

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit;

end;

Figure 20-1. A basic stored procedure in PL/SQL



employee number of the assigned salesperson, and the city where the assigned sales
office is located.

Once this procedure has been created in the database, a statement like this one:

ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103,’Chicago’)

calls the stored procedure and passes it the six specified values as its parameters. The
DBMS executes the stored procedure, carrying out each SQL statement in the procedure
definition one by one. If the ADD_CUST procedure completes its execution successfully,
a committed transaction has been carried out within the DBMS. If not, the returned
error code and message indicates what went wrong.

Using Stored Procedures
The procedure defined in Figure 20-1 illustrates several of the basic structures common
to all SPL dialects. Nearly all dialects use a CREATE PROCEDURE statement to initially
define a stored procedure. A corresponding DROP PROCEDURE statement is used to
discard procedures that are no longer needed. The CREATE PROCEDURE statement
defines the following.

� The name of the stored procedure

� The number and data types of its parameters

� The names and data types of any local variables used by the procedure

� The sequence of statements executed when the procedure is called

The following sections describe these elements and the special SQL statements
that are used to control the flow of execution within the body of a stored procedure.

Creating a Stored Procedure
In many common SPL dialects, the CREATE PROCEDURE statement is used to create
a stored procedure and specify how it operates. The CREATE PROCEDURE statement
assigns the newly defined procedure a name, which is used to call it. The name must
typically follow the rules for SQL identifiers. (The procedure in Figure 20-1 is named
ADD_CUST.) A stored procedure accepts zero or more parameters as its arguments.
(This one has six parameters: C_NAME, C_NUM, CRED_LIMI, TGT_SLS, C_REP, and
C_OFFC.) In all of the common SPL dialects, the values for the parameters appear in a
comma-separated list, enclosed in parentheses, following the procedure name when
the procedure is called. The header of the stored procedure definition specifies the
names of the parameters and their data types. The same SQL data types supported
by the DBMS for columns within the database can be used as parameter data types.
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In Figure 20-1, all of the parameters are input parameters (signified by the IN keyword
in the procedure header in the Oracle PL/SQL dialect). When the procedure is called,
the parameters are assigned the values specified in the procedure call, and the statements
in the procedure body begin to execute. The parameter names may appear within the
procedure body (and particularly within standard SQL statements in the procedure
body) anywhere that a constant may appear. When a parameter name appears, the
DBMS uses its current value. In Figure 20-1, the parameters are used in the INSERT
statement and the UPDATE statement, both as data values to be used in column
calculations and search conditions.

In addition to input parameters, some SPL dialects also support output parameters.
These allow a stored procedure to pass back values that it calculates during its execution.
Output parameters aren’t useful for stored procedures invoked from interactive SQL,
but they provide an important capability for passing back information from one stored
procedure to another stored procedure that calls it. Some SPL dialects support parameters
that operate as both input and output parameters. In this case, the parameter passes
a value to the stored procedure, and any changes to the value during the procedure
execution are reflected in the calling procedure.

Figure 20-2 shows the same ADD_CUST procedure definition, expressed in the
Sybase Transact-SQL dialect. (The Transact-SQL dialect is also used by Microsoft SQL
Server; its basics are largely unchanged since the original Sybase SQL Server version,
which was the foundation for both the Microsoft and Sybase product lines.) Note the
differences from the Oracle dialect:

� The keyword PROCEDURE can be abbreviated to PROC.

� No parenthesized list of parameters follow the procedure name. Instead, the
parameter declarations immediately follow the name of the stored procedure.

� The parameter names all begin with an at sign (@), both when they are declared
at the beginning of the procedure and when they appear within SQL statements
in the procedure body.

� There is no formal end-of-procedure body marker. Instead, the procedure body
is a single Transact-SQL statement. If more than one statement is needed, the
Transact-SQL block structure is used to group the statements.

Figure 20-3 shows the ADD_CUST procedure again, this time expressed in the
Informix stored procedure dialect. The declaration of the procedure head itself and the
parameters more closely follow the Oracle dialect. Unlike the Transact-SQL example,
the local variables and parameters use ordinary SQL identifiers as their names, without
any special identifying symbols. The procedure definition is formally ended with an
END PROCEDURE clause, which makes the syntax less error-prone.

In all dialects that use the CREATE PROCEDURE statement, the procedure can be
dropped when no longer needed by a corresponding DROP PROCEDURE statement:

DROP PROCEDURE ADD_CUST



Calling a Stored Procedure
Once defined by the CREATE PROCEDURE statement, a stored procedure can be used.
An application program may request execution of the stored procedure, using the
appropriate SQL statement. Another stored procedure may call it to perform a specific
function. The stored procedure may also be invoked through an interactive SQL interface.

The various SQL dialects differ in the specific syntax used to call a stored procedure.
Here is a call to the ADD_CUST procedure in the PL/SQL dialect:

EXECUTE ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’)
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/* Add a customer procedure */

create proc add_cust

@c_name varchar(20), /* input customer name */

@c_num integer, /* input customer number */

@cred_lim money, /* input credit limit */

@tgt_sls money, /* input target sales */

@c_rep integer, /* input salesrep emp # */

@c_offc varchar(15) /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (@c_num, @c_name, @c_rep, @cred_lim)

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + @tgt_sls

where empl_num = @c_rep

/* Update row of OFFICES table */

update offices

set target = target + @tgt_sls

where city = @c_offc

/* Commit transaction and we are done */

commit trans

end

Figure 20-2. The ADD_CUST procedure in PL/SQL



The values to be used for the procedure’s parameters are specified, in order, in
a list that is enclosed by parentheses. When called from within another procedure
or a trigger, the EXECUTE statement may be omitted, and the call becomes simply:

ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’)

In the Transact-SQL dialect, the call to the stored procedure becomes:

EXECUTE ADD_CUST ‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’
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/* Add a customer procedure */

create procedure add_cust (

c_name varchar(20), /* input customer name */

c_num integer, /* input customer number */

cred_lim money(16,2), /* input credit limit */

tgt_sls money(16,2), /* input target sales */

c_rep integer, /* input salesrep emp # */

c_offc varchar(15)) /* input office city */

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (c_num, c_name, c_rep, cred_lim);

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + tgt_sls

where empl_num = c_rep;

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit transaction;

end procedure;

Figure 20-3. The ADD_CUST procedure in Informix SPL
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The parentheses aren’t required, and the values to be used for parameters again
form a comma-separated list. The keyword EXECUTE can be abbreviated to EXEC,
and the parameter names can be explicitly specified in the call, allowing you to specify
the parameter values in any order you wish. Here is an alternative, equivalent
Transact-SQL call to the ADD_CUST stored procedure:

EXEC ADD_CUST @C_NAME = ‘XYZ Corporation’,

@C_NUM = 2137,

@CRED_LIM = 30000.00,

@C_OFFC = ‘Chicago’,

@C_REP = 103,

@TGT_SLS = 50000.00

The Informix SPL form of the same EXECUTE command is:

EXECUTE PROCEDURE ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’)

Again, the parameters are enclosed in a comma-separated, parenthesized list. This
form of the EXECUTE statement may be used in any context. For example, it may be
used by an embedded SQL application program to invoke a stored procedure. Within
a stored procedure itself, another stored procedure can be called using this equivalent
statement:

CALL ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00,103, ‘Chicago’)

Stored Procedure Variables
In addition to the parameters passed into a stored procedure, it’s often convenient or
necessary to define other variables to hold intermediate values during the procedure’s
execution. All stored procedure dialects provide this capability. Usually, the variables
are declared at the beginning of the procedure body, just after the procedure header
and before the list of SQL statements. The data types of the variables can be any of the
SQL data types supported as column data types by the DBMS.

Figure 20-4 shows a simple Transact-SQL stored procedure fragment that computes
the total outstanding order amount for a specific customer number, and sets up one of
two messages depending on whether the total order amount is over or under $30,000.
Note that Transact-SQL local variable names, like parameter names, begin with an at
sign (@). The DECLARE statement declares the local variables for this procedure. In this
case, there are two variables: one with the MONEY data type and one VARCHAR.

In Transact-SQL, the SELECT statement assumes the additional function of
assigning values to variables. A simple form of this use of SELECT is the assignment
of the message text:

SELECT @MSG_TEXT = “high order total”
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The assignment of the total order amount at the beginning of the procedure body is
a more complex example, where the SELECT is used both to assign a value and as the
introducer of the query that generates the value to be assigned.

Figure 20-5 shows the Informix SPL version of the same stored procedure. There
are several differences from the Transact-SQL version:

� Local variables are declared using the DEFINE statement. This example shows
only a very limited subset of the options that are available.

� Variable names are ordinary SQL identifiers; there is no special first character.

� A specialized SELECT INTO statement is used within SPL to assign the results
of a singleton SELECT statement into a local variable.

� The LET statement provides simple assignment of variable values.

/* Check order total for a customer */

create proc chk_tot

@c_num integer      /* one input parameter */

as

/* Declare two local variables */

declare @tot_ord money, @msg_text varchar(30)

begin

/* Calculate total orders for customer */

select @tot_ord = sum(amount)

from orders

where cust = @c_num

/* Load appropriate message, based on total */

if tot_ord < 30000.00

select @msg_text = “high order total”

else

select @msg_text = “low order total”

/* Do other processing for message text */

. . .

end

Figure 20-4. Using local variables in Transact-SQL
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Figure 20-6 shows the Oracle PL/SQL version of the same stored procedure. Again,
there are several differences to note from the Transact-SQL and Informix SPL examples:

� Local variable declarations occur in a separate DECLARE section. This section is
actually an integral part of the Oracle BEGIN…END block structure; it declares
local variables for use within the block.

� The SELECT INTO statement has the same form as the Informix procedure; it
is used to select values from a single-row query directly into local variables.

� The assignment statements use Pascal-style (:=) notation instead of a separate
LET statement.

Local variables within a stored procedure can be used as a source of data within
SQL expressions anywhere that a constant may appear. The current value of the

/* Check order total for a customer */

create procedure chk_tot (c_num integer)

/* Declare two local variables */

define tot_ord money(16,2);

define msg_text varchar(30);

/* Calculate total orders for requested customer */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Load appropriate message, based on total */

if tot_ord < 30000.00

let msg_text = “high order total”

else

let msg_text = “low order total”

/* Do other processing for message text */

. . .

end procedure;

Figure 20-5. Using local variables in Informix SPL



variable is used in the execution of the statement. In addition, local variables may
be destinations for data derived from SQL expressions or queries, as shown in the
preceding examples.

Statement Blocks
In all but the very simplest stored procedures, it is often necessary to group a sequence
of SQL statements together so that they will be treated as if they were a single statement.
For example, in the IF…THEN…ELSE structure typically used to control the flow of
execution within a stored procedure, most stored procedure dialects expect a single
statement following the THEN keyword. If a procedure needs to perform a sequence of
several SQL statements when the tested condition is true, it must group the statements
together as a statement block, and this block will appear after THEN.
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/* Check order total for a customer */

create procedure chk_tot (c_num in integer)

as

declare

/* Declare two local variables */

tot_ord number(16,2);

msg_text varchar(30);

begin

/* Calculate total orders for requested customer */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Load appropriate message, based on total */

if tot_ord < 30000.00

msg_text := ‘high order total’;

else

msg_text := ‘low order total’;

/* Do other processing for message text */

. . .

end;

Figure 20-6. Using local variables in Oracle PL/SQL
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In Transact-SQL, a statement block has this simple structure:

/* Transact-SQL block of statements */

begin

/* Sequence of SQL statements appears here */

. . .

end

The sole function of the BEGIN…END pair is to create a statement block; they do
not impact the scope of local variables or other database objects. The Transact-SQL
procedure definition, conditional execution and looping constructs, and others, are all
designed to operate with single SQL statements, so statement blocks are frequently
used in each of these contexts to group statements together as a single unit.

In Informix SPL, a statement block includes not only a statement sequence, but may
optionally declare local variables for use within the block and exception handlers to
handle errors that may occur within the block. Here is the structure of an Informix SQL
statement block:

/* Informix SPL block of statements */

/* Declaration of any local variables */

define . . .

/* Declare handling for exceptions */

on exception . . .

/* Define the sequence of SQL statements */

begin. . .

end

The variable declaration section is optional; we have already seen an example of it
in the Informix stored procedure body in Figure 20-5. The exception-handling section
is also optional; its role is described later in the “Handling Error Conditions” section.
The BEGIN…END sequence performs the same function as it does for Transact-SQL.
Informix also allows a single statement to appear in this position, if the block consists
of just the other two components and a single SQL or SPL statement.

The Informix SQL language structures don’t require the use of statement blocks as
often as the Transact-SQL structures. In the Informix dialect, the looping conditional
execution statements each include an explicit termination (IF…END IF, WHILE…END
WHILE, FOR…END FOR). Within the structure, a single SQL statement or a sequence of
statements (each ending with a semicolon) may appear. As a result, an explicit block
structure is not always needed simply to group together a sequence of SQL statements.
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The Oracle PL/SQL block structure has the same capabilities as the Informix structure.
It offers the capability to declare variables and exception conditions, using this format:

/* Oracle PL/SQL statement block */

/* Declaration of any local variables */

declare . . .

/* Specify the sequence of statements */

begin . . .

/* Declare handling for exceptions */

exception . . .

end;

All three sections of the block structure are optional. It’s common to see the structure
used with only the BEGIN…END sequence to define a statement sequence, or with a
DECLARE…BEGIN…END sequence to declare variables and a sequence of statements.
As with Informix, the Oracle structures that specify conditional execution and looping
have a self-defining end-of-statement marker, so sequences of statements within these
structures do not necessarily need an explicit BEGIN…END statement block structure.

Returning a Value
In addition to stored procedures, most SPL dialects support a stored function capability.
The distinction is that a stored function returns a value while a stored procedure does
not. Here’s a simple example of a stored function. Assume you want to define a stored
procedure that, given a customer number, calculates the total current order amount for
that customer. If you define the procedure as a function, the total amount can be returned
as its value.

Figure 20-7 shows an Oracle stored function that calculates the total amount of current
orders for a customer, given the customer number. Note the RETURNS clause in the
procedure definition, which tells the DBMS the data type of the value being returned.
In most DBMS products, if you enter a function call via the interactive SQL capability,
the function value is displayed in response. Within a stored procedure, you can call
a stored function and use its return value in calculations or store it in a variable.

Many SPL dialects also allow you to use a stored function as a user-defined function
within SQL value expressions. This is true of the Oracle PL/SQL dialect, so this use of
the function defined in Figure 20-7 within a search condition is legal:

SELECT COMPANY, NAME

FROM CUSTOMERS, SALESREPS

WHERE CUST_REP = EMPL_NUM

AND GET_TOT_ORDS(CUST_NUM) > 10000.00
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As the DBMS evaluates the search condition for each row of prospective query
results, it uses the customer number of the current candidate row as an argument to
the GET_TOT_ORDERS function and checks to see if it exceeds the $10,000 threshold.
This same query could be expressed as a grouped query, with the ORDERS table also
included in the FROM clause, and the results grouped by customer and salesperson. In
many implementations, the DBMS carries out the grouped query more efficiently than
the preceding one, which probably forces the DBMS to process the orders table once
for each customer.

Figure 20-8 shows the Informix SPL definition for the same stored function shown
in Figure 20-7. Except for stylistic variations, it differs very little from the Oracle version.

Transact-SQL does not have a stored function capability like the one illustrated in
Figures 20-7 and 20-8. Transact-SQL stored procedures can explicitly return a status
code, and they use a RETURN statement for this purpose. However, the returned value
is always an integer status value. A zero return value indicates successful completion
of the stored procedure; negative return values are used to indicate various types of
errors. The system-defined stored procedures in Sybase Adaptive Server and Microsoft
SQL Server all use this return status value convention. The return status of a called

/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

return number(16,2)

as

/* Declare one local variable to hold the total */

declare tot_ord number(16,2);

begin

/* Simple single-row query to get total */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* return the retrieved value as fcn value */

return tot_ord;

end;

Figure 20-7. An Oracle PL/SQL stored function
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procedure can be stored into a local variable by using this assignment form of the
EXECUTE statement:

declare sts_val int

execute sts_val = add_cust ‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’

Returning Values via Parameters
The stored function capability provides only the ability to return a single value from a
stored routine. Several stored procedure dialects provide a method for returning more
than one value, by passing the values back to the calling routine through output
parameters. The output parameters are listed in the stored procedure’s parameter list,
just like the input parameters seen in the previous examples. However, instead of being
used to pass data values into the stored procedure when it is called, the output parameters
are used to pass data back out of the stored procedure to the calling procedure.

Figure 20-9 shows a PL/SQL stored procedure to retrieve the name of a customer,
his or her salesperson, and the sales office to which the customer is assigned, given a

/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

returning money(16,2)

/* Declare one local variable to hold the total */

define tot_ord money(16,2);

begin

/* Simple single-row query to get total */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* Return the retrieved value as fcn value */

return tot_ord;

end function;

Figure 20-8. An Informix SPL stored function



supplied customer number. The procedure has four parameters. The first one, CNUM,
is an input parameter and supplies the requested customer number. The other three
parameters are output parameters, used to pass the retrieved data values back to the
calling procedure. In this simple example, the SELECT INTO form of the query places
the returned variables directly into the output parameters. In a more complex stored
procedure, the returned values might be calculated and placed into the output
parameters with a PL/SQL assignment statement.

When a stored procedure with output parameters is called, the value passed for
each output parameter must be an acceptable target that can receive a returned data
value. The target may be a local variable, for example, or a parameter of a higher-level
procedure that is calling a lower-level procedure to do some work for it. Here is a
fragment of an Oracle PL/SQL procedure that makes an appropriate call to the
GET_CUST_INFO procedure in Figure 20-9:

/* Get the customer info for customer 2111 */

declare the_name varchar(20),

the_rep  varchar(15),

the_city varchar(15);

execute get_cust_info(2111, the_name, the_rep, the_city);
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/* Get customer name, sales rep and office */

create procedure get_cust_info(c_num  in  integer,

c_name out varchar(20),

r_name out varchar(15),

c_offc out varchar(15))

as

begin

/* Simple single-row query to get info */

select company, name, city

into c_name, r_name, c_offc

from customers, salesreps, offices

where cust_num = c_num

and empl_num = cust_rep

and office = rep_office;

end;

Figure 20-9. PL/SQL stored procedure with output parameters



Of course, it would be unusual to call this procedure with a literal customer
number, but it’s perfectly legal since that is an input parameter. The remaining three
parameters have acceptable data assignment targets (in this case, they are PL/SQL
variables) passed to them so that they can receive the returned values. Here is an illegal
call to the same procedure:

/* Get the customer info for customer 2111 */

execute get_cust_info(2111, “XYZ Co”, the_rep, the_city)

because the second parameter is an output parameter and cannot receive a literal value.
In addition to input and output parameters, Oracle allows you to specify procedure
parameters that are both input and output (INOUT) parameters. They must obey the
same previously cited restrictions for output parameters, but in addition, their values
are used as input by the procedure.

Figure 20-10 shows a version of the GET_CUST_INFO procedure defined in the
Transact-SQL dialect. The way in which the output parameters are identified in the
procedure header differs slightly from the Oracle version, and the single-row SELECT
statement has a different form. Otherwise, the structure of the procedure and its
operation are identical to the Oracle example.
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/* Get customer name, sales rep and office */

create procedure get_cust_info(c_num  in  integer,

c_name out varchar(20),

r_name out varchar(15),

c_offc out varchar(15))

as

begin

/* Simple single-row query to get info */

select company, name, city

into c_name, r_name, c_offc

from customers, salesreps, offices

where cust_num = c_num

and empl_num = cust_rep

and office = rep_office;

end;

Figure 20-10. Transact-SQL stored procedure with output parameters



When this procedure is called from another Transact-SQL procedure, the fact that
the second, third, and fourth parameters are output parameters must be indicated in
the call to the procedure, as well as in its definition. Here is the Transact-SQL syntax
for calling the procedure in Figure 20-10:

/* Get the customer info for customer 2111 */

declare the_name varchar(20);

declare the_rep  varchar(15);

declare the_city varchar(15);

exec get_cust_info @c_num = 2111,

@c_name = the_name output,

@r_name = the_rep output,

@c_offc = the_city output

Figure 20-11 shows the Informix SPL version of the same stored procedure
example. Informix takes a different approach to handling multiple return values.
Instead of output parameters, Informix extends the definition of a stored function
to allow multiple return values. Thus, the GET_CUST_INFO procedure becomes
a function for the Informix dialect. The multiple return values are specified in
the RETURNING clause of the procedure header, and they are actually returned
by the RETURN statement.
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/* Get customer name, sales rep and office */

create function get_cust_info(c_num integer)

returning varchar(20), varchar(15), varchar(15)

define c_name varchar(20);

define r_name varchar(15);

define c_offc varchar(15);

/* Simple single-row query to get info */

select company, name, city

into cname, r_name, c_offc

from customers, salesreps, offices

where cust_num = c_num

and empl_num = cust_rep

and office = rep_office;

/* Return the three values */

return cname, r_name, c_offc;

end procedure;

Figure 20-11. Informix stored function with multiple return values



S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

The Informix CALL statement that invokes the stored function uses a special
RETURNING clause to receive the returned values:

/* Get the customer info for customer 2111 */

define the_name varchar(20);

define the_rep  varchar(15);

define the_city varchar(15);

call get_cust_info (2111)

returning the_name, the_rep, the_city;

As in the Transact-SQL dialect, Informix also allows a version of the CALL
statement that passes the parameters by name:

call get_cust_info (c_num = 2111)

returning the_name, the_rep, the_city;

Conditional Execution
One of the most basic features of stored procedures is an IF…THEN…ELSE construct for
decision making within the procedure. Look back at the original ADD_CUST procedure
defined in Figure 20-1 for adding a new customer. Suppose that the rules for adding
new customers are modified so that there is a cap on the amount by which a salesperson’s
quota should be increased for a new customer. If the customer’s anticipated first-year
orders are $20,000 or less, that amount should be added to the quota, but if they are
more than $20,000, the quota should be increased by only $20,000. Figure 20-12 shows
a modified procedure that implements this new policy. The IF…THEN…ELSE logic
operates exactly as it does in any conventional programming language.

All of the stored procedure dialects allow nested IF statements for more complex
decision making. Several provide extended conditional logic to streamline multiway
branching. For example, suppose you wanted to do three different things within the
ADD_CUST stored procedure, depending on whether the customer’s anticipated first-
year orders are under $20,000, between $20,000 and $50,000, or over $50,000. In Oracle’s
PL/SQL, you could express the three-way decision this way:

/* Process sales target by range */

if tgt_sls < 20000.00

then

/* Handle low-target customers here */

. . .

elsif tgt_sls < 50000.00

then

/* Handle mid-target customers here */

. . .

else

/* Handle high-target customers here */

. . .

end if;
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/* Add a customer procedure */

create procedure add_cust (

c_name in varchar(20), /* input customer name */

c_num in integer, /* input customer number */

cred_lim in number(16,2), /* input credit limit */

tgt_sls in number(16,2), /* input target sales */

c_rep in integer, /* input salesrep empl # */

c_offc in varchar(15)) /* input office city */

as

begin

/* Insert new row of CUSTOMERS table */

insert into customers (cust_num, company, cust_rep, credit_limit)

values (c_num, c_name, c_rep, cred_lim);

if tgt_sales <= 20000.00

then

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + tgt_sls

where empl_num = c_rep;

else

/* Update row of SALESREPS table */

update salesreps

set quota = quota + quota + 20000.00

where empl_num = c_rep;

end if

/* Update row of OFFICES table */

update offices

set target = target + tgt_sls

where city = c_offc;

/* Commit transaction and we are done */

commit;

end;

Figure 20-12. Conditional logic in a stored procedure
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In the Informix dialect, the same multiway branch structure is allowed. The
keyword ELSIF becomes ELIF, but all other aspects remain the same.

Repeated Execution
Another feature common to almost all stored procedure dialects is a construct for
repeated execution of a group of statements (looping). Depending on the dialect, there
may be support for Basic-style FOR loops (where an integer loop control value is
counted up or counted down) or C-style WHILE loops with a test condition executed
at the beginning or end of the loop.

In the sample database, it’s hard to come up with an uncontrived example of
simple loop processing. Assume you want to process some group of statements
repeatedly, while the value of a loop-control variable, named ITEM_NUM, ranges
from 1 to 10. Here is an Oracle PL/SQL loop that handles this situation:

/* Process each of ten items */

for item_num in 1..10 loop

/* Process this particular item */

. . .

/* Test whether to end the loop early */

exit when (item_num = special_item);

end loop;

The statements in the body of the loop are normally executed ten times, each time
with a larger integer value of the ITEM_NUM variable. The EXIT statement provides the
capability to exit an Oracle PL/SQL loop early. It can be unconditional, or it can be
used with a built-in test condition, as in this example.

Here is the same loop structure expressed in Informix SPL, showing some of its
additional capabilities and the dialectic differences from PL/SQL:

/* Process each of ten items */

for item_num = 1 to 10 step 1

/* Process this particular item */

. . .

/* Test whether to end the loop early */

if (item_num = special_item)

then exit for;

end for;

The other common form of looping is when a sequence of statements is executed
repeatedly while a certain condition exists or until a specified condition exists. Here is
an Oracle PL/SQL loop construct that repeats indefinitely. Such a loop must, of course,
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provide a test within the body of the loop that detects a loop-terminating condition
(in this case, a match of two variable values) and explicitly exits the loop:

/* Repeatedly process some data */

loop

/* Do some kind of processing each time */

. . .

/* Test whether to end the loop early */

exit when (test_value = exit_value);

end loop;

A more common looping construct is one that builds the test into the loop structure
itself. The loop is repeatedly executed as long as the test is true. For example, suppose
you want to reduce targets for the offices in the sample database until the total of the
targets is less than $2,400,000. Each office’s target is to be reduced by the same amount,
which should be a multiple of $10,000. Here is a (not very efficient) Transact-SQL
stored procedure loop that gradually lowers office targets until the total is below the
threshold:

/* Lower targets until total below $2,400,000 */

while (select sum(target) from offices) < 2400000.00

begin

update offices

set target = target – 10000.00

end

The BEGIN…END block in this WHILE loop isn’t strictly necessary, but most Transact-
SQL WHILE loops include one. Transact-SQL repeats the single SQL statement following
the test condition as the body of the WHILE loop. If the body of the loop consists of
more than one statement, you must use a BEGIN…END block to group the statements.

Here is the Oracle PL/SQL version of the same loop:

/* Lower targets until total below $2,400,000 */

select sum(target) into total_tgt from offices;

while (total_tgt < 2400000.00)

loop

update offices

set target = target – 10000.00;

select sum(target) into total_tgt from offices;

end loop;

The subquery-style version of the SELECT statement from Transact-SQL has been
replaced by the PL/SQL SELECT INTO form of the statement, with a local variable
used to hold the total of the office targets. Each time the loop is executed, the OFFICES
table is updated, and then the total of the targets is recalculated.
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Here is the same loop once more, expressed using Informix SPL’s WHILE statement:

/* Lower targets until total below $2,400,000 */

select sum(target) into total_tgt from offices;

while (total_tgt < 2400000.00)

update offices

set target = target – 10000.00;

select sum(target) into total_tgt from offices;

end while;

Other variants of these loop-processing constructs are provided by the various
dialects, but the capabilities and syntax are similar to these examples.

Other Flow-of-Control Constructs
Some stored procedure dialects provide statements to control looping and alter the flow
of control. In Informix, for example, the EXIT statement interrupts the normal flow
within a loop and causes execution to resume with the next statement following the
loop itself. The CONTINUE statement interrupts the normal flow within the loop but
causes execution to resume with the next loop iteration. Both of these statements have
three forms, depending on the type of loop being interrupted:

exit for;

continue for;

exit while;

continue while;

exit foreach;

continue foreach;

In Transact-SQL, a single statement, BREAK, provides the equivalent of the Informix
EXIT statement variants, and there is a single form of the CONTINUE statement as well.
In Oracle, the EXIT statement performs the same function as for Informix, and there is
no CONTINUE statement.

Additional control over the flow of execution within a stored procedure is provided
by statement labels and the GOTO statement. In most dialects, the statement label is an
identifier, followed by a colon. The GOTO statement names the label to which control
should be transferred. There is typically a restriction that you cannot transfer control out
of a loop or a conditional testing statement, and always a prohibition against transferring
control into the middle of such a statement. As in structured programming languages,
the use of GOTO statements is discouraged because it makes stored procedure code
harder to understand and debug.
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Cursor-Based Repetition
One common need for repetition of statements within a stored procedure is when the
procedure executes a query and needs to process the query results, row by row. All of
the major dialects provide a structure for this type of processing. Conceptually, the
structures parallel the DECLARE CURSOR, OPEN CURSOR, FETCH, and CLOSE CURSOR
statements in embedded SQL or the corresponding SQL API calls. However, instead
of fetching the query results into the application program, in this case, they are being
fetched into the stored procedure, which is executing within the DBMS itself. Instead
of retrieving the query results into application program variables (host variables), the
stored procedure retrieves them into local stored procedure variables.

To illustrate this capability, assume that you want to populate two tables with data
from the ORDERS table. One table, named BIGORDERS, should contain customer name
and order size for any orders over $10,000. The other, SMALLORDERS, should contain
the salesperson’s name and order size for any orders under $1000. The best and most
efficient way to do this would actually be with two separate SQL INSERT statements
with subqueries, but for purposes of illustration, consider this method instead:

1. Execute a query to retrieve the order amount, customer name, and salesperson
name for each order.

2. For each row of query results, check the order amount to see whether it falls
into the proper range for including in the BIGORDERS or SMALLORDERS tables.

3. Depending on the amount, INSERT the appropriate row into the BIGORDERS
or SMALLORDERS table.

4. Repeat Steps 2 and 3 until all rows of query results are exhausted.

5. Commit the updates to the database.

Figure 20-13 shows an Oracle stored procedure that carries out this method. The
cursor that defines the query is defined in the declare section of the procedure and
assigned the name O_CURSOR. The variable CURS_ROW, defined in the same section, is
defined as an Oracle row type. It is a structured Oracle row variable with individual
components (like a C-language structure). By declaring it as having the same row type
as the cursor, the individual components of CURS_ROW have the same data types and
names as the cursor’s query results columns.

The query described by the cursor is actually carried out by the cursor-based FOR
loop. It basically tells the DBMS to carry out the query described by the cursor (equivalent
to the OPEN statement in embedded SQL) before starting the loop processing. The
DBMS then executes the FOR loop repeatedly, by fetching a row of query results at
the top of the loop, placing the column values into the CURS_ROW variable, and then
executing the statements in the loop body. When there are no more rows of query
results to be fetched, the cursor is closed, and processing continues after the loop.
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Figure 20-14 shows an equivalent stored procedure with the specialized FOR loop
structure of Informix SPL. In this case, the query results are retrieved into ordinary
local variables; there is no special row data type used. The FOREACH statement
incorporates several different functions. It defines the query to be carried out, through
the SELECT expression that it contains. It marks the beginning of the loop that is to
be executed for each row of query results. (The end of the loop is marked by the END
FOREACH statement.) When the FOREACH statement is executed, it carries out the query

create procedure sort_orders()

declare

/* Cursor for the query */

cursor o_cursor is

select amount, company, name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num;

/* Row variable to receive query results values */

curs_row o_cursor%rowtype;

begin

/* Loop through each row of query results */

for curs_row in o_cursor

loop

/* Check for small orders and handle */

if (curs_row.amount < 1000.00)

then insert into smallorders

values (curs_row.name, curs_row.amount);

/* Check for big orders and handle */

elsif (curs_row.amount > 10000.00)

then insert into bigorders

values (curs_row.company, curs_row.amount);

end if;

end loop;

Figure 20-13. A cursor-based FOR loop in PL/SQL
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and then fetches rows of query results repeatedly, putting their column values into the
local variables as specified in the statement. After each row is fetched, the body of
the loop is executed. When there are no more rows of query results, the cursor is
automatically closed, and execution continues with the next statement following the
FOREACH. Note that in this example, the cursor isn’t even assigned a specific name
because all cursor processing is tightly specified within the single FOREACH statement.

The Transact-SQL dialect doesn’t have a specialized FOR loop structure for cursor-
based query results processing. Instead, the DECLARE CURSOR, OPEN, FETCH, and
CLOSE statements of embedded SQL have direct counterparts within the Transact-SQL
language. Figure 20-15 shows a Transact-SQL version of the sort_orders procedure.

create procedure sort_orders()

/* Local variables to hold query results */

define ord_amt money(16,2);               /* order amount */

define c_name varchar(20);                /* customer name */

define r_name varchar(15);                /* salesrep name */

/* Execute query and process each results row */

foreach select amount, company, name

into ord_amt, c_name, r_name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num;

begin

/* Check for small orders and handle */

if (ord_amt < 1000.00)

then insert into smallorders

values (r_name, ord_amt);

/* Check for big orders and handle */

elif (ord_amt > 10000.00)

then insert into bigorders

values (c_name, ord_amt);

end if;

end;

end foreach;

end procedure;

Figure 20-14. A cursor-based FOREACH loop in Informix SPL
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Note the separate DECLARE, OPEN, FETCH, and CLOSE statements for the cursor.
Loop control is provided by testing the system variable @@SQLSTATUS, which is the

create proc sort_orders()

as

/* Local variables to hold query results */

declare @ord_amt money(16,2);                /* order amount */

declare @c_name varchar(20);                 /* customer name */

declare @r_name varchar(15);                 /* salesrep name */

/* Declare cursor for the query */

declare o_curs cursor for

select amount, company, name

from orders, customers, salesreps

where cust = cust_num

and rep = empl_num

begin

/* Open cursor and fetch first row of results */

open o_curs

fetch o_curs into @ord_amt, @c_name, @r_name

/* If no rows, return immediately */

if (@@sqlstatus = 2)

begin

close o_curs

return

end

/* Loop through each row of query results */

while (@@sqlstatus = 0)

begin

/* Check for small orders and handle */

if (@ord_amt < 1000.00)

insert into smallorders

values (@r_name, @ord_amt)

Figure 20-15. A cursor-based WHILE loop in Transact-SQL
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Transact-SQL equivalent of the SQLSTATE code. It receives a value of zero when a
fetch is successful, and a nonzero value when there are no more rows to fetch.

Handling Error Conditions
When an application program uses Embedded SQL or a SQL API for database processing,
the application program is responsible for handling errors that arise. Error status codes
are returned to the application program, and more error information is typically
available through additional API calls or access to an extended diagnostics area. When
database processing takes place within a stored procedure, the procedure itself must
handle errors.

Transact-SQL provides error handling through a set of global system variables.
The specific error-handling variables are only a few of well over 100 system variables
that provide information on the state of the server, transaction state, open connections,
and other database configuration and status information. The two most useful global
variables for error handling are:

� @@@ERROR. Contains error status of the most recently executed statement batch

� @@@SQLSTATUS. Contains status of the last fetch operation

The normal completion values for both variables are zero; other values indicate
various errors and warnings. The global variables can be used in the same way as local
variables within a Transact-SQL procedure. Specifically, their values can be checked
for branching and loop control.

Oracle’s PL/SQL provides a different style of error handling. The Oracle DBMS
provides a set of system-defined exceptions, which are errors or warning conditions
that can arise during SQL statement processing. Within an Oracle stored procedure
(actually, any Oracle statement block), the EXCEPTION section tells the DBMS how it

/* Check for big orders and handle */

else if (curs_row.amount > 10000.00)

insert into bigorders

values (@c_name, @ord_amt)

end

/* Done with results; close cursor and return */

close o_curs

end

Figure 20-15. A cursor-based WHILE loop in Transact-SQL (continued)



should handle any exception conditions that occur during the execution of the procedure.
There are over a dozen different predefined Oracle-detected exception conditions. In
addition, you can define your own exception conditions.

Most of the previous examples in this chapter don’t provide any real error-handling
capability. Figure 20-16 shows a revised version of the Oracle stored function in
Figure 20-7. This improved version detects the specific situation where the supplied
customer number does not have any associated orders (that is, where the query to
calculate total orders returns a NO_DATA_FOUND exception). It responds to this situation
by signaling back to the application program an application-level error and associated
message. Any other exception conditions that arise are caught by the WHEN OTHERS
exception handler.
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/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

return number(16,2)

as

/* Declare one local variable to hold the total */

declare tot_ord number(16,2);

begin

/* Simple single-row query to get total */

select sum(amount) into tot_ord

from orders

where cust = c_num;

/* return the retrieved value as fcn value */

return tot_ord;

exception

/* Handle the situation where no orders found */

when no_data_found

then raise_application_error (-20123, ‘Bad cust#’);

/* Handle any other exceptions */

when others

then raise_application_error (-20199,’Unknown error’);

end;

Figure 20-16. PL/SQL stored function with error handling



The Informix SPL takes a similar approach to exception handling. Figure 20-17 shows
the Informix version of the stored function, with Informix-style exception handling.
The ON EXCEPTION statement is a declarative statement and specifies the sequence of
SQL statements to be executed when a specific exception arises. A comma-separated
list of exception numbers may be specified.
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/* Return total order amount for a customer */

create function get_tot_ords(c_num in integer)

returning money(16,2)

/* Declare one local variable to hold the total */

define tot_ord money(16,2);

/* Define exception handler for error #-123 and -121 */

on exception in (-121, -123)

/* Do whatever is appropriate here */

. . .

end exception;

on exception

/* Handle any other exceptions in here */

. . .

end exception;

begin

/* Simple single-row query to get total */

select sum(amount)

into tot_ord

from orders

where cust = c_num;

/* Return the retrieved value as fcn value */

return tot_ord;

end function;

Figure 20-17. Informix SPL stored function with condition handling
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Advantages of Stored Procedures
Stored procedures offer several advantages, both for database users and database
administrators, including:

� Runtime performance. Many DBMS brands compile stored procedures (either
automatically or at the user’s request) into an internal representation that can
be executed very efficiently by the DBMS at runtime. Executing a precompiled
stored procedure can be much faster than running the equivalent SQL statements
through the PREPARE/EXECUTE process.

� Reusability. Once a stored procedure has been defined for a specific function,
that procedure may be called from many different application programs that
need to perform the function, permitting very easy reuse of application logic
and reducing the risk of application programmer error.

� Reduced network traffic. In a client/server configuration, sending a stored
procedure call across the network and receiving the results in a reply message
generates much less network traffic than using a network round trip for each
individual SQL statement. This can improve overall system performance
considerably in a network with heavy traffic or one that has lower-speed
connections.

� Security. In most DBMS brands, the stored procedure is treated as a trusted
entity within the database and executes with its own privileges. The user
executing the stored procedure needs to have only permission to execute it,
not permission on the underlying tables that the stored procedure may access
or modify. Thus, the stored procedure allows the database administrator to
maintain tighter security on the underlying data, while still giving individual
users the specific data update or data access capabilities they require.

� Encapsulation. Stored procedures are a way to achieve one of the core objectives
of object-oriented programming—the encapsulation of data values, structures,
and access within a set of very limited, well-defined external interfaces. In
object terminology, stored procedures can be the methods through which
the objects in the underlying RDBMS are exclusively manipulated. To fully
attain the object-oriented approach, all direct access to the underlying data
via SQL must be disallowed through the RDBMS security system, leaving only
the stored procedures for database access. In practice, few if any production
relational databases operate in this restricted way.

� Simplicity of access. In a large enterprise database, a collection of stored
procedures may be the main way in which application programs access the
database. The stored procedures form a well-defined set of transactions and



queries that applications can perform on the database. For most application
programmers, a call to a simple, predefined function that checks an account
balance, given a customer number, or one that adds an order, given a customer
number, quantity, and product-id, is easier to understand than the corresponding
SQL statements.

� Business rules enforcement. The conditional processing capabilities of stored
procedures are often used to place business rules into the database. For example,
a stored procedure used to add an order to the database might contain logic
to check the credit of the customer placing the order and check whether there
is enough inventory on hand to fill the order, and reject the order if these
conditions cannot be met. A large company could quite easily have several
different ways in which orders are taken and entered into the corporate
database—one program for use by direct salespeople, one for people in the
telesales department, another that accepts orders placed via the World Wide Web,
and so on. Each of these would typically have its own order-acceptance
program, usually written by different programmers at different times. But
if all of the programs are forced to use the same stored procedure to add an
order, the company can be assured that the business rules in that procedure
are being uniformly enforced, no matter where the order originated.

Stored Procedure Performance
Different DBMS brands vary in the way they actually implement stored procedures.
In several brands, the stored procedure text is stored within the database and is interpreted
when the procedure is executed. This has the advantage of creating a very flexible
stored procedure language, but it creates significant runtime overhead for complex
stored procedures. The DBMS must read the statements that make up the stored
procedure at runtime, parse and analyze them, and determine what to do on the fly.

Because of the overhead in the interpreted approach, some DBMS brands compile
stored procedures into an intermediate form that is much more efficient to execute.
Compilation may be automatic when the stored procedure is created, or the DBMS
may provide the ability for the user to request stored procedure compilation. The
disadvantage of compiled stored procedures is that the exact technique used to carry
out the stored procedure is fixed when the procedure is compiled. Suppose, for example,
that a stored procedure is created and compiled soon after a database is first created,
and later some useful indexes are defined on the data. The compiled queries in the
stored procedure won’t take advantage of these indexes, and as a result, they may run
much more slowly than if they were recompiled.

To deal with stale compiled procedures, some DBMS brands automatically mark
any compiled procedures that may be affected by subsequent database changes as
being in need of recompilation. The next time the procedure is called, the DBMS
notices the mark and recompiles the procedure before executing it. Normally, this
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approach provides the best of both worlds—the performance benefits of precompilation
while keeping the compiled procedure up to date. Its disadvantage is that it can yield
unpredictable stored procedure execution times. When no recompile is necessary, the
stored procedure may execute quickly; when a recompile is activated, it may produce
a significant delay; and in most cases, the recompile delay is much longer than the
disadvantage of using the old compiled version.

To determine the stored procedure compilation capabilities of a particular DBMS,
you can examine its CREATE PROCEDURE and EXECUTE PROCEDURE statement options
or look for other procedure management statements such as ALTER PROCEDURE.

System-Defined Stored Procedures
DBMS brands that support stored procedures sometimes provide built-in, system-
defined stored procedures to automate database processing or management functions.
Sybase SQL Server pioneered this use of system stored procedures. Today, hundreds
of Transact-SQL system stored procedures provide functions such as managing users,
database roles, job execution, distributed servers, replication, and others. Most
Transact-SQL system procedures follow this naming convention:

� SP_ADD_something. Adds a new object (user, server, replica, and so on)

� SP_DROP_something. Drops an existing object

� SP_HELP_something. Gets information about an object or objects

For example, the SP_HELPUSER procedure returns information about the valid
users of the current database.

External Stored Procedures
Although stored procedures written in the extended SQL dialects of the major enterprise
DBMS brands can be quite powerful, they have limitations. One major limitation is
that they do not provide access to features outside the DBMS, such as the features of
the operating system or other applications running on the same computer system.
The extended SQL dialects also tend to be fairly high-level languages, with limited
capability for the lower-level programming usually done in C or C++. To overcome
these limitations, some DBMS brands provide access to external stored procedures.

An external stored procedure is a procedure written in a conventional programming
language (such as C or Pascal) and compiled outside the DBMS itself. The DBMS is
given a definition of the procedure’s name and its parameters, along with other essential
information such as the calling conventions used by the programming language in
which the stored procedure was written. Once defined to the DBMS, the external stored
procedure can be called as if it were a SQL stored procedure. The DBMS handles the
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call, turns over control to the external procedure, and then receives any return values
and parameters.

Microsoft SQL Server provides a set of system-defined external stored procedures that
provide access to selected operating system capabilities. The XP_SENDMAIL procedure
can be used to send electronic mail to users, based on conditions within the DBMS:

XP_SENDMAIL @RECIPIENTS = ‘Joe’, ‘Sam’,

@MESSAGE = ‘Customer table nearly full’;

Similarly, the XP_CMDSHELL external procedure can be called to pass commands
to the underlying operating system on which SQL Server is operating. Beyond these
predefined external procedures, SQL Server allows a user-written external procedure
to be stored in a dynamic-linked library (DLL) and called from within SQL Server
stored procedures.

Informix provides basic access to underlying operating system capabilities with a
special SYSTEM statement. In addition, it supports user-written external procedures
through its CREATE PROCEDURE statement. Where the statement block comprising the
body of an Informix SPL procedure would appear, an EXTERNAL clause specifies the
name, location, and language of the externally written procedure. With the procedure
defined in this way, it can be called in the same way as native Informix SPL procedures.
Newer versions of Oracle (Oracle8 and later) provide the same capability, also via
the CREATE PROCEDURE statement. IBM’s DB2 database family provides the same set
of capabilities.

Triggers
As described at the beginning of this chapter, a trigger is a special set of stored
procedure code whose activation is caused by modifications to the database contents.
Unlike stored procedures created with a CREATE PROCEDURE statement, a trigger is
not activated by a CALL or EXECUTE statement. Instead, the trigger is associated with
a database table. When the data in the table is changed (by an INSERT, DELETE, or
UPDATE statement), the trigger is fired, which means that the DBMS executes the SQL
statements that make up the body of the trigger.

Triggers can be used to cause automatic updates of information within a database.
For example, suppose you wanted to set up the sample database so that any time a
new salesperson is inserted into the SALESREPS table, the sales target for the office
where the salesperson works is raised by the new salesperson’s quota. Here is an
Oracle PL/SQL trigger that accomplishes this goal:



S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

create trigger upd_tgt

/* Insert trigger for SALESREPS */

before insert on salesreps

for each row

when (new.quota is not null)

begin

update offices

set target = target + new.quota;

end;

The CREATE TRIGGER statement is used by most DBMS brands that support
triggers to define a new trigger within the database. It assigns a name to the trigger
(UPD_TGT for this one) and identifies the table the trigger is associated with
(SALESREPS) and the update action(s) on that table that will cause the trigger to be
executed (INSERT in this case). The body of this trigger tells the DBMS that for each
new row inserted into the table, it should execute the specified UPDATE statement
for the OFFICES table. The QUOTA value from the newly inserted SALESREPS row
is referred to as NEW.QUOTA within the trigger body.

Advantages and Disadvantages of Triggers
Triggers can be extremely useful as an integral part of a database definition, and they
can be used for a variety of different functions, including these:

� Auditing changes. A trigger can detect and disallow specific updates and
changes that should not be permitted in the database.

� Cascaded operations. A trigger can detect an operation within the database
(such as deletion of a customer or salesperson) and automatically cascade
the impact throughout the database (such as adjusting account balances or
sales targets).

� Enforce interrelationships. A trigger can enforce more complex interrelationships
among the data in a database than those that can be expressed by simple
referential integrity constraints or check constraints, such as those that require
a sequence of SQL statements or IF…THEN…ELSE processing.

� Stored procedure invocation. A trigger can call one or more stored procedures
or even invoke actions outside the DBMS itself through external procedure calls
in response to database updates.

In each of these cases, a trigger embodies a set of business rules that govern the
data in the database and modifications to that data. The rules are embedded in a single
place in the database (the trigger definition). As a result, they are uniformly enforced
across all applications that access the database. When they need to be changed, they
can be changed once with the assurance that the change will be applied uniformly.
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The major disadvantage of triggers is their potential performance impact. If a trigger
is set on a particular table, then every database operation that attempts to update
that table causes the DBMS to execute the trigger procedure. For a database that requires
very high data insertion or update rates, the overhead of this processing can be
considerable. This is especially true for bulk load operations, where the data may have
already been prechecked for integrity. To deal with this disadvantage, some DBMS
brands allow triggers to be selectively enabled and disabled, as appropriate.

Triggers in Transact-SQL
Transact-SQL provides triggers through a CREATE TRIGGER statement in both its
Microsoft SQL Server and Sybase Adaptive Server dialects. Here is a Transact-SQL trigger
definition for the sample database, which implements the same trigger function as the
preceding Oracle PL/SQL example:

create trigger upd_tgt

/* Insert trigger for SALESREPS */

on salesreps

for insert

as

if (@@rowcount = 1)

begin

update offices

set target = target + inserted.quota

from offices, inserted

where offices.office = inserted.rep_office;

end

else

raiserror 23456

The first clause names the trigger (UPD_TGT). The second clause is required and
identifies the table to which the trigger applies. The third clause is also required
and tells which database update operations cause the trigger to be fired. In this case,
only an INSERT statement causes the trigger to fire. You can also specify UPDATE
or DELETE operations, or a combination of two or three of these operations in a
comma-separated list. Transact-SQL restricts triggers so that only one trigger may be
defined on a particular table for each of the three data modification operations. The
body of the trigger follows the AS keyword. To understand the body of a trigger like
this one, you need to understand how Transact-SQL treats the rows in the target table
during database modification operations.

For purposes of trigger operation, Transact-SQL defines two logical tables whose
column structure is identical to the target table on which the trigger is defined. One
of these logical tables is named DELETED, and the other is named INSERTED. These

738 S Q L : T h e C o m p l e t e R e f e r e n c e



logical tables are populated with rows from the target table, depending on the data
modification statement that caused the trigger to fire, as follows:

� DELETE. Each target table row that is deleted by the DELETE statement is
placed into the DELETED table. The INSERTED table is empty.

� INSERT. Each target table row that is added by the INSERT statement is also
placed into the INSERTED table. The DELETED table is empty.

� UPDATE. For each target table row that is changed by the UPDATE statement,
a copy of the row before any modifications is placed into the DELETED table.
A copy of the row after all modifications is placed into the INSERTED table.

These two logical tables can be referenced within the body of the trigger, and the
data in them can be combined with data from other tables during the trigger’s
operation. In this Transact-SQL trigger, the trigger body first tests to make sure that
only a single row of the SALESREPS table has been inserted, by checking the system
variable @@ROWCOUNT. If this is true, then the QUOTA column from the INSERTED
logical table is added to the appropriate row of the OFFICES table. The appropriate
row is determined by joining the logical table to the OFFICES table based on matching
office numbers.

Here is a different trigger that detects a different type of data integrity problem.
In this case, it checks for an attempt to delete a customer when there are still orders
outstanding in the database for that customer. If it detects this situation, the trigger
automatically rolls back the entire transaction, including the DELETE statement that
fired the trigger:

create trigger chk_del_cust

/* Delete trigger for CUSTOMERS */

on customers

for delete

as

/* Detect any orders for deleted cust #’s */

if (select count(*)

from orders, deleted

where orders.cust = deleted.cust_num) > 0

begin

rollback transaction

print “Cannot delete; still have orders”

raiserror 31234

end

Transact-SQL triggers can be specified to fire on any UPDATE for a target table,
or just for updates of selected columns. This trigger fires on inserts or updates to the
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SALESREPS table and does different processing depending on whether the QUOTA or
SALES column has been updated:

create trigger upd_reps

/* Update trigger for SALESREPS */

on salesreps

for insert, update

if update(quota)

/* Handle updates to quota column */

. . .

if update (sales)

/* Handle updates to sales column */

. . .

Triggers in Informix SPL
Informix also supports triggers through a CREATE TRIGGER statement. As in the
Transact-SQL dialect, the beginning of the CREATE TRIGGER statement defines the
trigger name, the table on which the trigger is being defined, and the triggering
actions. Here are statement fragments that show the syntax:

create trigger new_sls

insert on salesreps . . .

create trigger del_cus_chk

delete on customers . . .

create trigger ord_upd

update on orders . . .

create trigger sls_upd

update of quota, sales on salesreps . . .

The last example is a trigger that fires only when two specific columns of the
SALESREPS table are updated.

Informix allows you to specify that a trigger should operate at three distinct times
during the processing of a triggered change to the target table:

� BEFORE. The trigger fires before any changes take place. No rows of the target
table have yet been modified.

� AFTER. The trigger fires after all changes take place. All affected rows of the
target table have been modified.
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� FOR EACH ROW. The trigger fires repeatedly, once as each row affected by the
change is being modified. Both the old and new data values for the row are
available to the trigger.

An individual trigger definition can specify actions to be taken at one or more of
these steps. For example, a trigger could execute a stored procedure to calculate the
sum of all orders BEFORE an update, monitor updates to each ORDERS row as they
occur with a second action, and then calculate the revised order total AFTER the update
with a call to another stored procedure. Here is a trigger definition that does all of this:

create trigger upd_ord

update of amount on orders

referencing old as pre new as post

/* Calculate order total before changes */

before (execute procedure add_orders()

into old_total;)

/* Capture order increases and decreases */

for each row

when (post.amount < pre.amount)

/* Write decrease data into table */

(insert into ord_less

values (pre.cust,

pre.order_date,

pre.amount,

post.amount);)

when (post.amount > pre.amount)

/* Write increase data into table */

(insert into ord_more

values (pre.cust,

pre.order_date,

pre.amount,

post.amount);)

/* After changes, recalculate total */

after (execute procedure add_orders()

into new_total;)

The BEFORE clause in this trigger specifies that a stored procedure named
ADD_ORDERS is to be called before any UPDATE statement processing occurs.
Presumably, this procedure calculates the total orders and returns the total value into
the local variable OLD_TOTAL. Similarly, the AFTER clause specifies that a stored
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procedure (in this case, the same one) is to be called after all UPDATE statement
processing is complete. This time, the total orders amount is placed into a different
local variable, NEW_TOTAL.

The FOR EACH ROW clause specifies the action to be taken as each affected row is
updated. In this case, the requested action is an INSERT into one of two order tracking
tables, depending on whether the order amount is being increased or decreased. These
tracking tables contain the customer number, date, and both the old and new order
amounts. To obtain the required values, the trigger must be able to refer to both the old
(prechange) and the new (postchange) values of each row.

The REFERENCING clause provides names by which these two states of the currently-
being-modified row of the ORDERS table can be used. In this example, the prechange
values of the columns are available through the column name qualifier PRE, and the
postchange values through the column name qualifier POST. These are not special
names; any names can be used.

Informix is more limited than some other DBMS brands in the actions that can be
specified within the trigger definition itself. These actions are available:

� An INSERT statement

� A DELETE statement

� An UPDATE statement

� An EXECUTE PROCEDURE statement

In practice, the last option provides quite a bit of flexibility. The called procedure can
perform almost any processing that could be done inline within the trigger body itself.

Triggers in Oracle PL/SQL
Oracle provides a more complex trigger facility than either the Informix or Transact-
SQL facility described in the preceding sections. It uses a CREATE TRIGGER statement
to specify triggered actions. As in the Informix facility, a trigger can be specified to fire
at specific times during specific update operations:

� Statement-level trigger. A statement-level trigger fires once for each data
modification statement. It can be specified to fire either before the statement
is executed or after the statement has completed its action.

� Row-level trigger. A row-level trigger fires once for each row being modified
by a statement. In Oracle’s structure, this type of trigger may also fire either
before the row is modified or after it is modified.

� Instead-of trigger. An instead-of trigger takes the place of an attempted data
modification statement. It provides a way to detect an attempted UPDATE,
INSERT, or DELETE operation by a user or procedure, and substitute other
processing instead. You can specify that a trigger should be executed instead
of a statement, or that it should be executed instead of each attempted
modification of a row.
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create trigger bef_upd_ord

before update on orders

begin

/* Calculate order total before changes */

old_total = add_orders();

end;

create trigger aft_upd_ord

after update on orders

begin

/* Calculate order total after changes */

new_total = add_orders();

end;

create trigger dur_upd_ord

before update of amount on orders

referencing old as pre new as post

/* Capture order increases and decreases */

for each row

when (post.amount != pre.amount)

begin

if (post.amount < pre.amount)

then

/* Write decrease data into table */

insert into ord_less

values (pre.cust,

pre.order_date,

pre.amount,

post.amount);

elsif (post.amount > pre.amount)

then

/* Write increase data into table */

insert into ord_more

values (pre.cust,

pre.order_date,

pre.amount,

post.amount);

end if;

end;

These trigger structures and their options provide 14 different valid Oracle trigger
types (12 resulting from a choice of INSERT/DELETE/UPDATE triggers for BEFORE or
AFTER processing at the row or statement level (3×2×2), and two more from instead-of
triggers at the statement or row level). In practice, relational databases built using
Oracle don’t tend to use instead-of triggers; they were introduced in Oracle8 to support
some of its newer object-oriented features.
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The code just shown is a PL/SQL trigger definition that implements the same
processing as in the complex Informix example from the previous section. It has been
split into three separate Oracle CREATE TRIGGER statements; one each for the BEFORE
and AFTER statement-level triggers and one trigger that is executed for each update row.

Other Trigger Considerations
Triggers pose some of the same issues for DBMS processing that UPDATE and DELETE
rules present. For example, triggers can cause a cascaded series of actions. A user’s
attempt to update a table may cause a trigger to fire. Within the body of that trigger is
an UPDATE statement for another table. A trigger on that table causes the UPDATE of
still another table, and so on. The situation is even worse if one of the fired triggers
attempts to update the original target table that caused the firing of the trigger sequence
in the first place! In this case, an infinite loop of fired triggers could result.

Various DBMS systems deal with this issue in different ways. Some impose restrictions
on the actions that can be taken during execution of a trigger. Others provide built-in
functions that allow a trigger’s body to detect the level of nesting at which the trigger
is operating. Some provide a system setting that controls whether cascaded trigger
processing is allowed. Finally, some provide a limit on the number of levels of nested
triggers that can fire.

One additional issue associated with triggers is the overhead that can result during
very heavy database usage, such as when bulk data is being loaded into a database.
Some DBMS brands provide the ability to selectively enable and disable trigger
processing to handle this situation. Oracle, for example, provides this form of the
ALTER TRIGGER statement:

ALTER TRIGGER BEF_UPD_ORD DISABLE;

A similar capability is provided within the CREATE TRIGGER statement of Informix.

Stored Procedures, Triggers,

and the SQL Standard
The development of DBMS stored procedures and triggers has been largely driven by
DBMS vendors and the competitive dynamics of the database industry. Sybase’s initial
introduction of stored procedures and triggers in SQL Server triggered a competitive
response, and by the mid-1990s, many of the enterprise-class systems had added their
own proprietary procedural extensions to SQL. Stored procedures were not a focus
of the SQL2 standard, but became a part of the standardization agenda after the 1992



publication of the SQL2 standard. The work on stored procedure standards was split
off from the broader object-oriented extensions that were proposed for SQL3, and was
focused on a set of procedural extensions to the SQL2 language.

The result was a new part of the SQL standard, published in 1996 as SQL/Persistent
Stored Modules (SQL/PSM), International Standard ISO/IEC 9075-4. The actual form
of the standard specification is a collection of additions, edits, new paragraphs, and
replacement paragraphs to the 1992 SQL2 standard (ISO/IEC 9075:1992). In addition
to being a modification of the SQL2 standard, SQL/PSM was also drafted as a part
of the planned follow-on standard, which was called SQL3 during its drafting. The
development of the follow-on standard took longer than expected, but SQL/PSM
eventually took its place as Part 4 of the SQL3 standard, officially known as SQL:1999.
The SQL Call-Level Interface (CLI) standard, described in Chapter 19, was treated the
same way; it is now Part 3 of the SQL:1999 standard. When the SQL:1999 standard
was published, selected parts of SQL/PSM were moved to the core SQL/Foundation
specification (Part 1), because they are also used by other parts of the standard.

The SQL/PSM standard published in 1996 addressed only stored procedures; it
explicitly did not provide a specification of a trigger facility for the ISO SQL standard.
The standardization of trigger functions was considered during the development of
the SQL2 and SQL/PSM standards, but the standards groups determined that triggers
were too closely tied to other object-oriented extensions proposed for SQL3. The
SQL:1999 standard that resulted from the SQL3 work finally provided an ANSI/ISO
standard trigger facility.

The publication of the SQL/PSM and SQL:1999 standards lagged the first commercial
implementation of stored procedures and triggers by many years. By the time the standard
was adopted, most enterprise DBMS vendors had responded to user enthusiasm and
competitive pressure by introducing stored procedure and trigger capabilities in their
products. Unlike some other SQL extensions where IBM’s clout and a DB2 implementation
had set a de facto standard, the major DBMS vendors implemented stored procedures
and triggers in different, proprietary ways, and in some cases, competed with one
another based on unique features of their implementations. As a result, the ANSI/ISO
standardization of stored procedures and triggers has had little impact on the DBMS
market to date. It’s reasonable to expect that ANSI/ISO implementations will find their
way into major DBMS products over time, but as a complement to, rather than a
replacement for, the proprietary implementations.

The SQL/PSM Stored Procedures Standard
The capabilities specified in the SQL/PSM standard parallel the core features of the
proprietary stored procedure capabilities of today’s DBMS systems. They include SQL
language constructs to:

� Define and name procedures and functions written in the extended SQL language

� Invoke (call) a previously defined procedure or function
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� Pass parameters to a called procedure or function, and obtain the results
of its execution

� Declare and use local variables within the procedure or function

� Group a block of SQL statements together for execution

� Conditionally execute SQL statements (IF…THEN…ELSE)

� Repeatedly execute a group of SQL statements (looping)

The SQL/PSM standard specifies two types of SQL-invoked routines. A
SQL-procedure is a routine that does not return a value. It is called with a CALL
statement:

CALL ADD_CUST(‘XYZ Corporation’, 2137, 30000.00, 50000.00, 103, ‘Chicago’)

As with the proprietary stored procedure languages illustrated in the previous
examples throughout this chapter, SQL/PSM stored procedures accept parameters
passed via the CALL statement. SQL/PSM stored procedures can also pass data back
to their caller via output parameters, again mirroring the capabilities of the proprietary
stored procedure languages. SQL/PSM also supports combined input/output
parameters, like some of the proprietary languages.

A SQL-function does return a value. It is called just like a built-in SQL function
within a value expression:

SELECT COMPANY

FROM CUSTOMERS

WHERE GET_TOT_ORDS(CUST_NUM) > 10000.00

SQL/PSM restricts SQL-functions to only return a single value through the
function-call mechanism. Output parameters and input/output parameters are not
allowed in SQL-functions.

SQL routines are objects within the SQL-92 or SQL-99 database structure. SQL/PSM
allows the creation of routines within a SQL-92 or SQL-99 schema (a schema-level
routine) where it exists along with the tables, views, assertions, and other objects in the
scheme. It also allows the creation of routines within a SQL2 module, which is the SQL
procedure model carried forward from the SQL1 standard.

Creating a SQL Routine
Following the practice of most DBMS brands, the SQL/PSM standard uses the CREATE
PROCEDURE and CREATE FUNCTION statements to specify the definitions of stored
procedures and functions. Figure 20-18 shows simplified syntax for each of these



C h a p t e r 2 0 : D a t a b a s e P r o c e s s i n g a n d S t o r e d P r o c e d u r e s 747
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

statements. In addition to the capabilities shown in the figure, the standard provides
a capability to define external stored procedures, specifying the language they are
written in, whether they can or cannot read or modify data in the database, their calling
conventions, and other characteristics.

Flow-of-Control Statements
The SQL/PSM standard specifies the common programming structures that are found
in most stored procedure dialects to control the flow of execution. Figure 20-19 shows
the conditional branching and looping syntax. Note that the SQL statement lists specified
for each structure consist of a sequence of SQL statements, each ending with a semicolon.
Thus, explicit block structures are not required for simple multistatement sequences
that appear in an IF…THEN…ELSE statement or a LOOP statement. The looping
structures provide a great deal of flexibility for loop processing. There are forms that
place the test at the top of the loop and at the bottom of the loop, as well as a form that
provides infinite looping and requires the explicit coding of a test to break loop execution.
Each of the program control structures is explicitly terminated by an END flag that
matches the type of structure, making programming debugging easier.

Figure 20-18. The SQL/PSM CREATE PROCEDURE syntax diagram



Cursor Operations
The SQL/PSM standard extends the cursor manipulation capabilities specified in the
SQL2 standard for embedded SQL into SQL routines. The DECLARE CURSOR, OPEN,
FETCH, and CLOSE statements retain their roles and functions. Instead of using
application program host variables to supply parameter values and to receive retrieved
data, SQL routine parameters and variables can be used for these functions.

The SQL/PSM standard does introduce one new cursor-controlled looping structure,
shown in Figure 20-20. Like the similar structures in the Oracle and Informix dialects
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Figure 20-19. SQL/PSM flow-of-control statements syntax diagram



described in the “Cursor-Based Repetition” section earlier in this chapter, it combines
the cursor definition and the OPEN, FETCH, and CLOSE statements into a single loop
definition that also specifies the processing to be performed for each row of retrieved
query results.

Block Structure
Figure 20-21 shows the block structure specified by the SQL/PSM standard. It is quite
a comprehensive structure, providing the following capabilities:

� Labels the block of statements with a statement label

� Declares local variables for use within the block

� Declares local user-defined error conditions

� Declares cursors for queries to be executed within the block

� Declares handlers to process error conditions that arise

� Defines the sequence of SQL statements to be executed

These capabilities resemble some of those described earlier in the “Statement Blocks”
section of this chapter for the Informix and Oracle dialect stored procedure dialects.

Local variables within SQL/PSM procedures and functions (actually, within
statement blocks) are declared using the DECLARE statement. Values are assigned
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Figure 20-20. SQL/PSM cursor-controlled loop syntax diagram



using the SET statement. Functions return a value using the RETURN statement. Here
is a statement block that might appear within a stored function, with examples of these
statements:

try_again:

begin
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Figure 20-21. The SQL/PSM statement block syntax diagram



/* Declare some local variables */

declare msg_text varchar(40);

declare tot_amt decimal(16,2);

/* Get the order total */

set tot_amt = get_tot_ords();

if (tot_amt > 0)

then

return (tot_amt);

else

return (0.00);

end if

end try_again

Error Handling
The block structure specified by the SQL/PSM standard provides fairly comprehensive
support for error handling. The standard specifies predefined conditions that can be
detected and handled, including:

� SQLWARNING. One of the warning conditions specified in the SQL2 standard

� NOT FOUND. The condition that normally occurs when the end of a set of query
results is reached with a FETCH statement

� SQLSTATE values. A test for specific SQLSTATE error codes

� User-defined conditions. A condition named by the stored procedure

Conditions are typically defined in terms of SQLSTATE values. Rather than using
numerical SQLSTATE codes, you can assign the condition a symbolic name. You can
also specify your own user-defined condition:

declare bad_err condition for sqlstate ‘12345’;

declare my_err condition;

Once the condition has been defined, you can force the condition to occur through
the execution of a SQL routine with the SIGNAL statement:

signal bad_err;

signal sqlstate ‘12345’;

To handle error conditions that may arise, SQL/PSM allows you to declare a
condition handler. The declaration specifies the list of conditions that are to be handled
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and the action to be taken. It also specifies the type of condition handling. The types
differ in what happens to the flow of control after the handler is finished with its work:

� CONTINUE type. After the condition handler completes its work, control returns
to the next statement following the one that caused the condition. That is, execution
continues with the next statement.

� EXIT type. After the condition handler completes its work, control returns to
the end of the statement block containing the statement that caused the condition.
That is, execution effectively exits the block.

� UNDO type. After the condition handler completes its work, all modifications
are undone to data in the database caused by statements within the same
statement block as the statement causing the error. The effect is the same as
if a transaction had been initiated at the beginning of the statement block
and was being rolled back.

Here are some examples that show the structure of the handler definition:

/* Handle SQL warnings here, then continue */

declare continue handler for sqlwarning

call my_warn_routine();

/* Handle severe errors by undoing effects */

declare undo handler for user_disaster

begin

/* Do disaster cleanup here */

. . .

end;

Error handling can get quite complex, and it’s possible for errors to arise during
the execution of the handler routine itself. To avoid infinite recursion on errors, the
normal condition signaling does not apply during the execution of a condition handler.
The standard allows you to override this restriction with the RESIGNAL statement. It
operates just like the SIGNAL statement, but is used exclusively within condition-
handler routines.

Routine Name Overloading
The SQL/PSM standard permits overloading of stored procedure and function names.
Overloading is a common attribute in object-oriented systems and is a way to make
stored routines more flexible in handling a wide variety of data types and situations.
Using the overloading capability, several different routines can be given the same
routine name. The multiple routines defined with the same name must differ from
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one another in the number of parameters that they accept or in the data types of the
individual parameters. For example, you might define these three stored functions:

create function combo(a, b)

a integer;

b integer;

returns integer;

as return (a+b)

create function combo(a, b, c)

a integer;

b integer;

c integer;

returns integer;

as return (a+b+c)

create procedure combo(a, b)

a varchar(255);

b varchar(255);

returns varchar(255);

as return (a || b)

The first COMBO function combines two integers by adding them and returns the
sum. The second COMBO function combines three integers the same way. The third
COMBO function combines two character strings by concatenating them. The standard
allows both of these functions named COMBO to be defined at the same time within the
database. When the DBMS encounters a reference to the COMBO function, it examines
the number of arguments in the reference and their data types, and determines which
version of the COMBO function to call. Thus, the overloading capability allows a SQL
programmer to create a family of routines that logically perform the same function and
have the same name, even though the specifics of their usage for different data types
is different. In object-oriented terms, overloading is sometimes called polymorphism,
meaning literally that the same function can take many different forms.

To simplify the management of a family of routines that share an overloaded
name, the SQL/PSM standard has the concept of a specific name: a second name that
is assigned to the routine that is unique within the database schema or module. It
uniquely identifies a specific routine. The specific name is used to drop the routine,
and it is reflected in the Information Schema views that describe stored routines. The
specific name is not used to call the routine; that would defeat the primary purpose
of the overloaded routine name. Support for specific names or some similar mechanism
is a practical requirement for any system that permits overloading or polymorphism
for objects and provides a capability to manage them by dropping or changing their
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definitions, since the system must be able to determine which specific object is
being modified.

External Stored Procedures
The bulk of the SQL/PSM standard is concerned with the extensions to the SQL
language that are used to define SQL-procedures and SQL-functions. Note, however,
that the method used to invoke a SQL-procedure (the CALL statement) or a
SQL-function (a reference to the function by name within a SQL statement) are not
particular to procedures defined in the SQL language. In fact, the SQL/PSM standard
provides for external stored procedures and functions, written in some other
programming language such as C or Pascal. For external procedures, the CREATE
PROCEDURE and CREATE FUNCTION statements are still used to define the procedure
to the DBMS, specifying its name and the parameters that it accepts or returns. A
special clause of the CREATE statement specifies the language in which the stored
procedure or function is written, so that the DBMS may perform the appropriate
conversion of data types and call the routine appropriately.

Other Stored Procedure Capabilities
The SQL/PSM standard treats SQL-procedures and SQL-functions as managed objects
within the database, using extensions to the SQL statements used to manage other
objects. You use a variation of the DROP statement to delete routines when they are no
longer needed, and a variation of the ALTER statement to change the definition of a
function or procedure. The SQL2 permissions mechanism is similarly extended with
additional privileges. The EXECUTE privilege gives a user the ability to execute a stored
procedure or function. It is managed by the GRANT and REVOKE statements in the same
manner as other database privileges.

Because the stored routines defined by SQL/PSM are defined within SQL2 schemas,
many routines can be defined in many different schemas throughout the database.
When calling a stored routine, the routine name can be fully qualified to uniquely
identify the routine within the database. The SQL/PSM standard provides an
alternative method of searching for the definition of unqualified routine names
through a new PATH concept.

The PATH is the sequence of schema names that should be searched to resolve
a routine reference. A default PATH can be specified as part of the schema header in
the CREATE SCHEMA statement. The PATH can also be dynamically modified during
a SQL session through the SET PATH statement.

The SQL/PSM standard also lets the author of a stored procedure or function
give the DBMS some hints about its operation to improve the efficiency of execution.
One example is the ability to define a stored routine as DETERMINISTIC or NOT
DETERMINISTIC. A DETERMINISTIC routine will always return the same results
when it is called with the same parameter values. If the DBMS observes that a
DETERMINISTIC routine is called repeatedly, it may choose to keep a copy of the
results that it returns. Later, when the routine is called again, the DBMS does not
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need to actually execute the routine; it can simply return the same results that it returned
the last time.

Another form of hint tells the DBMS whether an external stored procedure or
function reads database contents and whether it modifies database contents. This not
only allows the DBMS to optimize database access, but can also impose a security
restriction on external routines from other sources. Other hints determine whether a
SQL-function should be called if one of its parameters has a NULL value, and control
how the DBMS selects the specific function or procedure to be executed when
overloading is used.

Trigger Standards in SQL:1999
Triggers were addressed for standardization as part of the SQL3 effort, which led
to the eventual publication of the SQL:1999 ANSI/ISO standard. By that time, many
commercial DBMS products had already implemented triggers, and the standard
synthesized the specific capabilities that had proven useful in practice. Like the
commercial products, ANSI/ISO standard triggers are defined for a single, specific
table. The standard permits trigger definitions only on tables, not on views.

The proprietary SQL Server, Oracle and Informix trigger mechanisms shown in
the examples throughout this chapter provide a context for examining the ANSI/ISO
standard mechanism. The standard does not provide any radical departure from the
capabilities already described for the various DBMS products. Here is how the
standard compares to them:

� Naming. The standard treats triggers as named objects within the database.

� Types. The standard provides INSERT, DELETE, and UPDATE triggers; UPDATE
triggers can be associated with the update of a specific column or group of
columns.

� Timing. The standard provides for triggers that operate before a database
update statement or after the statement.

� Row-level or statement-level operation. The standard provides for both
statement-level triggers (executed once per database-updating statement)
and row-level triggers (executed repeatedly for each row of the table that
is modified).

� Aliases. Access to the “before” and “after” values in a modified row or table is
provided via an alias mechanism, like the table aliases used in the FROM clause.

You use the SQL:1999 CREATE TRIGGER statement, shown in Figure 20-22, to
define a trigger. The statement clauses are familiar from the proprietary trigger
examples throughout the earlier sections of this chapter.

One very useful extension provided by the standard is the WHEN clause that can be
specified as part of a triggered action. The WHEN clause is optional, and it operates like
a WHERE clause for determining whether a triggered action will be carried out. When
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DBMS executes the particular type of statement specified in the trigger definition,
it evaluates the search condition specified in the WHEN clause. The form of the
search condition is exactly like the search condition in a WHERE clause, and it will
produce either a TRUE or FALSE result. The triggered action is carried out only
if the result is TRUE.

To provide security for triggers, the SQL:1999 standard establishes a new TRIGGER
privilege that may be granted for specific tables to specific users. With this privilege,
a user may establish a trigger on the table. The owner of a table is always allowed to
establish triggers on the table.
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Figure 20-22. The 1999 CREATE TRIGGER syntax diagram



Summary
Stored procedures and triggers are two very useful capabilities for SQL databases used
in transaction-processing applications:

� Stored procedures allow you to predefine common database operations, and
invoke them simply by calling the stored procedure, for improved efficiency
and less chance of error.

� Extensions to the basic SQL language give stored procedures the features
normally found in programming languages. These features include local
variables, conditional processing, branching, and special statements for
row-by-row query results processing.

� Stored functions are a special form of stored procedure that return a value.

� Triggers are procedures whose execution is automatically initiated based on
attempted modifications to a table. A trigger can be fired by an INSERT,
DELETE, or UPDATE statement for the table.

� There is wide variation in the specific SQL dialects used by the major DBMS
brands to support stored procedures and triggers.

� There is now an international standard for stored procedures (but not triggers);
as one of the newer standards, it has not yet had a major impact on the actual
implementation by leading DBMS vendors.
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Chapter 21
SQL and Data
Warehousing
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O
ne of the most important applications of SQL and relational database technology
today is the rapidly growing area of data warehousing and business intelligence.
The focus of data warehousing is to use accumulated data to provide information

and insights for decision making. With the rising popularity of the World Wide Web
and the direct interaction with customers that it provides, the amount of data available
about customer behavior (reflected in their click-by-click journey through web pages)
has literally exploded. Data warehousing advocates that this data be treated as a
valuable asset, and that it be translated, through analysis, into competitive advantage.
The complementary process of data mining involves in-depth analysis of historical and
trend data to find valuable insights about customer behavior and cross-dependencies.
SQL-based relational databases are a key technology underlying data warehousing
applications.

Business intelligence applications have exploded in popularity over the last decade.
Corporate IS surveys show that the majority of large corporations have some type
of business analysis or data warehousing projects underway. In many ways, data
warehousing represents relational databases coming full circle, back to their roots.
When relational databases first appeared on the scene, the established databases (such
as IBM’s hierarchical IMS database) were squarely focused on business transaction-
processing applications. Relational technology gained popularity by focusing on
decision support applications and their ad hoc queries. As the popularity of these
applications grew, most relational database vendors shifted their focus to compete for
new transaction-processing applications. With data warehousing, attention has turned
back to what was formerly called decision support, albeit with new terminology and
much more powerful tools than those of 15 years earlier.

Data Warehousing Concepts
One of the foundations of data warehousing is the notion that databases for transaction
processing and databases for business analysis serve very different needs. The core focus
of an online transaction processing (OLTP) database is to support the basic day-to-day
functions of an organization. In a manufacturing company, OLTP databases support the
taking of customer orders, ordering of raw materials, management of inventory, billing
of customers, and similar functions. Their heaviest users are the applications used by
order-processing clerks, production workers, warehouse staff, and the like. By contrast,
the core focus of a business intelligence (BI) database is to support business decision
making through data analysis and reporting. Its heaviest users are typically product
managers, production planners, and marketing professionals.

Table 21-1 highlights the significant differences in OLTP and business intelligence
application profiles and the database workloads they produce. A typical OLTP
transaction processing a customer’s order might involve these database accesses:

� Read a row of the customer table to verify the proper customer number.
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� Check the credit limit for that customer.

� Read a row of the inventory table to verify that a product is available.

� Insert a new row in an order table and an order-items table to record the
customer’s order.

� Update the row of the inventory table to reflect the decreased quantity
available.

The workload presents a large volume of short, simple database requests that
typically read, write, or update individual rows and then commit a transaction. The
same type of workload is presented by all of the most frequent types of transactions,
such as:

� Retrieving the price of a product

� Checking the quantity of product available

� Deleting an order

� Updating a customer address

� Raising a customer’s credit limit

In contrast, a typical business analysis transaction (generating an order analysis
report) might involve these database accesses:

� Join information from the orders, order-items, products, and customers tables

� Summarize the detail from the orders table by product in a summary query

� Compute the total order quantities for each product

� Sort the resulting information by customer

This workload presents a single, long-running query that is read-intensive. It processes
many rows of the database (in this case, every order item) and involves computing
totals and averages and summarizing data. These characteristics are typical of almost
all business analysis queries, such as:

� Which regions had the best performance last quarter?

� How did sales by product last quarter compare to last year?

� What is the trend line for a particular product’s sales?

� Which customers are buying the highest-growth products?

� Which characteristics do those customers share?

The difference between the business intelligence and the OLTP workloads is
substantial and makes it difficult or impossible for a single DBMS to serve both types
of applications.
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Components of a Data Warehouse
Figure 21-1 shows the architecture of a data warehousing environment. There are three
key components:

� Warehouse loading tools. Typically, a suite of programs that extract data from
corporate transaction-processing systems (relational databases, mainframe and
minicomputer files, legacy databases), process the data, and load it into the
warehouse. This process typically involves substantial cleanup of the transaction
data, filtering it, reformatting it, and loading it on a bulk basis into the warehouse.

� A warehouse database. Typically, a relational database optimized for storing
vast quantities of data, bulk loading data at high speeds, and supporting
complex business analysis queries.

� Data analysis tools. Typically, a suite of programs for performing statistical
and time series analysis, doing “what if” analysis, and presenting the results
in graphical form.

Vendors in the data warehousing market have tended to concentrate in one of these
component areas. Several vendors build product suites that focus on the warehouse-
loading process and challenges. A different group of vendors have focused on data
analysis. There has been some vendor consolidation in each of these areas, but both
remain areas of focus for individual independent software companies, including
several whose revenues are in the $100 million range.

Database Characteristic OLTP Database Data Warehouse Database

Data contents Current data Historical data

Data structure Tables organized to align
with transaction structure

Tables organized to be easy to
understand and query

Typical table size Thousands of rows Millions of rows

Access patterns Predetermined for each
type of transaction to be
processed

Ad hoc, depending on the
particular decision to be
made

Rows accessed per request Tens Thousands to millions

Row coverage per access Individual rows Groups (summary queries)

Access rate Many business transactions
per second or minute

Many minutes or hours per
query

Access type Read, insert, and update Almost 100 percent read

Performance focus Transaction throughput Query completion time

Table 21-1. OLTP Versus Data Warehousing Database Attributes
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Specialized warehouse databases were also the target of several startup companies
early in the data warehousing market. Over time, the major enterprise DBMS vendors
also moved to address this area. Some developed their own specialized warehouse
databases; others added warehouse databases to their product line by acquiring
smaller companies that produced them. Today, the database component in the figure
is almost always a specialized SQL-based warehouse DBMS supplied by one of the
major enterprise database vendors.

The Evolution of Data Warehousing
The initial focus of data warehousing was the creation of huge, enterprisewide collections
of all of the enterprise’s accumulated data. By creating such a warehouse of data, almost
any possible question about historical business practices could be posed. Many companies
started down the road to creating warehouses with this approach, but success rates
were low. Large, enterprisewide warehouses generally proved too difficult to create,
too big, and too unwieldy to use in practice.

The focus eventually turned to smaller data warehouses focused on specific areas
of a business that could most benefit from in-depth data analysis. The term data mart
was coined to describe these smaller (but still often massive) data warehouses. With
the advent of multiple data marts within enterprises, a recent area of focus has been
on management of distributed data marts. In particular, there is a large potential for
duplication of effort in the data cleansing and reformatting process when multiple
marts are drawing data from the same production databases. The emerging answer

Figure 21-1. Data warehousing components
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seems to be a coordinated approach to data transformation for distributed marts, rather
than a return to huge centralized warehouses.

Data warehousing, and more recently data marts, have grown to prominence in
many different industries. They are most widely (and aggressively) used in industries
where better information about business trends can be used to make decisions that
save or generate large amounts of money. For example:

� High-volume manufacturing. Analysis of customer purchase trends, seasonality,
and so on can help the company plan its production and lower its inventory
levels, saving money for other purposes.

� Packaged goods. Analysis of promotions (coupons, advertising campaigns, direct
mail, and so on) and the response of consumers with different demographics can
help to determine the most effective way to reach prospective customers, saving
millions of dollars in advertising and promotion costs.

� Telecommunications. Analysis of customer calling patterns can help to create
more attractive pricing and promotional plans, perhaps attracting new
customers from a competitor.

� Airlines. Analysis of customer travel patterns is critical to yield management, the
process of setting airfares and associated restrictions on available airline seats to
maximize profitability.

� Financial services. Analysis of customer credit factors and comparing them
to historical customer profiles can help to make better decisions about which
customers are creditworthy.

Database Architecture for Warehousing
The structure (schema) of a warehouse database is typically designed to make the
information easy to analyze, since that is the major focus of its use. The structure must
make it easy to slice and dice the data along various dimensions. For example, one day
a business analyst may want to look at sales by product category by region, to compare
the performance of different products in different areas of the country. The next day,
the same analyst may want to look at sales trends over time by region, to see which
regions are growing and which are not. The structure of the database must lend itself
to this type of analysis along several different dimensions.

Fact Cubes
In most cases, the data stored in a warehouse can be accurately modeled as an
N-dimensional cube (N-cube) of historical business facts. A simple three-dimensional
cube of sales data is shown in Figure 21-2 to illustrate the structure. The fact in each cell
of the cube is a dollar sales amount. Along one edge of the cube, one of the dimensions
is the month during which the sales took place. Another dimension is the region where
the sales occurred. The third dimension is the type of product that was sold. Each cell
in the cube represents the sales for one combination of these three dimensions. The
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$50,475 amount in the upper-left front cell represents the sales amount for January,
for clothing, in the East region.

Figure 21-2 shows a simple three-dimensional cube, but in many warehousing
applications, there will be a dozen dimensions or more. Although a twelve-
dimensional cube is difficult to visualize, the principles are the same as for the
three-dimensional example. Each dimension represents some variable on which the
data may be analyzed. Each combination of dimension values has one associated fact
value, which is typically the historical business result obtained for that collection of
dimension values.

To illustrate the database structures typically used in warehousing applications,
we use a warehouse that might be found in a distribution company. The company
distributes different types of products, made by various suppliers, to several hundred
customers located in various regions of the country, through the efforts of its sales
force. The company wants to analyze historical sales data along these dimensions,
to discover trends and gain insights that will help it better manage its business. The
underlying model for this analysis will be a five-dimensional fact cube with these
dimensions:

� Category. The category of product that was sold, with values such as clothing,
linens, accessories, and shoes. The warehouse has about two dozen product
categories.

C h a p t e r 2 1 : S Q L a n d D a t a W a r e h o u s i n g 765

Figure 21-2. Three-dimensional depiction of sales data



� Supplier. The supplier who manufactures the particular product sold. The
company might distribute products from 50 different suppliers.

� Customer. The customer who purchased the products. The company has
several hundred customers. Some of the larger customers purchase products
centrally and are serviced by a single salesperson; others purchase on a local
basis and are served by local salespeople.

� Region. The region of the country where the products were sold. Some of the
company’s customers operate in only one region of the country; others operate
in two or more regions.

� Month. The month when the products were sold. For comparison purposes,
the company has decided to maintain 36 months (three years) of historical sales
data in the warehouse.

With these characteristics, each of the five dimensions is relatively independent
of the others. Sales to a particular customer may be concentrated in a single region or
in multiple regions. A specific category of product may be supplied by one or many
different suppliers. The fact in each cell of the five-dimensional cube is the sales
amount for that particular combination of dimension values. With the attributes just
described, the fact cube contains over 35 million cells (24 categories × 50 suppliers ×
300 customers × 3 regions × 36 months).

Star Schemas
In most data warehouses, the most effective way to model the N-dimensional fact cube is
with a star schema. A star schema for the distributor warehouse in the previous example
is shown in Figure 21-3. Each dimension of the cube is represented by a dimension table.
There are five of them in the figure, named CATEGORIES, SUPPLIERS, CUSTOMERS,
REGIONS, and MONTHS. There is one row in each dimension table for each possible value
of that dimension. The MONTHS table has 36 rows, one for each month of sales history
being stored. Three regions produce a three-row REGIONS table.

Dimension tables in a star schema often contain columns with descriptive text
information or other attributes associated with that dimension (such as the name of the
buyer for a customer, or the customer’s address and phone number, or the purchasing
terms for a supplier). These columns may be displayed in reports generated from the
database. A dimension table always has a primary key that contains the value of the
dimension. If the values of a dimension are numbers (such as a clothing size) or short
text strings (such as a city name), the primary key may be this dimension value itself.
It’s more common for dimension values to be expressed in some type of code value.
Three-letter airport codes and customer numbers are typical examples. In the sample
warehouse of Figure 21-3, we assume that actual values are used as primary keys for
REGIONS (East, West, and so on), CATEGORIES (clothing, shoes, and so on), and
MONTHS. The other two dimensions use coded values (CUST_CODE for CUSTOMERS,
SUPP_CODE for SUPPLIERS).
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Figure 21-3. Star schema for distributor warehouse



The largest table in the database is the fact table in the center of the schema. This
table is named SALES in Figure 21-3. The fact table contains a column with the data
values that appear in the cells of the N-cube in Figure 21-2. In addition, the fact table
contains a column (or columns) that forms a foreign key for each of the dimension
tables. In this example, there are five such foreign key columns. With this structure,
each row represents the data for one cell of the N-cube. The foreign keys link the row
to the corresponding dimension table rows for its position in the cube.

The fact table typically contains only a few columns, but many rows—hundreds of
thousands or even millions of rows are not unusual in a production data warehouse.
The fact column almost always contains numeric values, such as currency amounts,
units shipped or received, or pounds processed. Virtually all reports from the warehouse
involve summary data—totals, averages, high or low values, percentages—based on
arithmetic computations on this numeric value.

The schema structure of Figure 21-3 is called a star schema for obvious reasons. The
fact table is at the center of a star of data relationships. The dimension tables form the
points of the star. The relationships created by the foreign keys in the fact table connect
the center to the points. With the star-schema structure, most business analysis
questions turn into queries that join the central fact table with one or more dimension
tables. Here are some examples:

Show the total sales for clothing in January, by region.

SELECT SALES_AMOUNT, REGION

FROM SALES, REGIONS

WHERE MONTH = 01/1999

AND PROD_TYPE = "Clothing"

AND SALES.REGION = REGIONS.REGION

ORDER BY REGION

Show the average sales for each CUSTOMER, by SUPPLIER, for each month.

SELECT AVG(SALES_AMOUNT), CUST_NAME, SUPPLIER_NAME, MONTH

FROM SALES, CUSTOMERS, SUPPLIERS

WHERE SALES.CUST_CODE = CUSTOMERS.CUST_CODE

AND SALES.SUPP_CODE = SUPPLIERS.SUPP_CODE

GROUP BY CUST_NAME, SUPP_NAME

ORDER BY CUST_NAME, SUPP_NAME, MONTH

Multilevel Dimensions
In the star-schema structure of Figure 21-3, each of the dimensions has only one level.
In practice, multilevel dimensions are quite common. For example:
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� Sales data may in fact be accumulated for each sales office. Each office is a part
of a sales district, and each district is a part of a sales region.

� Sales data is accumulated by month, but it may also be useful to look at
quarterly sales results. Each month is a part of a particular quarter.

� Sales data may be accumulated for individual products ordered, and the
products are associated with a particular supplier.

Multilevel dimensions such as these complicate the basic star schema, and in
practice, there are several ways to deal with them:

� Additional data in the dimension tables. The geographic dimension table
might contain information about individual offices, but also include columns
indicating the district and region to which the office belongs. Aggregate data
for these higher levels of the geographic dimension can then be obtained by
summary queries that join the fact table to the dimension table and selected
based on the district or region columns. This approach is conceptually simple,
but it means that all aggregate (summary) data must be calculated query by
query. This likely produces unacceptably poor performance.

� Multiple levels within the dimension tables. The geographic dimension table
might be extended to include rows for offices, districts, and regions. Rows
containing summary (total) data for these higher-level dimensions are added to
the fact table when it is updated. This solves the runtime query performance
problem by precalculating aggregate (summary) data. However, it complicates
the queries considerably. Because every sale is now included in three separate
fact table rows (one each for office, district, and region), any totals must be
computed very carefully. Specifically, the fact table must usually contain a level
column to indicate the level of data summarization provided by that row, and
every query that computes totals or other statistics must include a search
condition that restricts it to rows at only a specific level.

� Precomputed summaries in the dimension tables. Instead of complicating the
fact table, summary data may be precomputed and stored in the dimension
tables (for example, summary sales for a district stored in the district’s row of
the geographic dimension table). This solves the duplicate facts problem of the
previous solution, but it works only for very simple precomputed amounts.
The precalculated totals don’t help with queries about products by district
or district results by month, for example, without further complicating the
dimension tables.

� Multiple fact tables at different levels. Instead of complicating the fact table, this
approach creates multiple fact tables for different levels of summary data. To
support cross-dimension queries (for example, district –results –by month),
specialized fact tables that summarize data on this basis are needed. The resulting
pattern of dimension tables and fact tables tends to have many interrelationships,
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creating a pattern resembling a snowflake; hence, this type of schema is often
referred to as a snowflake schema. This approach solves the runtime performance
problem and eliminates the possibility of erroneous data from a single fact table,
but it can add significant complexity to the warehouse database design, making it
harder to understand.

In practice, finding the right schema and architecture for a particular warehouse
is a complicated decision, driven by the specifics of the facts and dimensions, the types
of queries frequently performed, and other considerations. Many companies use
specialized consultants to help them design data warehouses and deal with exactly
these issues.

SQL Extensions for Data Warehousing
With a star-schema structure, a relational database conceptually provides a good
foundation for managing data for business analysis. The capability to freely relate
information within the database based solely on data values is a good match for
the ad hoc, unstructured queries that typify business intelligence applications. But
there are some serious mismatches between typical business intelligence queries
and the capabilities of the core SQL language. For example:

� Data ordering. Many business intelligence queries deal explicitly or implicitly
with data ordering—they pose questions like “What is the top 10 percent?”
“What are the top 10?” or “Which are the worst performing?” As a set-oriented
language, SQL manipulates unordered sets of rows. The only support for
sorting and ordering data within standard SQL is the ORDER BY clause in the
SELECT statement, which is applied only at the end of all other set-oriented
processing.

� Time series. Many business intelligence queries compare values based on
time—contrasting this year’s results to last year’s, or this month’s results to the
same month last year, or computing year-over-year growth rates, for example.
It is very hard, and sometimes impossible, to get side-by-side comparisons of
data from different time periods within a single row of standard SQL query
results, depending on the structure of the underlying database.

� Comparison to aggregate values. Many business intelligence queries compare
values for individual entities (for example, office sales results) to an overall
total, or to subtotals (such as regional results). These comparisons are difficult
to express in standard SQL. A report format showing line-item detail, subtotals,
and totals is impossible to generate directly from SQL, since all rows of query
results must have the same column structure.

To deal with these issues, DBMS products on data warehousing have tended to
extend the core SQL language. For example, the DBMS from Red Brick, one of the data
warehousing pioneers and now a part of Informix’s product line (which has, in turn,
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been acquired by IBM), features these extensions as part of its Red Brick Intelligent
SQL (RISQL) language:

� Ranking. Supports queries that ask for the top 10 and similar requests.

� Moving totals and averages. Supports queries that smooth raw data for time
series analysis.

� Running totals and averages. Allows query responses that show results for
individual months plus year-to-date totals, and similar requests.

� Ratios. Allows queries that very simply express the ratio of individual values
to a total or subtotal without the use of complex subqueries.

� Decoding. Simplifies the translation of dimension-value codes (like the
supplier-id in the example warehouse) into understandable names.

� Subtotals. Allow production of query results that combine detailed and
summary data values, at various levels of summarization.

Other warehousing vendors provide similar extensions in their SQL implementations
or provide the same capabilities built into their data analysis products. As with
extensions in other areas of the SQL language, although the conceptual capabilities
provided by several different DBMS brands may be similar, the specifics of the
implementation differ substantially.

Warehouse Performance
The performance of a data warehouse is one of the keys to its usefulness. If business
analysis queries take too long, people tend not to use the warehouse on an ad hoc basis
for decision making. If it takes too long to load data into the warehouse, the corporate
IS organization will probably resist frequent updates, and stale data may make the
warehouse less useful. Achieving a good balance between load performance and
runtime performance is one of the keys to successful warehouse deployment.

Load Performance
The process of loading a warehouse can be very time-consuming. It’s common for
warehouse data loads to take hours or even days for very large warehouses. Load
processing typically involves these operations:

� Data extraction. The data to be loaded into the warehouse database typically
comes from several different operational data sources. Some may be relational
databases that support OLTP applications.

� Data cleansing. Operational data tends to be “dirty” in the sense that it
contains significant errors. For example, older transaction-processing systems
may not have strong integrity checks, permitting the entry of incorrect
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customer numbers or product numbers. The warehouse-loading process
typically includes data integrity and data sanity checks.

� Data cross-checking. In many companies, the data processing systems that
support various business operations have been developed at different times
and are not integrated. Changes that are processed by one system (for example,
adding new product numbers to an order-processing application) may not
automatically be reflected in other systems (for example, the inventory control
system), or there may be delays in propagating changes. When data from these
nonintegrated systems arrives at the warehouse, it must be checked for internal
consistency.

� Data reformatting. Data formats in the operational data stores may differ
considerably from the warehouse database. Character data may need
transformation from a mainframe’s EBCDIC encoding to ASCII. Zoned decimal
or packed decimal data may need reformatting. Date and time formats are
another source of differences. Beyond these simple data format differences,
data from one OLTP data source row may have to be broken apart into multiple
warehouse tables, while data from multiple OLTP tables or files may have to
be combined to create a warehouse table.

� Data insertion/update. After the preprocessing, actual bulk loading of data into
a warehouse database tends to be a specialized operation. High-volume data
loaders typically operate in a batch-oriented mode, without transaction logic
and with specialized recovery. Row loading or update rates of hundreds of
megabytes per hour may be required.

� Index creation/update. The specialized indexes used by the warehouse must
be modified to reflect the revised warehouse contents. As with the actual
data insertion and update, specialized handling is typically applied. In some
cases, it is more efficient to rapidly re-create an entire index than to modify
it incrementally as data rows are inserted or updated. Other index structures
permit more incremental updates.

These tasks are typically performed by specialized warehouse-building programs
on a batch-processing basis. Ad hoc query access to the warehouse is turned off during
the update/refresh processing, allowing it to proceed at maximum speed without
competition for DBMS cycles. Despite these optimizations, warehouse load times tend
to grow as the amount of accumulated data grows, so the load-time versus runtime
performance trade-off must be made on an ongoing basis. Warehouses with many
indexes or precomputed summary values may offer much better runtime performance
but at the expense of unacceptably long load times. Simpler structures with less
loading work may increase the time required for ad hoc queries beyond an acceptable
level. In practice, the warehouse administrator must find a good balance between
loading and runtime query performance.
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Query Performance
Database vendors focused on warehousing have invested considerable energy
in optimizing their DBMS products to maximize query performance. As a result,
warehousing performance has improved dramatically over the last several years.
The growth in the size and complexity of warehouses has prevented some of this
performance gain from actually being translated into perceived end-user benefit.

Several different techniques have evolved to maximize the performance of business
analysis queries in a warehouse, including:

� Specialized indexing schemes. Typical business analysis queries involve a
subset of the data in the warehouse, selected on the basis of dimension values.
For example, a comparison of this month’s and last month’s results involves
only two of the 36 months of data in the example warehouse. Specialized
indexing schemes have been developed to allow very rapid selection of the
appropriate rows from the fact table and joining to the dimension tables.
Several of these involve bitmap techniques, where the individual possible
values for a dimension (or a combination of dimensions) are each assigned
a single bit in an index value. Rows meeting a selection criteria can be very
rapidly identified by bitwise logical operations, which a computer system can
perform more rapidly than value comparisons.

� Parallel processing techniques. Business analysis queries can often be broken
up into parts that can be carried out in parallel, to reduce the overall time
required to produce the final results. In a query joining four warehouse tables,
for example, the DBMS might take advantage of a two-processor system by
joining two of the tables in one process and two others in another. The results
of these intermediate joins are then combined. Alternatively, the workload of
processing a single table in the query might be split and carried out in parallel—
for example, assigning rows for specific month ranges to specific processes. The
use of multiprocessor systems in these cases is quite different than for OLTP
databases. For OLTP, the focus of multiprocessor operations is to increase
overall throughput. For warehousing, the focus is usually the improvement
in overall execution time in response to a single complex query.

� Specialized optimizations. When faced with a complex database query
involving selection criteria and joins, the DBMS has many different sequences
in which it can carry out the query. The optimizer for an OLTP database tends
to benefit from the assumption that foreign key/primary key relationships
should be exercised early in its processing, since they tend to cut down
dramatically on the number of rows of intermediate results. The optimizer
for a warehousing database may make a quite different decision, based on
information accumulated during the load process about the distribution of
data values within the database.
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As with load-time performance, maximizing the runtime performance of a
warehouse is an ongoing task for the database administrator. Newer revisions of
DBMS software often provide performance benefits, as do higher-performance
processors or more processors.

Summary
Data warehousing is a rapidly growing part of the market for SQL-based relational
databases and is one with a set of specialized requirements:

� Warehouse databases are optimized for the workload of typical business
analysis queries, which is quite different from OLTP workloads.

� Specialized utility programs provide high-performance loading of the
warehouse and analysis tools for taking advantage of warehoused data.

� Specialized database schema structures, such as the star schema, are
typically used in warehouse applications to support typical business
analysis queries and optimize performance.

� SQL extensions are frequently used to support typical business analysis
queries involving time series and trend analysis, rank orderings, and
time-based comparisons.

� Careful design of a large warehouse is required to provide the correct
balance between load-time performance and runtime performance.
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A
pplication servers are one of the major new computer technologies spawned
by the growth of the Internet. Application servers form a key layer in most
commercial web site architectures. As the name implies, application servers

provide a platform for executing the application logic that drives user interaction
on a web site. But application servers perform another important role—they act as
mediators between the Internet-side components of a web site (the web servers and
content management tools) and the IT-side components, such as legacy corporate
applications and databases. In this role, application servers must work closely with
DBMS software, and SQL is the language for that communication. This chapter explores
the role of SQL in a multitier web site architecture built using application servers.

SQL and Web Sites: Early Implementations
Application servers did not always play a prominent role in web site architectures.
The earliest web sites were focused almost exclusively on delivering content to their
users, in the form of static web pages. The content of the web site was structured as a
series of predefined web pages, stored in files. A web server accepted requests from
user browsers (in the form of HTTP messages), located the particular page(s) requested,
and sent them back to the browser for display, again using HTTP. The web page
contents were expressed in HTML, the HyperText Markup Language. The HTML for
a given page contained the text and graphics to be displayed on the page, and the links
that supported navigation from this page to others.

It didn’t take long before the demands for information to be delivered via the World
Wide Web outstripped the static capabilities of predefined web pages. Companies began
to use web sites to communicate with their customers, and needed to support basic
capabilities like searching for specific products or accepting a customer order. The first
step toward providing actual processing capability in conjunction with display of a
web page was provided by the web servers themselves, as shown in Figure 22-1.
Instead of accepting only requests for static web pages, web servers also accepted
requests to execute a script: a series of instructions that determined which information
to display.

Web server scripts were often written in specialized scripting languages, such as
Perl. In its simplest form, a script might perform a very simple computation (such as
retrieving the current date and time from the operating system) and output the result
as part of a web page. In a slightly more complex form, the script might accept input
typed by a user into a forms-oriented web page, perform a database query based on
the input, and display the results. Because the output of the script could vary from
one execution to the next, the resulting web page became dynamic: its contents could
change from one viewing to the next, depending on the results of the script execution
each time.

Scripting languages provided the earliest links between web sites and SQL
databases. A script might, for example, submit a SQL query to a DBMS through a
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variation on the interactive SQL interface, and accept the results of the query for
display on the web page. But there were many problems with scripting solutions
for web site processing. Most of the script languages are interpreted, and executing
a complex script can consume a lot of CPU cycles. Scripting facilities ran as separate
processes on UNIX-based or Windows-based servers—a high-overhead structure
if dozens or hundreds of scripts must be executed every second. These and other
limitations of scripting solutions set the stage for an alternative approach and the
emergence of application servers as a part of the web site architecture.

Application Servers and Three-Tier

Web Site Architectures
The logical evolution from web server scripting was the definition of a separate role for
an application server, resulting in a three-tier architecture shown in Figure 22-2. The web
server retains its primary responsibility for locating and serving up static web pages
and static pieces of web pages from its files. When application processing is required to
determine which information to display or to process information supplied by the user,
the web server invokes a separate application server to perform the processing. In a
smaller, lower-volume web site, the application server may run as a separate process
on the same physical server system as the web server. In the more general case, used
by larger web sites, the web server and application server will run on two different
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server computers, typically connected by a high-speed local area network. In either
configuration, the web server passes requests in the form of messages to the application
server, and receives back responses in the form of HTML contents to be displayed on
the page.

In the early days of application servers, there were a wide range of different
application server products. Some servers required that applications be written in
C or C++. Others required the use of Java. The interface between the application
server and the web server was well defined by the APIs of the two leading web server
vendors, Netscape and Microsoft. But all other aspects—from programming language
to the supporting services provided by the application server to the API for database
access—were not standardized.

Sun Microsystem’s introduction of Enterprise Java Beans (EJBs) and the Java2
Enterprise Edition (J2EE) specification based on them began the standardization of
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application servers. EJBs built on the mushrooming popularity of Java as a programming
language. The specification came from Sun, one of the leading server vendors and a
company widely recognized for its leadership in Internet technologies. The specifications
also contained a standardized API for database access, one of the most important
functions provided by an application server, in the form of Java Database Connectivity
(JDBC).

Within a short time, application servers based on the J2EE specification pulled
ahead in the market. Vendors who had taken an alternative approach augmented their
products with Java capability, and eventually abandoned their proprietary products
for a J2EE-based strategy. A short time later, the application server market began a
round of consolidation. Sun itself acquired NetDynamics, one of the pioneering J2EE
application server vendors. BEA Systems, a leading vendor of software middleware
for transaction processing, acquired WebLogic, another application server pioneer.
Netscape, which provided one of the leading web servers, filled out its product line
by acquiring Kiva, another early application server market leader.

Later, when AOL acquired Netscape and then formed a joint venture with Sun,
both of these J2EE application server products came under common management at
Sun, eventually merging into the Sun iPlanet application server (later rebranded the
SunONE application server). Hewlett-Packard followed with its own acquisition of
Bluestone, another application server vendor. IBM departed from the acquisition path
by building its own application server, marketed under the WebSphere brand name.
Oracle also introduced its own internally developed product, the Oracle Application
Server, although much of its software was replaced by purchased third-party
components over time as Oracle struggled to establish its position.

Over the course of several years of aggressive competition, the J2EE specification
continued to evolve, including expanded features for application server database access.
BEA’s WebLogic and IBM’s WebSphere emerged as the dominant players, with roughly
equal market share. Products from Sun, Oracle, and a dozen smaller vendors divided
up the remainder of the market. Every significant application server product complied
with the J2EE specification, and provided JDBC-based facilities for database access.

Database Access from Application Servers
The convergence of the application server market around the J2EE specification
effectively standardized the external interface between the application server and
a DBMS around JDBC. Conceptually, an application server can automatically access
any database product that offers a JDBC-compliant API, thus achieving DBMS
independence. In practice, subtle differences between the DBMS systems in areas
like SQL dialects and database naming still require some tweaking and testing,
and manifest themselves in subtle dependencies within the code deployed on the
application server. However, these differences tend to be minor, and adjusting for
them is relatively straightforward.
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The approach to data management for the application code running on the
application server is a slightly more complicated story. While the application server
does provide uniform services for data management, it provides these in several
different architectures, using the different types of EJBs in the J2EE specification. The
application designer must choose among these approaches, and in some cases, will mix
and match them to achieve the requirements of the application. Here are some of the
decisions that must be made:

� Will the application logic do direct database access from within a session bean,
or will database contents be represented as entity beans, with database access
logic encapsulated within them?

� If direct access from session beans is used, can the session bean remain stateless
(which simplifies the coding of the bean and its management by the application
server), or does the logic of database access require the bean to be stateful,
preserving a context from one invocation to another?

� If entity beans are used to represent database contents, can the application rely
on the container-managed persistence provided by the application server to
manage database interaction, or does the application’s logic require that the
entity bean provide its own database access logic through bean-managed
persistence?

� If entity beans are used to model database contents, do the beans correspond
on a one-to-one basis to the tables in the underlying database (fine-grained
modeling), or is it more appropriate for the beans to present a higher-level,
more object-oriented view of the data, with the data within each bean drawn
from multiple database tables (coarse-grained modeling)?

The trade-offs represented by these design questions provide an excellent
perspective on the challenge of matching SQL and relational database technology to
the demands of the World Wide Web and its stateless architecture, and the demands
of application servers and object-oriented programming. The next several sections
describe the basics of EJBs and the trade-offs among the different data access
architectures they can support.

EJB Types
Within a J2EE-compliant application server, the user-developed Java applications code
that implements the specific business logic is packaged and executes as a collection of
EJBs. An EJB has a well-defined set of external interfaces (methods) that it must
provide, and is written with an explicit set of class-specific public methods that define
the external interface to the bean. The work done within the bean, and any private data
variables that it maintains for its own use, can be encapsulated and hidden from other
beans and from developers who do not need to know these internal details and should
not write code that depends on them.
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The EJBs execute on the application server within a container, which provides both
a runtime environment for the beans and services for them. These range from general
services, such as managing memory for the beans and scheduling their execution, to
specific services like network access and database access (via JDBC). The container
also provides persistence services, preserving the state of beans across activations.

EJBs come in two major types that are of interest from a data management
perspective. The EJB types are graphically illustrated in Figure 22-3. The two major
types of beans are:

� Session beans. These beans represent individual user sessions with the
application server. Conceptually, there is a one-to-one association between
each session bean and a current user. In the figure, users Mary, Joe, and Sam
are each represented by their own session bean. If there are internal instance
variables within the bean, these variable values represent the current state
associated with the user during this particular session.

� Entity beans. These beans represent business objects, and logically correspond
to individual rows of a database table. For example, for entity beans representing
sales offices, there is a one-to-one association between each entity bean and a
particular office, which is also represented in our sample database by a single
row in the OFFICES table. If there are internal instance variables within the
bean, these variable values represent the current state associated with the office,
which is also represented by the column values in this row of the OFFICES
table. This state is independent of any particular user session.

Either type of bean may access a database, but they will typically do it in quite
different ways.

Session Bean Database Access
A session bean will typically access a database in a series of one or more JDBC calls
on behalf of the user represented by the bean. An application server classifies session
beans into two categories, depending on how the bean manages state:

� Stateless session bean. This type of bean does not maintain any status
information across method invocations. It carries out its actions on behalf
of one user at a time, and one request at a time. Each request to the bean is
independent of the last. With this restriction, every invocation of the bean
must carry with it (in the form of the parameters passed with the invocation)
all of the information needed to carry out the request.

� Stateful session bean. This type of bean maintains status information across
method invocations. The bean needs to “remember” information from its
previous invocations (its state) to carry out the tasks requested by later
invocations. It uses private instance variables to hold the information.
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The next two sessions show examples of application tasks that are most easily
implemented as each type of session bean. You specify whether a session bean is
stateless or stateful in the deployment descriptor for the bean, which contains
information supplied to the application server on which the bean is deployed.

An application server on a busy web site can easily have more session beans and
other EJBs in use than it has main memory available to store them. In this situation,
the application server will keep a limited number of session bean instances active in
its main memory. If a user associated with a currently inactive session bean becomes
active (i.e., one of his or her web site clicks must be processed), the application server
chooses another instance of the same bean class and passivates it—that is, it saves the
values of any instance variables defined for the bean and then reuses the bean to serve
the user session needing activation.

Whether a session bean is stateful or stateless has a significant impact on this
passivation and activation. Since a stateless session bean does not need its status
preserved across method invocations, the application server does not need to save
its instance variable values when it passivates the bean, and does not need to restore
instance variable values when it reactivates the bean. But for a stateful session bean,
the application server needs to copy its instance value variables to persistent storage

Figure 22-3. Types of EJBs
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(a disk file or a database) when it passivates the bean, and then restore those values
when it reactivates the bean. Thus, stateful session beans can significantly diminish
the performance and throughput of an application server on a busy site. Stateless beans
are preferable for performance, but many applications are difficult or impossible to
implement without using stateful beans.

Using JDBC from a Stateless Session Bean
Figure 22-4 shows a simple example of an application that can easily be handled with
stateless session bean database access. A page on a web site displays the current price
of a company’s stock when the page is displayed. The page can’t be static, since the
displayed price will change minute by minute. So when the user’s browser requests the
page, the web server hands off the request to an application server, which eventually
invokes a method of a session bean. The session bean can use JDBC to send a SQL
SELECT statement to a database of current stock prices, and receives back the answer
as one line of query results. The session bean reformats the stock quote as a fragment
of a web page, and passes it back to the web server for display to the user.

Stateless session beans can perform more complex functions as well. Suppose the
same company has a page on its web site where a user can request a product catalog by
filling in the contents of a small form. When the form is filled in and the user clicks the
Send button, the browser sends the data from the form to the web server, which again
hands off the request to an application server. This time, a different method of the
session bean is invoked, and receives the data from the form as parameters. The session
bean can use JDBC to send a SQL INSERT statement to a database table holding pending
catalog requests.

In each of these examples, all of the information that the session bean needs to carry
out its task is passed to it with the method invocation. When the bean has completed its
task, the information is not needed anymore. The next invocation again receives all of
the information it needs with the next invocation, so there is no need to carry over
status information. Even more important, the database activity on each invocation is
completely independent from every other invocation. No database transaction spans
multiple method invocations.

Using JDBC from a Stateful Session Bean
Many web interactions can’t live with the limitations imposed by stateless session
beans. Consider a more complex web-based form that spans four pages. As the user
fills out each page and sends it to the web site, the session bean must accumulate the
information and retain it across the four page clicks until all of the data is ready to be
captured into a database. The need to retain information across method invocations
calls for a stateful session bean.

Another example in which a stateful session bean is appropriate is a commercial
web site where a user shops online and accumulates a list of items to be purchased in
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an online shopping cart. After 40 or 50 clicks through the web site, the user may have
accumulated five or six items in the shopping cart. If the user then clicks a button
requesting display of the current shopping cart contents, those contents are probably
most easily maintained as session bean state.

In both of these examples, the session bean requires continuity of database access
to effectively accomplish its tasks. Figure 22-5 shows the pattern, and the contrast to
the pattern of interactions in Figure 22-4. Even if the bean can be implemented without
instance variables (for example, by storing all of its state information in a back-end
database), it needs one continuous database session to carry out its database access.
The client-side API for the DBMS maintains this session, and the API itself will need
to maintain session-state information across session bean method invocations.

Figure 22-4. Database calls from a stateless session bean



Entity Bean Database Access
It’s possible to implement complete, sophisticated web site applications using session
beans deployed on a J2EE application server. However, programming an application
using session beans tends to produce more procedural, and less object-oriented code.
The object-oriented philosophy is to have object classes (in this case, EJB classes)
represent real-world entities, such as customers or offices, and object instances represent
individual customers or offices. But session beans don’t represent any of those entities;
they represent currently active user sessions. When database interaction is handled
directly by session beans, the representation of real-world entities is basically left in
the database; it doesn’t have an object counterpart.
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Figure 22-5. Database calls from a stateful session bean
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Entity beans provide the object counterpart for real-world entities and the rows
in a database that represent them. Entity bean classes embody customers and offices;
individual entity bean instances represent individual customers and individual offices.
Other objects (such as session beans) within the application server can interact with
customers and offices using object-oriented techniques, by invoking the methods of
the entity beans that represent them.

To maintain this object-oriented model, there must be very close cooperation
between the entity-bean representations of entities and their database representations.
If a session bean invokes a customer entity bean method that changes a customer’s
credit limit, that change must be reflected in the database, so that an order-processing
application using the database will use the new limit. Similarly, if an inventory
management application adds to the quantity on hand for a particular product in
the database, that product’s entity bean in the application server must be updated.

Just as an application server will passivate and reactivate session beans as necessary,
it will passivate and reactivate entity beans repeatedly in response to a heavy workload.
Before the application server passivates an entity bean, the bean’s state must be saved
in a persistent way, by updating the database. Similarly, when the application server
reactivates an entity bean, its instance variables must be set to their values just before
it was passivated, by reloading those values from the database. The entity bean class
defines callback methods that an entity bean must provide to implement this
synchronization.

There is close correspondence between actions carried out on entity beans and
database actions, as shown in Table 22-1. The J2EE specification provides two
alternative ways to manage this coordination:

� Bean-managed persistence. The entity bean itself is responsible for maintaining
synchronization with the database. The application programmer who develops
the entity bean and codes its implementation methods must use JDBC to read
and write data in the database when necessary. The application server container
notifies the bean when it takes actions that require database interaction.

� Container-managed persistence. The EJB container provided by the application
server is responsible for maintaining synchronization with the database. The
container monitors interaction with the entity bean, and automatically uses
JDBC to read and write data in the database and update the instance variables
within the bean when needed. The application programmer who develops the
entity bean and codes its implementation methods can focus on the business
logic in the bean, and assumes that its instance variables will accurately
represent the state of the data in the database.

Note that entity beans are always stateful—the distinction between these two
bean types is not the difference between stateless and stateful beans, but rather, the
difference between who is responsible for maintaining proper state. The next two
sections discuss the practical issues associated with each type of entity bean, and the
trade-offs between them.



Using Container-Managed Persistence
An entity bean’s deployment descriptor specifies that an entity bean requires container-
managed persistence. The deployment descriptor also specifies the mapping between
instance variables of the bean and columns in the underlying database. The deployment
descriptor also identifies the primary key that uniquely identifies the bean and the
corresponding database row. The primary key value is used in the database operations
that store and retrieve variable values from the database.

With container-managed persistence, the EJB container is responsible for maintaining
synchronization between the entity bean and the database row. The container calls
JDBC to store instance variable values into the database, to restore those values, to
insert a new row into the database, and to delete a row—all as required by actions
on the bean. The container will call the bean’s ejbStore() callback method before
it stores values in the database, to notify the bean that it must get its variable values
into a consistent state. Similarly, the container will call the bean’s ejbLoad() callback
method after loading values from the database, to allow the bean to do appropriate
post processing (for example, calculating a value that was not itself persisted, based
on values that were). In the same way, the bean’s ejbRemove() method will be called
before the container deletes the row from the database, and ejbCreate() and
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Database Statement EJB Method EJB/Database Action

INSERT ejbCreate(),
ejbPostCreate()

Creates a new entity bean
instance; initial state of the
bean is specified by parameters
in the create() call. A new
row with these values must be
inserted into the database.

SELECT ejbLoad() Loads instance variable values,
reading them from the persistent
data in the database.

UPDATE EjbStore() Stores instance variable values,
saving them persistently in the
database.

DELETE ejbRemove() Removes an entity bean instance;
the corresponding row in the
database must be deleted.

Table 22-1. Corresponding Database and EJB Activities
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ejbPostCreate() are called in conjunction with inserting a new row. For many
entity beans, these callback methods will be empty, since the container handles the
actual database operations.

Using Bean-Managed Persistence
If an entity bean’s deployment descriptor specifies bean-managed persistence, the
container assumes that the entity bean will handle its own database interaction. When
a new entity bean is first created, the container calls the bean’s ejbCreate() and
ejbPostCreate() methods. The bean is responsible for processing the corresponding
INSERT statement for the database. Similarly, when an entity bean is to be removed,
the container calls the bean’s ejbRemove() method. The bean is responsible for
processing the corresponding DELETE statement for the database, and when the bean
returns from the ejbRemove() method, the container is free to actually remove the
bean itself and reuse its storage.

Bean loading is similarly handled by a container call to ejbLoad(), and storing
by a call by the container to ejbStore(). The bean is similarly notified of passivation
and activation by callbacks from the container. Of course, nothing limits the entity
bean’s database interaction to these callback methods. If the bean needs to access the
database during the execution of one of its methods, the bean can make whatever
JDBC calls it needs. The JDBC calls within the callback methods are strictly focused
on managing bean persistence.

Container-Managed and Bean-Managed Trade-Offs
You might naturally ask why you would ever want to use bean-managed persistence
when container-managed persistence eliminates the need to worry about synchronizing
with the database. The answer is that container-managed persistence has some
limitations:

� Multiple databases. For most application servers, entity beans must be mapped
into a single database server. If entity bean data comes from multiple databases,
then bean-managed persistence may be the only way to handle database
synchronization.

� Multiple tables per bean. Container-managed persistence works well when all
of the instance variables for an entity bean come from a single row of a single
table—i.e., when there is a one-to-one correspondence between bean instances
and table rows. If an entity bean needs to model a more complex object, such
as an order header and individual line items of an order, which come from two
different, related tables, bean-managed persistence is usually required, because
the bean’s own code must provide the intelligence to map to and from the
database.
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� Performance optimizations. With container-managed persistence, a container
must make an all-or-nothing assumption about persisting instance variables.
Every time the variables must be stored or loaded, all of the variables must
be handled. In many applications, the entity bean may be able to determine
that depending on its particular state, only a few of the variables need to be
processed. If the entity bean holds a lot of data, the performance difference can
be significant.

� Database optimizations. If the methods of an entity bean that implement
its business logic involve heavy database access (queries and updates),
then some of the database operations that the container will carry out in a
container-managed persistence scheme may be redundant. If bean-managed
persistence is used instead, the bean may be able to determine exactly when
database operations are required for synchronization and when the database
is already up to date.

In practice, these limitations often prevent the use of container-managed
persistence in today’s deployments. Enhancements in newer versions of the EJB
specification are designed to address many of these shortcomings. However,
bean-managed persistence remains a very important technique with the currently
available application servers.

EJB 2.0 Enhancements
EJB 2.0 represents a major revision to the EJB specification. Many of the enhancements
in EJB 2.0 were incompatible with the corresponding capabilities in EJB 1.x. To avoid
breaking EJB 1.x-compatible beans, EJB 2.0 provides complementary capabilities in
these areas, allowing side-by-side coexistence of EJB 1.x and EJB 2.0 beans. A complete
description of the differences between EJB 1.x and EJB 2.0 is well beyond the scope of
this book. However, several of the differences were motivated by difficulties in using
container-managed persistence under the EJB 1.x specification, and those changes
directly affect database processing within EJBs.

One difficulty with EJB 1.x has already been mentioned—the difficulty of modeling
complex objects that draw their data from multiple database tables or that contain
nonrelational structures like arrays and hierarchical data. With EJB 1.x, you could
model a complex object as a family of inter-related entity beans, each drawn from
one table. This approach allowed the use of container-managed persistence, but the
relationships between pieces of the object need to be implemented in applications code
within the bean. Ideally, these internal details within the complex object should be
hidden from applications code. Alternatively, with EJB 1.x, you could model a complex
object as a single entity bean, with data in the bean’s instance variables drawn from
multiple related tables. This achieves the desired application code transparency, but
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container-managed persistence could be used when an entity bean draws its data from
multiple tables.

EJB 2.0 addresses this issue through the use of abstract accessor methods, which are
used to set and retrieve every persistent instance variable within an entity bean. The
container actually maintains the storage for the variables and the variable values. The
bean explicitly calls a get() accessor method to retrieve an instance variable value
and a set() accessor method to set its value. Similarly, there are get() and set()
abstract accessor methods for every relationship that links the rows in the database that
contribute data to the entity bean. Many-to-many relationships are easily handled by
mapping them into Java collection variables.

With these new features, the container has complete knowledge of all the instance
variables used by a bean, and every access that code within the bean makes to the
instance variables. The entity bean can represent a complex object that draws data
from multiple database tables, hiding the details from the applications code. But
container-managed persistence can now be used, because the container “knows”
all about the various parts of the object and the relationships among the parts.

Another problem with the EJB 1.x specification is that while database interactions
were standardized, the finder methods that are used to search the active entity beans
were not. The finder methods implement capabilities like searching for a particular
entity bean by primary key, or searching for the set of beans that match a particular
criterion. Without this standardization, portability across application servers was
compromised, and searches of entity beans often required recourse to searching the
underlying database.

EJB 2.0 addresses the searching limitations through the use of abstract select
methods that search entity beans. The select methods use a newly defined EJB 2.0
Query Language (EJBQL). While the query language is based on SQL-92, it includes
constructs such as path expressions that are decidedly nonrelational.

Finally, EJB 2.0 was designed to align with the SQL:1999 standard and its abstract
data types. Support for these types somewhat simplifies the interaction between entity
beans and the database for DBMS products that support abstract types. At this time,
few DBMS products support them.

Application Server Caching
On a high-volume web site, database access can become a bottleneck to overall web site
performance. Because of the EJB structure, the database access required by the business
logic of the application is increased (perhaps substantially) by the database access
required to support entity bean/database synchronization. If the web site implements
heavy personalization of its user interaction (i.e., if a high percentage of its pages are
dynamically generated based on the profile of the particular user who is viewing
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them), then the database access load can be even higher. At the extreme, every click
on a highly personalized web site could require retrieval of user-profile data from the
database to drive page generation. Finally, user interaction with a web site happens in
real time, and is affected by peak-load activity. The average rate of click processing is
less important than peak-load activity in determining whether users perceive the site
as fast or sluggish.

The World Wide Web has already shown an effective architecture for dealing with
these types of peak-load Internet volume demands—through web page caching and
horizontal scaling. With caching, copies of heavily accessed web pages are pulled
forward in the network and replicated. As a result, the total network capacity for
serving web pages is increased, and the amount of network traffic associated with
those page hits is reduced. With horizontal scaling, web site content is replicated across
two or more web servers (up to dozens or even hundreds of servers), whose aggregate
capacity for serving pages is much greater than any single server.

Similar caching and horizontal scaling architectures are used to increase the capacity
of application servers. Most commercial application servers today implement bean
caching, where copies of frequently used entity beans are kept in the application
server’s memory. In addition, application servers are often deployed in banks or
clusters, with each application server providing identical business logic and application
processing capability. In fact, many commercial application servers use horizontal
scaling within a single server to take advantage of symmetric multiprocessing (SMP)
configurations. It’s typical for an eight-processor application server to be running up
to eight independent copies of the application server software, operating in parallel.
Figure 22-6 shows a typical application server configuration with three four-processor
servers.

Unfortunately, horizontal scaling and caching tend to work against one another
when dealing with stateful data such as that stored in an entity bean or a database.
Without special cache synchronization logic, updates made to a bean stored in the
cache of one server instance will not automatically appear in the other caches, with the
potential to cause incorrect results. Consider, for example, what happens to quantity-
on-hand data if three or four separate caches contain copies of an entity bean for a
single product and the business logic of the application server updates those values.
The caches will very quickly contain different values for quantity on hand, none of
which are accurate. The cache synchronization logic required to detect and prevent
such a situation unfortunately carries with it a great deal of overhead. Absolute
synchronization requires a full two-phase commit protocol (described in Chapter 23)
among the caches.

Database caches can address the problems of multiple bean caches within a single
SMP server, as shown in Figure 22-7. By caching at the database level instead of the
bean level, one database cache provides consistency across all of the application server
instances on a single server. Synchronization across multiple physical servers is still
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required, however. If the ratio of database reads to database updates is high (as, for
example, in a highly personalized web site), the overhead of cache synchronization
will remain relatively low and the benefits of horizontal scaling can be significant.

Figure 22-6. Application servers and EJB caching
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Oracle has used database caching within its own Oracle Application Server, and
has attempted to use caching as a competitive advantage. IBM is naturally positioned
to offer integrated database caching for its DB2 DBMS, but has not introduced such
a capability at this writing. Several third-party products have been introduced as
database caches for application servers, including products from several of the
object-oriented database vendors and from in-memory database vendors. Whether
database caching will substantially impact the application server market is still an
open question.

Figure 22-7. Application servers and database caching



Summary
This chapter described application servers and the role they play linking the World
Wide Web to back-end enterprise systems, including enterprise databases:

� Popular application servers implement the J2EE specification, which
standardizes database access through a JDBC API.

� Business logic within an application server is implemented by EJBs,
which may be session beans or entity beans.

� Session beans embody user sessions. They can access databases directly
through JDBC calls.

� Stateless session beans support very simple, one-transaction-per-invocation
data access.

� Stateful beans support transactions that cross invocations, but their logic
must handle the need to persist state across passivations and activations.

� Entity beans embody real-world objects, and correspond to rows in database
tables. They are always stateful.

� Entity beans can use container-managed persistence, where the application
server automatically handles entity bean/database synchronization.

� Alternatively, entity beans can take responsibility for their own database
synchronization, under the bean-managed persistence scheme.
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O
ver the last two decades, computer networking has radically transformed the
landscape of corporate computing. In most companies, every personal computer
is connected to a local area network (LAN). Powerful LAN-attached workgroup

servers meet the computing needs of individual departments. Corporatewide networks
interconnect the LANs within a building or campus, and connect them to divisional or
corporate data centers. Additional links interconnect corporate locations around the
world. The Internet provides a network of networks, linking companies to one another
and to individual customers. Application programs run on computers at every level and
at every location within this networked environment.

In this new, highly-networked environment, computer data does not reside
on a single system under the control of a single DBMS. Instead, data within an
organization is spread across many different systems, each with its own database
manager. Often, the various computer systems and database management systems
come from different manufacturers. As companies try to interconnect their data
processing systems via the Internet, the challenge becomes even greater. Even if
a company has managed to standardize on a single, companywide DBMS and on
database structures, those standards won’t apply to its suppliers or customers as
it tries to build external links to conduct business electronically.

These trends have led to a strong focus in the computer industry and in the data
management community on the problems of database management in a networked
environment. This chapter discusses the challenges of managing distributed data, the
variety of architectural approaches, and some of the products that DBMS vendors have
offered to meet those challenges.

The Challenge of Distributed Data Management
When the foundations of relational database management and the SQL language
were being laid in the 1970s, almost all commercial data processing happened on large,
centralized computer systems. The company’s data was stored on mass storage attached
to the central system. The business programs that processed transactions and generated
reports ran on the central system and accessed the data. Much of the workload of the
central system was batch processing. Online users accessed the central system through
“dumb” computer terminals with no processing power of their own. The central system
formatted information to be displayed for the online user and accepted data typed by the
user for processing.

In this environment, the roles of a relational database system and its SQL language
were clear and well contained. The DBMS had responsibility for accepting, storing,
and retrieving data based on requests expressed in the SQL language. The business-
processing logic resided outside the database and was the responsibility of the business
programs developed and maintained by the information systems staff. The programs
and the DBMS software executed on the same centralized system where the data was
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stored, so the performance of the system was not affected by external factors like
network traffic or outside system failures.

Commercial data processing in a modern corporation has evolved a long way from the
centralized environment of the 1970s. Figure 23-1 shows a portion of a computer network
that you might find in a manufacturing company, a financial services firm, or a distribution
company today. Data is stored on a variety of computer systems in the network:

� Mainframes. The company’s core data processing applications, such as
accounting and payroll, run on an IBM mainframe. The oldest applications,
developed and maintained over the last 20 or 30 years, still store their data
in hierarchical IMS databases. The company has a strategy to migrate
these applications to DB2 over time, and all new mainframe applications
development uses DB2 as its database manager.

� Workstations and UNIX-based servers. The company’s engineering organization
uses UNIX-based workstations and servers (from Sun Microsystems) for
engineering design, testing, and support. Engineering test results and specifications
are stored in an Oracle database. The company also uses Oracle databases running
on UNIX-based servers from Hewlett-Packard located in its six distribution centers
to manage inventory and to process orders.

� LAN servers. All of the company’s departments have individual PC LANs
to share printers and files. Some of the departments also have local databases
to support their work. For example, the personnel department has purchased
a human resources management system software package, and it uses SQL
Server on Windows NT to store its data. In the financial planning department,
the data processing staff has built a custom-written corporate planning
application, which uses Informix Universal Server.

� Desktop personal computers. All of the company’s office workers use
personal computers. Many of the administrative assistants and some of the
senior managers maintain personal databases using Excel spreadsheets,
Microsoft Access, or one of the lightweight DBMS products, such as Oracle
Light. In a few cases, the databases are shared with other users, using LAN
versions of these products.

� Mobile laptop PCs. The company recently purchased a sales force automation
software package and equipped every salesperson with a laptop PC. The
laptop runs sales presentations, sends and receives e-mail, and also holds a local
lightweight database (SQL Anywhere from Sybase) with recent product pricing
and availability data. The database also captures orders entered by the salesperson.
At night, the laptop PC connects to the corporate network over a dialup connection,
transmits its orders, and receives updated information for its local copy of the
products database.



� Handheld devices. The company’s management team has widely adopted
handheld personal digital assistants (PDAs). In addition to the personal
calendar and address-book functions, applications running on the PDA
can use wireless network connections to check prices and enter customer
orders. The wireless network can also be used to alert users, via their PDAs,
of important database changes, such as price updates or product shortages.

� Internet connections. The company has an Internet web site where customers,
dealers, and distributors can find out the latest information about its products
and services. At first, this was an information-only web site, but competitors
have recently begun accepting customer orders directly via the Internet.
One of the corporate IS department’s highest priorities is to respond to
this competitive challenge by supporting e-commerce transactions on the
company’s web site.
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Figure 23-1. DBMS usage in a typical corporate network
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With data spread over many different systems, it’s easy to imagine requests that span
more than one database and the possibility for conflicting data among the databases:

� An engineer needs to combine lab test results (on an engineering workstation)
with production forecasts (on the mainframe) to choose among three alternative
technologies.

� A financial planner needs to link financial forecasts (in an Informix database) to
historical financial data (on the mainframe).

� A product manager needs to know how much inventory of a particular product
is in each distribution center (data stored on six UNIX servers) to plan product
obsolescence.

� Current pricing data needs to be downloaded daily from the mainframe to the
distribution center servers, and also to all of the sales force’s laptop computers.

� Orders need to be uploaded daily from the laptop systems and parceled out to
the distribution centers; aggregate order data from the distribution centers must
be uploaded to the mainframe so that the manufacturing plan can be adjusted.

� Salespeople may accept customer orders and make shipment date estimates for
popular products based on their local databases, without knowing that other
salespeople have made similar commitments. Orders must be reconciled and
prioritized, and revised shipment estimates provided to customers.

� Engineering changes made in the workstation databases may affect product costs
and pricing. These changes must be propagated through the mainframe systems
and out to the web site, the distribution centers, and the sales force laptops.

� Managers throughout the company want to query the various shared databases
using the PCs on their desktops.

As these examples suggest, effective ways of distributing data, managing distributed
data, and providing access to distributed data have become critical as data processing
has moved to a distributed computing model. The leading DBMS vendors are committed
to delivering distributed database management, and currently offer a variety of products
that solve some of the distributed data problems illustrated by these examples. Distributed
data management has also been the focus of extensive university and corporate research,
and many technical articles have been published about the theory of distributed data
management and the trade-offs involved. There is general agreement among the
researchers about the ideal characteristics that should be provided by a scheme to
manage distributed databases:

� Location transparency. The user shouldn’t have to worry about where the data
is physically located. The DBMS should present all data as if it were local and
be responsible for maintaining that illusion.

� Heterogeneous systems. The DBMS should support data stored on different
systems, with different architectures and performance levels, including PCs,
workstations, LAN servers, minicomputers, and mainframes.
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� Network transparency. Except for differences in performance, the DBMS
should work the same way over different networks, from high-speed LANs to
low-speed telephone links.

� Distributed queries. The user should be able to join data from any of the tables
in the (distributed) database, even if the tables are located on different physical
systems.

� Distributed updates. The user should be able to update data in any table for
which the user has the necessary privileges, whether that table is on the local
system or on a remote system.

� Distributed transactions. The DBMS should support distributed transactions
(using COMMIT and ROLLBACK) across system boundaries, maintaining the
integrity of the (distributed) database even in the face of network failures and
failures of individual systems.

� Security. The DBMS must provide a security scheme adequate to protect the
entire (distributed) database from unauthorized forms of access.

� Universal access. The DBMS should provide universal, uniform access to all
of the organization’s data.

No current distributed DBMS product even comes close to meeting this ideal, and it’s
unlikely that any product ever will. In practice, formidable obstacles make it difficult to
provide even simple forms of distributed database management. These obstacles include:

� Performance. In a centralized database, the path from the DBMS to the data
has an access speed of a few milliseconds and a data transfer rate of millions of
characters per second. Even on a fast local area network, access speeds lengthen
to hundredths or tenths of a second, and transfer rates can fall to 100,000
characters per second or less. On a modem link, data access may take seconds
or minutes, and a few thousand characters per second may be the maximum
effective throughput. This vast difference in speeds can dramatically slow the
performance of remote data access.

� Integrity. Distributed transactions require active cooperation by two or more
independent copies of the DBMS software running on different computer
systems if the transactions are to remain all-or-nothing propositions. Special
two-phase commit transaction protocols must be used. These protocols
generate a great deal of network traffic and lock parts of the databases that
are participating in the distributed transaction for long periods of time.

� Static SQL. A static embedded SQL statement is compiled and stored in the
database as an application plan. When a query combines data from two or more
databases, where should its application plan be stored? Must there be two or
more cooperating plans? If there is a change in the structure of one database, how
do the application plans in the other databases get notified? Using dynamic SQL
to solve these problems in a networked database environment almost always
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leads to unacceptably slow application performance, due to network overhead
and delays.

� Optimization. When data is accessed across a network, the normal rules for SQL
optimization don’t apply. For example, it may be more efficient to sequentially scan
an entire local table than to use an index search on a remote table. The optimization
software must know about the network(s) and their speeds. Generally speaking,
optimization becomes both more critical and more difficult.

� Data compatibility. Different computer systems support different data types,
and even when two systems offer the same data type, they often use different
formats. For example, a Windows PC and a Macintosh store 16-bit integers
differently. IBM mainframes store EBCDIC character codes while UNIX-based
servers and PCs use ASCII. A distributed DBMS must mask these differences.

� System catalogs. As a DBMS carries out its tasks, it makes very frequent access to
its system catalogs. Where should the catalog be kept in a distributed database? If
it is centralized on one system, remote access to it will be slow, bogging down the
DBMS. If it is distributed across many different systems, changes must be
propagated around the network and synchronized.

� Mixed-vendor environment. It’s highly unlikely that all the data in an
organization will be managed by a single brand of DBMS, so distributed
database access will cross DBMS brand boundaries. This requires active
cooperation between DBMS products from highly competitive vendors—an
unlikely prospect. As the DBMS vendors scramble to extend the capabilities
of their products with new features, capabilities, and data types, the ability
to sustain a cross-vendor standard is even less likely.

� Distributed deadlocks. When transactions on two different systems each try to
access locked data on the other system, a deadlock can occur in the distributed
database, even though the deadlock is not visible on either of the two systems.
The DBMS must provide global deadlock detection for a distributed database.
Again, this requires coordination of processing across a network and will
typically lead to unacceptably slow application performance.

� Recovery. If one of the systems running a distributed DBMS fails, the operator
of that system must be able to run its recovery procedures independent of the
other systems in the network, and the recovered state of the database must be
consistent with that of the other systems.

Distributing Data: Practical Approaches
Because of the formidable obstacles to realizing the ideal distributed database, DBMS
vendors have taken a step-by-step approach to databases and networking. They have
focused on specific forms of network database access, data distribution, and distributed
data management that are appropriate for particular application scenarios. For example,



a DBMS vendor may first provide tools to rapidly extract subset data from a master
database and send it across a network for loading into a slave database. Later, the vendor
may enhance the tool to track updates to the master database since the last extract, and
to extract and transmit only the changes to the master database.

A subsequent version of the tool may automate the entire process, providing a
graphical user interface for specifying the data to be extracted and scripts to automate
the periodic extract process. Similarly, a DBMS may provide initial support for distributed
queries by allowing a user on one system to query a database located on another
system. In subsequent releases, the DBMS may allow the remote query as a subquery
within a query that accesses local database tables. Still later, the DBMS may allow
distributed queries that more freely intermix data from local and remote databases.

Remote Database Access
One of the simplest approaches to managing data stored in multiple locations is remote
data access. With this capability, a user of one database is given the ability to reach out
across a network and retrieve information from a different database. In its simplest
form, this may involve carrying out a single query against the remote database, as
shown in Figure 23-2. It may also involve performing an INSERT, UPDATE, or DELETE
statement to modify the remote database contents. This type of requirement often
arises when the local database is a satellite database (such as a database in a local sales
office or distribution center) and the remote database is a central, corporate database.
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Figure 23-2. A remote database server access request



C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 803
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

In addition to the remote data access request, Figure 23-2 also shows a client/server
request to the remote database from a (different) PC user. Note that, from the standpoint of
the remote database, there is very little difference between processing the request from the
PC client and processing the remote database access request. In both cases, a SQL request
arrives across the network and the remote database determines that the user making the
request has appropriate privileges and then carries it out. And, in both cases, the status of
the SQL processing is reported back across the network.

The local database in Figure 23-2 must do some very different work than the
process it normally uses to process local database requests, however. There are several
complications for the local DBMS:

� It must determine which remote database the user wants to access, and how it
can be accessed on the network.

� It must establish a connection to the remote database for carrying out remote
requests.

� It must determine how the local user authentication and privilege scheme maps
to the remote database. That is, does it simply pass the user name/password
supplied for local database access to the remote database, or is a different
remote user name/password supplied, or should some kind of automatic
mapping be performed?

In effect, the local DBMS becomes an agent for the user making the remote access
request. It becomes a client in a client/server connection to the remote DBMS.

Several of the leading enterprise DBMS vendors offer the kind of remote database
access capability shown in Figure 23-2. They differ in the specific way that remote
access is presented to the user and to the database administrator. In some cases, they
involve extensions to the SQL language accepted by the DBMS. In others, the extra
mechanisms for establishing remote access are mostly external to the SQL language.

Sybase offers a simple entry-level remote database access capability. While connected
to a local Sybase installation, the user can issue a CONNECT TO SQL statement, naming a
remote server that is known to the local server. For example, if a remote server named
CENTRALHOST contains a copy of the sample database, then this statement:

CONNECT TO CENTRALHOST

makes that remote server the current server for the session. The local server in effect
enters a passthrough mode, sending all SQL statements to the remote server. The
remote database can now be processed directly over the connection, with standard,
unmodified queries and data manipulation statements:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES

FROM SALESREPS

WHERE SALES > QUOTA
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When the remote access is completed, a companion SQL statement:

DISCONNECT

ends the passthrough mode, and the local server once again becomes the current
server. Except for the CONNECT/DISCONNECT statement pair, the mechanism for
managing remote access is external to the SQL language. The database administrator
tells the local database about the existence, locations, and names of remote servers
through the spaddserver() and spdropserver() system stored procedures.
The current local user name and password are used by default for access to the
remote server. Alternatively, the database administrator can specify a proxy user
name/password that is used for remote server access, again through system stored
procedures. Sybase offers other, more complex distributed database capabilities, but
this basic capability has the advantage of maximum simplicity.

Oracle takes a somewhat different approach to remote database access, but one that
is similar to the capabilities provided by other DBMS brands. It requires that Oracle’s
SQL*Net networking software be installed along with the Oracle DBMS on both the
local and the remote system. The database administrator is responsible for establishing
one or more named database links from the local database to remote databases. Each
database link specifies:

� Network location of the target remote computer system

� Communications protocol to use

� Name of the Oracle database on the remote server

� Remote database user name and password

All remote database access occurs via a database link and is governed by the
privileges of the supplied user name in the remote system. The database link thus
embodies the answers to the “which database,” “how to communicate,” and “what
privileges” questions raised earlier in this section. The database administrator assigns
the database link a name. Links can be private (created for use by a specific user of the
local system) or public (available for use by multiple users of the local system).

To access a remote database over a database link, the local system user uses standard
SQL statements. The name of the database link is appended to the remote table and
view names, following an at sign (@). For example, assume you are on a local computer
system that is connected to a copy of the sample database on a remote system over a
database link called CENTRALHOST. This SQL statement retrieves information from the
remote SALESREPS table:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES

FROM SALESREPS@CENTRALHOST

WHERE SALES > QUOTA



C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 805
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

Oracle supports nearly all of the query capabilities that are available for the local
database against remote databases. The only restriction is that every remote database
entity (table, view, and so on) must be suffixed with the database link name. Here is
a two-table join, executed on the remote Oracle database:

Get the names and office cities of all salespeople who are already over quota.

SELECT NAME, CITY, QUOTA, SALES

FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST

WHERE SALES > QUOTA

AND REP_OFFICE = OFFICE

Oracle also supports data definition and database update operations carried out
in the remote database. Here is an example:

Create a new remote table of high-credit-limit customer info in the remote database and
populate it with data from the CUSTOMERS table.

CREATE TABLE HIGHCUST@CENTRALHOST

(CUST_NUM INTEGER NOT NULL,

COMPANY VARCHAR(20) NOT NULL,

REP_NAME VARCHAR(15))

INSERT INTO HIGHCUST@CENTRALHOST

SELECT CUST_NUM, COMPANY, NAME

FROM CUSTOMERS@CENTRALHOST, SALESREPS@CENTRALHOST

WHERE CREDIT_LIMIT > 50000.00

AND CUST_REP = EMPL_NUM

Informix Universal Server provides capabilities that are similar to those offered by
Oracle, but uses a different mechanism for identifying remote databases and a different
SQL syntax extension. The Informix architecture differentiates between a remote
database server and a remote database that is managed by the remote server, since it
tends to provide rich support for multiple, named databases per server. Suppose an
Informix copy of the sample database is called SAMPLE and it resides on a remote
database server called CENTRALHOST. Then this query is equivalent to the previous
Oracle and Sybase examples:

Get the names and sales numbers of all salespeople who are already over quota.

SELECT NAME, QUOTA, SALES

FROM SAMPLE@CENTRALHOST:SALEREPS

WHERE SALES > QUOTA
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The database name appears at the beginning of the table name (as an additional
qualifier before the colon). If the database is remote, then the server name appears
following the at sign (@) after the database name.

Remote Data Transparency
With any of the remote database-naming conventions that extend the usual SQL table
and view names, the additional qualifiers can quickly become annoying or confusing.
For example, if two tables in the remote database have columns with the same names,
any query involving both tables must use qualified column names—and the table name
qualifiers now have the remote database qualification as well. Here’s a qualified Informix
column name for the NAME column in the remote SALESREPS table owned by the user
JOE in a remote database named SAMPLE on the remote Informix server CENTRALHOST:

SAMPLE@CENTRALHOST.JOE.SALESREPS.NAME

A single column reference has grown to half a line of SQL text! For this reason,
table aliases are frequently used in SQL statements involving remote database access.

Synonyms and aliases (described in Chapter 16) are also very useful for providing
more transparent access to remote databases. Here’s an Informix synonym definition
that could be established by a user or a database administrator:

CREATE SYNONYM REMOTE_REPS FOR SAMPLE@CENTRALHOST.JOE.SALESREPS

The equivalent Oracle synonym definition is:

CREATE SYNONYM REMOTE_REPS FOR JOE.SALESREPS@CENTRALHOST

With this synonym in place, the preceding qualified column name becomes simply:

REMOTE_REPS.NAME

Any query referencing the REMOTE_REPS table and its columns is actually a remote
database query, but that fact is transparent to the user. In practice, most database
installations with frequently accessed remote tables will have a set of synonyms defined
for them. Most of the DBMS brands support both public synonyms (available to all users)
and private synonyms that are created for a specific user or group of users. With this
structure, synonyms can become an additional part of the remote access security mechanism,
limited to only those users with a real need for remote access.

Several DBMS brands take the synonym capability for transparent database access
one step further and permit views in the local database that are defined in terms of
remote database tables. Here is an Oracle view definition that creates a view called
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EAST_REPS in the local database. The view is a subset of information from the remote
sample database:

Create a local view defined in terms of two remote tables.

CREATE VIEW EAST_REPS AS

SELECT EMPL_NUM, NAME, AGE, CITY

FROM SALESREPS@CENTRALHOST, OFFICES@CENTRALHOST

WHERE REP_OFFICE = OFFICE

AND REP_OFFICE BETWEEN 11 AND 19

After this view has been defined, a user can pose queries in terms of the EAST_REPS
view, without worrying about database links or remote table names. The view not
only provides transparent remote access, but also hides from the user the remote join
operation between the OFFICES and SALESREPS tables.

Transparent access to remote data, provided by views and synonyms, is usually
considered a very desirable characteristic. It does have one drawback, however.
Because the remote aspect of the database access is now hidden, the network overhead
created by the access is also hidden. Therefore, the possibility of a user or programmer
inadvertently creating a great deal of network traffic through very large queries
is increased. The database administrator must make this trade-off when deciding
whether to permit remote transparent synonyms and views.

Transparent remote access also inevitably raises one additional question: since the
remote tables now appear as if they are local, can the user pose queries that involve both
remote and local tables? That is, can a join cross the database server boundaries and
relate information from the remote database and the local database? Even more serious
questions are posed when the SQL transaction scheme is considered. If a database
permits transparent access to a remote database, then is a user allowed to update a row
in the local database and insert a row in the remote database, and then decide to roll back
the transaction? Since the remote resources have been made to appear as if they are local,
it seems that the answer should be: “Of course—the local and remote databases together
should appear as if they were just one local, integrated database.”

In fact, supporting such distributed queries and transactions adds a major new level
of complexity (and potentially huge network data transmission overhead) to the remote
access. Because of this, although several commercial DBMS systems support distributed
queries and transactions, they are not heavily used in practice. These capabilities, and
their overhead implications, are more fully discussed later, in the “Distributed Database
Access” section. The next section discusses a practical alternative—duplicating data, or
database replication—that is much more frequently used in practice.

Table Extracts
Remote database access is very convenient for small remote queries and occasional
remote database access. If an application requires heavy and frequent access to a remote



database, however, the communications overhead of remote database access can become
large. Once remote access grows beyond a certain point, it is often more efficient to
maintain a local copy of the remote data in the local database. Many of the DBMS vendors
provide tools to simplify the process of data extraction and distribution. In its simplest
form, the process extracts the contents of a table in a master database, sends it across a
network to another system, and loads it into a corresponding replica table in a slave
database, as shown in Figure 23-3. In practice, the extract is performed periodically and
during off-peak times of database activity.

This approach is very appropriate when the data in the replicated table changes
slowly, or when changes to the table naturally occur in a batch. For example, suppose
some tables of the sample database, located on a remote central computer system, are
to be replicated in a local database. The contents of the OFFICES table hardly ever
change. It would be an excellent candidate for replication onto distribution center or
sales force automation databases. Once the initial (local) replica tables are set up and
populated, they might need to be updated only once per month, or when a new sales
office is opened.

The PRODUCTS table is also a good candidate for replication. Product price changes
occur more frequently than office changes, but in most companies, they happen in
batches, perhaps once a week or once a day. With this natural processing cycle, it
would be very effective to extract a table of product price data just after each batch of
updates, and send it to the distribution center databases and the sales force automation
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Figure 23-3. A basic master/slave replicated architecture
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central database. The price data in these databases does not need to be tightly linked to
the mainframe database to insure that it is fresh. A weekly or daily extract/update
cycle will make the data just as current, with substantially less processing workload.

It’s possible to implement this type of replicated-table strategy without any support
from the DBMS. You could write an application program that uses SQL on the
mainframe to extract the product pricing data into a file. A file transfer program could
transmit the file to the distribution centers, where another application program could
read its contents and generate the appropriate DROP TABLE, CREATE TABLE, and
INSERT statements to populate the replicated table.

The first step toward automating this strategy was the development of high-speed
data extract and data loading programs. These utility programs, offered by the DBMS
vendors, typically use proprietary, lower-level database access techniques to extract the
data and load the data much more rapidly than is possible through SQL SELECT and
INSERT statements. More recently, software companies have targeted this area as an
opportunity for stand-alone software packages, independent of the DBMS vendors.
This category of software, called Enterprise Application Integration (EAI) software,
focuses on linking disparate computer systems, software packages, database systems,
and file formats. Linking different DBMS systems is a small part of the total solution
offered by these systems, which are extensively customized to meet an individual
company’s needs when they are installed. The EAI systems typically offer a graphical
user interface for specifying the data extraction, an array of tools for reformatting data
between the source and destination systems, a messaging capability for transmitting
the data, perhaps a store-and-forward capability for staging extracted data before and
after transmission, and utilities for managing and monitoring the overall process.

Table Replication
Several DBMS vendors have moved beyond their extract and load utility programs to
offer support for table extraction within the DBMS itself. Oracle, for example, offers a
snapshot facility to automatically create a local copy of a remote table. In its simplest
form, the local table is a read-only replica of the remote master table, which is
automatically refreshed by the Oracle DBMS periodically. Here is an Oracle SQL
statement to create a local copy of product pricing data, assuming that the remote
master database includes a PRODUCTS table like the one in the sample database:

Create a local replica of pricing information from the remote PRODUCTS table.

CREATE SNAPSHOT PRODPRICE

AS SELECT MFR_ID, PRODUCT_ID, PRICE

FROM PRODUCTS@REMOTE_LINK

This statement effectively creates a local Oracle table named PRODPRICE. It
contains three columns, specified by the SELECT statement against the remote (master)
database. The at sign and name REMOTE_LINK in the statement tell Oracle that the
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PRODUCTS table from which the data is to be replicated is a remote table, accessible via
the Oracle database link named REMOTE_LINK. The Oracle database administrator sets
up these remote database links as part of the distributed Oracle capabilities that are
required to use the snapshot feature. Finally, the CREATE SNAPSHOT statement will
actually cause the local PRODPRICE snapshot table to be populated with data from the
remote PRODUCTS table.

With this type of read-only snapshot, users are not allowed to change the snapshot
table with INSERT, UPDATE, or DELETE statements. All database updates occur in the
master (remote) table and are propagated to the replicated (snapshot) table by Oracle.
The database administrator can manually refresh the snapshot table as desired. The
CREATE SNAPSHOT statement also includes rather comprehensive facilities for specifying
automatic refreshes. Here are some examples:

Create a local replica of pricing information from the remote PRODUCTS table. Refresh the
data once per week, with a complete reload of the data.

CREATE SNAPSHOT PRODPRICE

REFRESH COMPLETE START WITH SYSDATE NEXT SYSDATE+7

AS SELECT MFR_ID, PRODUCT_ID, PRICE

FROM PRODUCTS@REMOTE_LINK

Create a local replica of pricing information from the remote PRODUCTS table. Refresh the
data once per day, sending only changes from the master table.

CREATE SNAPSHOT PRODPRICE

REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1

AS SELECT MFR_ID, PRODUCT_ID, PRICE

FROM PRODUCTS@REMOTE_LINK

In the latter example, the snapshot is refreshed by transmitting only changes from
the remote PRODUCTS table. Oracle implements this capability by maintaining a log
of changes (a snapshot log) on the remote system and updating the log every time an
update to the PRODUCTS table would affect the snapshot replica. When the time for a
refresh arrives, information from the snapshot log is used.

For applications like this one, where product price changes probably affect only a
small percentage of the overall table, this strategy is effective. The additional overhead of
maintaining the log for the master table is more than offset by the reduced network traffic
of transmitting only changed data. In other applications, where a large percentage of the
rows in the master table will be modified between refreshes, it may be more efficient to
simply do a complete refresh and eliminate the overhead of maintaining the snapshot log.

By default, Oracle identifies rows (to determine whether they are changed) based
on their primary key. If the primary key is not part of the replicated data, this can
cause confusion about which rows have been updated; in this case, Oracle uses an
internal row-id number to identify the modified rows for refreshes to the snapshot.



C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 811
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

The SELECT statement that defines the snapshot table offers a very general capability
for data extraction. It can include a SELECT clause to extract only selected rows of the
master table:

Create a local replica of pricing information for high-priced products from the remote
PRODUCTS table. Refresh the data once per day, sending only changes from the master table.

CREATE SNAPSHOT PRODPRICE

REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1

AS SELECT MFR_ID, PRODUCT_ID, PRICE

FROM PRODUCTS@REMOTE_LINK

WHERE PRICE > 1000.00

Note that this makes maintaining the snapshot log more complex. Oracle does not
need to add to the log all updates to the PRODUCTS table; only those that modify rows
that meet the search criterion. The snapshot can also be created as a joined table, extracting
its data from two or more master tables in the remote database:

Create a local replica of salesperson data, refreshed weekly.

CREATE SNAPSHOT SALESTEAM

REFRESH FAST START WITH SYSDATE NEXT SYSDATE+7

AS SELECT NAME, QUOTA, SALES, CITY

FROM SALESREPS@REMOTE, OFFICES@REMOTE

WHERE REP_OFFICE = OFFICE

Adding to the complexity, the snapshot can be defined by a grouped query:

Create a local summary of customer order volume, refreshed daily.

CREATE SNAPSHOT CUSTORD

REFRESH FAST START WITH SYSDATE NEXT SYSDATE+1

AS SELECT COMPANY, SUM(AMOUNT)

FROM CUSTOMERS@REMOTE, ORDERS@REMOTE

WHERE CUST = CUST_NUM

Of course, with each level of additional complexity, the overhead of managing the
snapshot and the replication process increases. Regardless of how simple or complex
the definition of the snapshot, however, the overall principles remain the same. Instead
of having queries against the replicated data travel across the network to the remote
database, the remote data is brought down into the snapshot. The refreshes to the
snapshot still generate network traffic, but the day-to-day queries against the snapshot
data are carried out locally and do not generate network traffic. For situations where
the query workload is much higher than the overhead of maintaining the snapshot,
this can be an effective way to improve overall database performance.
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Updateable Replicas
In the simplest implementations, a table and its replicas have a strict master/slave
relationship, as shown in Figure 23-3. The central/master copy contains the real data. It is
always up to date, and all updates to the table must occur on this copy of the table. The
other slave copies are populated by periodic updates, managed by the DBMS. Between
updates, they may become slightly out of date, but if the database is configured in this
way, then it is an acceptable price to pay for the advantage of having a local copy of the
data. Updates to the slave copies are not permitted. If attempted, the DBMS returns an
error condition.

By default, the Oracle CREATE SNAPSHOT statement creates this type of slave replica
of a table. The master/slave relationship is implicit in the Microsoft SQL Server structure
for replication. The SQL server architecture defines the master as the publisher of the data
and the slaves as subscribers to the data. In the default configuration, there is a single
(updateable) publisher, and there may be multiple (read-only) subscribers. The SQL
Server architecture carries this analogy one step further, supporting both the notion of push
updates (the publisher actively sends the update data to the subscribers) and pull updates
(where the subscribers have primary responsibility for getting updates from the publisher).

There are some applications for which table replication is an excellent technique,
but where the master/slave relationship does not apply. For example, applications that
demand high availability use replicated tables to maintain identical copies of data on
two different computer systems. If one system fails, the other contains current data and
can carry on processing. An Internet application may demand very high database
access rates, and achieve this scalability by replicating a table many times on different
computer systems and then spreading out the workload across the systems. A sales
force automation application will probably contain one central CUSTOMER table and
hundreds of replicas on laptop systems, and individual salespeople should be able to
enter new customers or change customer contact information on the laptop replicas. In
these configurations (and others), the most efficient use of the computer resources is
achieved if all of the replicas can accept updates to the table, as shown in Figure 23-4.

A replicated table where multiple copies can accept updates creates a new set of
data integrity issues. What happens if the same row of the table is updated in one or
more replicas? When the DBMS tries to synchronize the replicas, which of the two
updates should apply, or should neither apply, or both? What happens if a row is
deleted from one copy of the table, but it is updated in another copy of the table?

In DBMS systems that support updateable replicas, these issues are addressed
by creating a set of conflict resolution rules that are applied by the replication system.
For example, when replication is set up between a central CUSTOMER table and laptop
versions of the table, the replication rule may say that changes to the central customer
database always win over changes entered on a laptop system. Alternatively, the
replication rule might say that the most recent update always wins. In addition to the
built-in rules provided by the DBMS itself, the replication definition may include the
capability to pass conflicts to a user-written procedure (such as a stored procedure
within the database) for selection of the winner and loser replicas.
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Replication Trade-Offs
Practical replication strategies always involve a trade-off between the desire to keep
data as current as possible and the desire to keep network traffic down to a practical
level and provide adequate performance. These trade-offs usually involve not just
technical considerations, but business practices and policies as well. For example,
consider an order-processing application using the sample database, and assume that
order processing is distributed across five different call centers that are geographically
distributed around the world. Each call center has its own computer system and
database. Incoming orders are checked against the PRODUCTS table to be certain that
enough inventory is on hand to fill the order. The PRODUCTS table keeps track of
product-on-hand quantities for all of the company’s warehouses, worldwide.

Suppose the company’s policy is that the order-processing clerk must be able to
absolutely guarantee a customer that products can be shipped within 24 hours of the
time an order is accepted. In this case, the PRODUCTS table must contain absolutely
up-to-the-minute data, reflecting the inventory impact of orders taken just seconds
earlier. There are only two possible designs for the database in this case. There could be a
single, central copy of the PRODUCTS table, shared by all users at all five order-processing
sites. Alternatively, there could be a fully mirrored copy of the PRODUCTS table at each of
the five sites. The fully mirrored solution is almost certainly impractical because the
frequent updates to the PRODUCTS table as each order is taken will cause excessive
network traffic to keep the five copies of the table in perfect synchronization.

Figure 23-4. Replicas with multiple update sites
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But suppose the company believes it can still maintain adequate customer
satisfaction with a policy that is slightly less strict—for example, it promises to notify
any customer within 24 hours if the order cannot be filled immediately and give the
customer an opportunity to cancel the order. In this case, a replicated PRODUCTS table
becomes an excellent solution. Once a day, updates to the PRODUCTS table can be
downloaded to the replicated copy at each of the five sites. During the day, orders are
verified against the local copy of the PRODUCTS table, but only the local PRODUCTS table
is updated. This prevents the company from taking an order for which there was not
adequate stock on hand at the beginning of the day, but it does not prevent orders
taken at two or three different sites from exceeding the available stock. The next night,
when data communications costs are lower than they are during the day, the orders
from each site are transmitted to a central site, which processes them against a central
copy of the PRODUCTS table. Orders that cannot be filled from inventory are flagged,
and a report of them is generated. When processing is complete, the updated PRODUCTS
table, along with the problem orders report, is transmitted back to each of the five sites
to prepare for the next day’s processing.

Which is the correct architecture for supporting the operation of this global
business? As the example shows, it is not so much a database architecture question
as a business policy question. The interdependence of computer systems architectures
and business operations is one of the reasons why decisions about replication and
data distribution inevitably make certain types of business operations easier and
others harder.

Typical Replication Architectures
In many cases, it’s possible to structure an application that involves replicated data so
that conflicts between replica updates are avoided or greatly minimized. The DBMS
conflict resolution rules are then applied as a last resort, when a conflict arises despite
the design of the application. The next few sections describe some typical replicated
table scenarios and the application structure that is often used in each scenario to
minimize replication conflicts.

Horizontal Table Subsets
One efficient way to replicate parts of a table across a network is to divide the table
horizontally, placing different rows of the table on different systems. Figure 23-5 shows
a simple example where a horizontal table split is useful. In this application, a company
operates three distribution centers, each with its own computer system and DBMS to
manage an inventory database and order processing. A central database is also maintained
for production-planning purposes.

To support this environment, the PRODUCTS table is split horizontally into three
parts and expanded to include a LOCATION column that tells where the inventory is
located. The central copy of the table contains all of the rows. The rows of the table
that describe inventory in each distribution center are replicated in the local database
managed by that center’s DBMS.
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In this case, most updates to the PRODUCTS table take place at the distribution
center itself, as it processes orders. Because distribution center replicas are mutually
exclusive (that is, a row from the PRODUCTS table appears in only one distribution
center replica), update conflicts are avoided. The replicas in the distribution center
can periodically transmit updates to the central database to keep it up to date.

Vertical Table Subsets
Another efficient way to manage table replication is to divide the table vertically,
replicating different columns of the table on different systems. Figure 23-6 shows a
simple example of a vertical table split. The SALESREPS table has been expanded to
include new columns of personnel information (phone number, marital status, and
so on), and its information is needed in two databases—one in the order-processing
department and the other in the personnel department. Most of the activity in each
department focuses on one or two columns of the table, but many queries and reports
use both personnel-related and order-related columns.

To accommodate this application, the SALESREPS table is replicated on both systems,
but conceptually, it is split vertically into two parts. The columns of the table that store
personnel data (NAME, AGE, HIRE_DATE, PHONE, MARRIED) are owned by the personnel
system. It wins any conflicts related to updates on these columns. The other columns
(EMPL_NUM, QUOTA, SALES, REP_OFFICE) are owned by the order-processing system. It
wins update conflicts related to these columns. Because the entire table is replicated on

Figure 23-5. Replication of horizontal table slices



both systems, either system can be used to generate reports and handle ad hoc inquiries,
and all of these can be processed locally. Only updates involve the replication mechanism,
generate network traffic, and potentially require conflict resolution.

Mirrored Tables
When table replication is used to achieve high availability (that is, resistance to computer
or database failure), the entire table is typically mirrored, as shown in Figure 23-7. The
easiest way to implement this configuration is if one system is the active system and
another is a hot standby. In this scheme, all database access normally flows to the active
system (System A), which replicates any updates to the standby system (System B). Only
in the event of system failure does the database access switch over to the standby system,
but it has fresh data because of the replicated table. The disadvantage of this scheme is
that it wastes the standby computer system under normal operation. The system must be
paid for and maintained, but it doesn’t add any data processing capacity.

For this reason, high-availability systems are often designed to also provide load
balancing, as shown in Figure 23-8. In this configuration, some front-end software
intercepts DBMS access requests and evenly distributes them between the two (or
more) computer systems. Under normal operation, both (all) systems contribute data
processing power; none is wasted. Furthermore, it’s conceptually easy to grow the
data processing power, simply by adding more computer systems with a copy of the
replicated table.
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Figure 23-6. Replication of vertical table slices
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Figure 23-7. Mirrored table replication

Figure 23-8. Replication for load balancing



This type of mirrored table approach can be highly effective if the ratio of database
queries to database updates is very high (for example, 95 percent read access/5 percent
update access). If the percentage of updates is higher, the potential for conflicts and
the replication overhead can diminish the effectiveness and scalability of the overall
configuration. Efficiency also decreases with each increase in the number of replicated
systems, since the replication overhead rises.

One common way to get more efficiency out of a mirrored table configuration
like the one in Figure 23-8 is to divide updates to the table based on some rule. For
example, if the mirrored table is a customer table, the primary key may be the customer
name. The front-end load-balancing software can then be written so that updates for
customer names starting with A through M are routed to the one system and updates
for customer names starting with N through Z are routed to the other system. This
eliminates the possibility of update conflicts. Because the table remains fully replicated
under this scenario, read access requests can still be distributed randomly between the
two systems to balance the workload. This type of approach can be quite effective in
achieving scalable database performance with replicated tables. It can be fairly easily
extended from a two-way scheme to an N-way scheme, where updates are split among
three or more database servers.

Distributed Database Access
Over the last several years, research into fully distributed database access has slowly but
surely found its way into commercial products. Today, many of the mainstream enterprise
database products offer at least some level of transparent distributed database access. As
noted earlier in the “Remote Data Transparency” section, the performance implications of
distributed database access and updates can be very substantial. Two very similar-looking
queries can create massively different amounts of network traffic and overhead. A single
query, carried out in a brute force method or an optimized method, can create the same
differences, depending on the quality of the optimization done by the DBMS.

Because of these challenges, all of the vendors have taken a step-by-step approach
to delivering distributed database access. When IBM first announced its blueprint for
distributed data management in its SQL products, it defined a four-stage approach.
IBM’s four stages, shown in Table 23-1, provide an excellent framework for understanding
distributed data management capabilities and their implications.

The IBM scheme provides a simple model for defining the distributed data access
problem: a user of one computer system needs to access data stored on one or more
other computer systems. The sophistication of the distributed access increases at each
stage. Thus, the capabilities provided by a given DBMS can be described in terms of
which stage it has reached. In addition, within each stage, a distinction can be made
between read-only access (with the SELECT statement) and update access (with the
INSERT, DELETE, and UPDATE statements). A DBMS product often provides read-only
capability for a given stage before full update capability is provided.
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Remote Requests
The first stage of distributed data access, as defined by IBM, is a remote request, shown
in Figure 23-9. In this stage, the PC user may issue a SQL statement that queries or
updates data in a single remote database. Each individual SQL statement operates as
its own transaction, similar to the autocommit mode provided by many interactive SQL
programs. The user can issue a sequence of SQL statements for various databases, but
the DBMS doesn’t support multistatement transactions.

Remote requests are very useful when a PC user needs to query corporate data.
Usually, the required data is located within a single database, such as a database of
order-processing or manufacturing data. Using a remote request, the PC program can
retrieve the remote data for processing by a PC spreadsheet, graphics program, or
desktop publishing package.

The remote request capability is not powerful enough for most transaction-
processing applications. For example, consider a PC-based order entry application
that accesses a corporate database. To process a new order, the PC program must
check inventory levels, add the order to the database, decrease the inventory totals,
and adjust customer and sales totals, involving perhaps half a dozen different
SQL statements. As explained in Chapter 11, database integrity can be corrupted
if these statements do not execute as a single transaction. However, the remote
request stage does not support multistatement transactions, so it cannot support
this application.
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Stage Description

Remote request Each SQL statement accesses a single remote
database; each statement is a transaction.

Remote transaction Each SQL statement accesses a single remote
database; multistatement transactions are
supported for a single database.

Distributed transaction Each SQL statement accesses a single remote
database; multistatement transactions are
supported across multiple databases.

Distributed request Each SQL statement may access multiple
databases; multistatement transactions are
supported across multiple databases.

Table 23-1. IBM’s Four-Stage Approach for Distributed Database Access
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Remote Transactions
The second stage of distributed data access, as defined by IBM, is a remote transaction
(called a remote unit of work by IBM), shown in Figure 23-10. Remote transactions
extend the remote request stage to include multistatement transaction support. The PC
user can issue a series of SQL statements that query or update data in a remote database
and then commit or roll back the entire series of statements as a single transaction. The
DBMS guarantees that the entire transaction will succeed or fail as a unit, as it does for
transactions on a local database. However, all of the SQL statements that make up
the transaction must reference a single remote database.

Remote transactions open the door for distributed transaction-processing applications.
For example, in an order-processing application, a PC-based order entry program can
now perform a sequence of queries, updates, and inserts in the inventory database to
process a new order. The program ends the statement sequence with a COMMIT or
ROLLBACK for the transaction.

Remote transaction capability typically requires a DBMS (or at least transaction-
processing logic) on the PC as well as the system where the database is located. The
transaction logic of the DBMS must be extended across the network to ensure that the
local and remote systems always have the same opinion about whether a transaction
has been committed. However, the actual responsibility for maintaining database
integrity remains with the remote DBMS.

Remote transaction capability is often the highest level of distributed database
access provided by database gateways that link one vendor’s DBMS to other DBMS
brands. For example, most of the independent enterprise database vendors (Sybase,
Oracle, Informix) provide gateways from their UNIX-based DBMS systems to IBM’s
mainframe DB2 implementation. Some gateway products go beyond the bounds of

Figure 23-9. Distributed data access: remote requests



remote transactions, allowing a user to join, in a single query, tables from a local
database with tables from a remote database managed by a different brand of DBMS.
However, these gateways do not (and cannot, without support from the remote DBMS)
provide the underlying transaction logic required to support the higher stages of
distributed access as defined by IBM. The gateway can ensure the integrity of the local
and remote databases individually, but it cannot guarantee that a transaction will not
be committed in one and rolled back in the other.

Distributed Transactions
The third stage of distributed data access, as defined by IBM, is a distributed transaction
(a distributed unit of work in IBM parlance), shown in Figure 23-11. At this stage, each
individual SQL statement still queries or updates a single database on a single remote
computer system. However, the sequence of SQL statements within a transaction may
access two or more databases located on different systems. When the transaction is
committed or rolled back, the DBMS guarantees that all parts of the transaction on all
of the systems involved in the transaction will be committed or rolled back. The DBMS
specifically guarantees that there will not be a partial transaction, where the transaction
is committed on one system and rolled back on another.

Distributed transactions support the development of very sophisticated transaction-
processing applications. For example, in the corporate network of Figure 23-1, a PC
order-processing application can query the inventory databases on two or three different
distribution center servers to check the inventory of a scarce product and then update the
databases to commit inventory from multiple locations to a customer’s order. The DBMS
ensures that other concurrent orders do not interfere with the remote access of the first
transaction.
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Figure 23-10. Distributed data access: remote transactions
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Distributed transactions are much more difficult to provide than the first two stages
of distributed data access. It’s impossible to provide distributed transactions without the
active cooperation of the individual DBMS systems involved in the transaction. For this
reason, the DBMS brands that support distributed transactions almost always support
them only for a homogeneous network of databases, all managed by the same DBMS
brand (that is, an all-Oracle or all-Sybase network). A special transaction protocol, called
the two-phase commit protocol, is used to implement distributed transactions and ensure
that they provide the all-or-nothing requirement of a SQL transaction. The details of this
protocol are described later in the section “The Two-Phase Commit Protocol.”

Distributed Requests
The final stage of distributed data access in the IBM model is a distributed request, shown
in Figure 23-12. At this stage, a single SQL statement may reference tables from two or
more databases located on different computer systems. The DBMS is responsible for
automatically carrying out the statement across the network. A sequence of distributed
request statements can be grouped together as a transaction. As in the previous distributed
transaction stage, the DBMS must guarantee the integrity of the distributed transaction on
all systems that are involved.

The distributed request stage doesn’t make any new demands on the DBMS
transaction-processing logic, because the DBMS already had to support transactions
across system boundaries at the previous distributed transaction stage. However,
distributed requests pose major new challenges for the DBMS optimization logic. The
optimizer must now consider network speed when it evaluates alternate methods for
carrying out a SQL statement. If the local DBMS must repeatedly access part of a
remote table (for example, when making a join), it may be faster to copy part of the
table across the network in one large bulk transfer rather than repeatedly retrieving
individual rows across the network.

Figure 23-11. Distributed data access: distributed transactions



C h a p t e r 2 3 : S Q L N e t w o r k i n g a n d D i s t r i b u t e d D a t a b a s e s 823
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

The relative sizes of the tables on the local and remote system are also relevant
optimization factors, as well as the selectivity of any search conditions in the SELECT
clause. For some queries, the search conditions may select only one or a few rows on
the local system and hundreds of rows on the remote system, so they should be
applied locally first. For other queries involving the same tables, the relative selectivity
may be reversed, and the remote search condition should be applied. For still other
queries, the join condition itself may limit the rows that participate in both the local
and remote systems, and it may be most efficient to apply it first. In each case, the cost
of the query is not just the cost of the database access but also the cost of shipping the
results of intermediate query execution steps back and forth across the network.

The optimizer must also decide which copy of the DBMS should handle statement
execution. If most of the tables are on a remote system, it may be a good idea for the
remote DBMS on that system to execute the statement. However, that may be a bad
choice if the remote system is heavily loaded. Thus, the optimizer’s task is both more
complex and much more important in a distributed request.

Ultimately, the goal of the distributed request stage is to make the entire distributed
database look like one large database to the user. Ideally, the user would have full access
to any table in the distributed database and could use SQL transactions without knowing
anything about the physical location of the data. Unfortunately, this ideal scenario would
quickly prove impractical in real networks. In a network of any size, the number of tables
in the distributed database would quickly become very large, and users would find it
impossible to find data of interest. The user-ids of every database in the organization
would have to be coordinated to make sure that a given user-id uniquely identified a
user in all databases. Database administration would also be very difficult.

In practice, therefore, distributed requests must be implemented selectively. Database
administrators must decide which remote tables are to be made visible to local users and
which will remain hidden. The cooperating DBMS copies must translate user-ids from
one system to another, allowing each database to be administered autonomously while

Figure 23-12. Distributed data access: distributed requests
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providing security for remote data access. Distributed requests that would consume too
many DBMS or network resources must be detected and prohibited before they impact
overall DBMS performance.

Because of their complexity, distributed requests are not fully supported by any
commercial SQL-based DBMS today, and it will be some time before even a majority
of their features are available. One major step toward distributed processing across
database brands has been the standardization of a distributed transaction protocol. The
XA protocol, originally developed to coordinate among multiple transaction monitors,
is being actively applied to distributed database transactions as well. A Java version of
the same capability, called Java Transaction Protocol (JTP), provides a distributed
transaction interface for Java-based applications and application servers. Today, most
commercial DBMS products designed to be used in a network environment support
XA and JTA interfaces.

The Two-Phase Commit Protocol *
A distributed DBMS must preserve the all-or-nothing quality of a SQL transaction if it
is to provide distributed transactions. The user of the distributed DBMS expects that a
committed transaction will be committed on all of the systems where data resides, and
that a rolled back transaction will be rolled back on all of the systems as well. Further,
failures in a network connection or in one of the systems should cause the DBMS to
abort a transaction and roll it back, rather than leaving the transaction in a partially
committed state.

All commercial DBMS systems that support distributed transactions use a technique
called two-phase commit to provide that support. You don’t have to understand the two-
phase commit scheme to use distributed transactions. In fact, the whole point of the scheme
is to support distributed transactions without your knowing it. However, understanding
the mechanics of a two-phase commit can help you plan efficient database access.

To understand why a special two-phase commit protocol is needed, consider the
database in Figure 23-13. The user, located on System A, has updated a table on System
B and a table on System C and now wants to commit the transaction. Suppose the
DBMS software on System A tried to commit the transaction by simply sending a
COMMIT message to System B and System C, and then waiting for their affirmative
replies. This strategy works as long as Systems B and C can both successfully commit
their part of the transaction.

But what happens if a problem such as a disk failure or a deadlock condition prevents
System C from committing as requested? System B will commit its part of the transaction
and send back an acknowledgment, System C will roll back its part of the transaction
because of the error and send back an error message, and the user ends up with a partially
committed, partially rolled back transaction. Note that System A can’t change its mind at
this point and ask System B to roll back the transaction. The transaction on System B has
been committed, and other users may already have modified the data on System B based
on the changes made by the transaction.
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The two-phase commit protocol eliminates the problems of the simple strategy shown
in Figure 23-13. Figure 23-14 illustrates the steps involved in a two-phase commit:

1. The program on System A issues a COMMIT for the current (distributed)
transaction, which has updated tables on System B and System C. System A
will act as the coordinator of the commit process, coordinating the activities of
the DBMS software on Systems B and C.

2. System A sends a GET READY message to both System B and System C and
notes the message in its own transaction log.

3. When the DBMS on System B or C receives the GET READY message, it must
prepare to either commit or roll back the current transaction. If the DBMS can
get into this “ready to commit” state, it replies YES to System A and notes that
fact in its local transaction log; if it cannot get into this state, it replies NO.

4. System A waits for replies to its GET READY message. If all of the replies are YES,
System A sends a COMMIT message to both System B and System C, and notes the
decision in its transaction log. If any of the replies is NO, or if all of the replies are
not received within some timeout period, System A sends a ROLLBACK message
to both systems and notes that decision in its transaction log.

5. When the DBMS on System B or C receives the COMMIT or ROLLBACK message,
it must do as it is told. The DBMS gave up the capability to decide the transaction’s

Figure 23-13. Problems with a broadcast commit scheme
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fate autonomously when it replied YES to the GET READY message in Step 3.
The DBMS commits or rolls back its part of the transaction as requested, writes
the COMMIT or ROLLBACK message in its transaction log, and returns an OK
message to System A.

6. When System A has received all the OK messages, it knows the transaction has
been committed or rolled back and returns the appropriate SQLCODE value to
the program.

This protocol protects the distributed transaction against any single failure in
System B, System C, or the communications network. These two examples illustrate
how the protocol permits recovery from failures:

� Suppose a failure occurs on System C before it sends a YES message in Step 3.
System A will not receive a YES reply and will broadcast a ROLLBACK message,
causing System B to roll back the transaction. The recovery program on System
C will not find the YES message or a COMMIT message in the local transaction
log, and it will roll back the transaction on System C as part of the recovery
process. All parts of the transaction will have b64een rolled back at this point.

Figure 23-14. The two-phase commit protocol



� Suppose a failure occurs on System C after it sends a YESmessage in Step 3. System
A will decide whether to commit or roll back the distributed transaction based on
the reply from System B. The recovery program on System C will find the YES
message in the local transaction log but will not find a COMMIT or ROLLBACK
message to mark the end of the transaction. The recovery program then asks the
coordinator (System A) what the final disposition of the transaction was and acts
accordingly. Note that System A must maintain a record of its decision to commit
or roll back the transaction until it receives the final OK from all of the participants,
so that it can respond to the recovery program in case of failure.

The two-phase commit protocol guarantees the integrity of distributed transactions,
but it generates a great deal of network traffic. If there are n systems involved in the
transaction, the coordinator must send and receive a total of (4 * n) messages to successfully
commit the transaction. Note that these messages are in addition to the messages that
actually carry the SQL statements and query results among the systems. However, there’s
no way to avoid the message traffic if a distributed transaction is to provide database
integrity in the face of system failures.

Because of their heavy network overhead, distributed transactions can have a
serious negative effect on database performance. For this reason, distributed databases
must be carefully designed so that frequently accessed (or at least frequently updated)
data is on a local system or on a single remote system. If possible, transactions that
update two or more remote systems should be relatively rare.

Network Applications and

Database Architecture
Innovations in computer networking have been closely linked to many of the
innovations in relational database architectures and SQL over the years. Powerful
minicomputers with mainframe network connections (such as Digital’s VAX family)
were the first popular platform for SQL-based databases. They offered a platform for
decision support, based on data offloaded from mainframe systems. They also
supported local data processing applications, for capturing business data and
uploading it to corporate mainframe applications.

UNIX-based servers and powerful local area networks (such as Sun’s server
products) drove another wave of DBMS growth and innovation. This era of databases
and networks gave birth to the client/server architecture that dominated enterprise data
processing in the 1990s. Later, the rise of enterprisewide networks and applications (such
as Enterprise Resource Planning) created a need for a new level of database scalability
and distributed database capability. Today, the exploding popularity of the Internet is
driving still another wave of innovation, as very high peak-load transaction rates and
personalized user interaction drive database caching and main-memory database
technologies.
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Client/Server Applications and Database Architecture
When SQL-based databases were first deployed on minicomputer systems, the database
and application architecture was very simple—all of the processing, from screen display
(presentation) to calculation and data processing (business logic) to database access
occurred on the minicomputer’s CPU. The advent of powerful personal computers and
server platforms drove a major change in that architecture, for several reasons.

The graphical user interface (GUI) of popular PC office automation software
(spreadsheets, word processors, and so on) set a new standard for ease of use, and
companies demanded the same style of interface from corporate applications. Supporting
a GUI is processor-intensive and demands a high-bandwidth path from the processor
to the display memory that holds the screen image. While some protocols emerged for
running a GUI over the LAN (the X-windows protocol), the best place to run a production
application’s presentation-layer code was clearly on the PC itself.

Economics was also a factor. Personal computer systems were much cheaper, on a
cost-per-processing-power basis, than minicomputers or UNIX-based servers. If more
of the processing for a business application could take place on lower-cost PCs, the
overall hardware cost of deploying an application would be reduced. This was an
argument for moving not just the presentation layer, but much of the business logic
layer, onto the PC as well.

Driven by these and other factors, the first client/server architectures emerged,
shown in Figure 23-15. Many PC-based applications are still being deployed today using
this architecture. SQL plays a key role as the client/server language. Requests are sent
from the application logic (on the PC) to the DBMS (on the server) expressed in SQL
statements. The answers come back across the network in the form of SQL completion
status codes (for database updates) or SQL query results (for information requests).
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Figure 23-15. Client/server applications architecture
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Client/Server Applications with Stored Procedures
Whenever an application is split across two or more networked computer systems, as
in Figure 23-15, one of the major issues is the interface between the two halves of the
split application. Each interaction across this interface now generates network traffic,
and the network is always the slowest part of the overall system, both in its data
transmission capacity (bandwidth) and in round-trip messaging delays (latency).
With the architecture shown in Figure 23-15, each database access (that is, each SQL
statement) generates at least one round trip across the network.

In an OLTP application, typical transactions may require as many as a dozen
individual SQL statements. For example, to take a customer’s order for a single product
in the simple structure of the sample database, the order-processing application might:

� Retrieve the customer number based on the customer name (single-row SELECT)

� Retrieve the customer’s credit limit to verify creditworthiness (single-row SELECT)

� Retrieve product information, such as price and quantity available (single-row
SELECT)

� Add a row to the ORDERS table for the new order (INSERT)

� Update the product information to reflect the lower quantity available (UPDATE)

� Update the customer’s credit limit, reducing the available credit (UPDATE)

� Commit the entire transaction (COMMIT)

for a total of seven round trips between the application and the database. In a real-world
application, the number of database accesses might be two or three times this amount. As
transaction volumes grow, the amount of network traffic can be very significant.

Database stored procedures provide an alternative architecture that can dramatically
reduce the amount of network traffic, as shown in Figure 23-16. A stored procedure
within the database itself incorporates the sequence of steps and the decision-making
logic required to carry out all of the database operations associated with the transaction.
Basically, part of the business logic that formerly resided within the application itself
has been pushed across the network onto the database server. Instead of sending
individual SQL statements to the DBMS, the application calls the stored procedure,
passing the customer name, the product to be ordered, and the quantity desired. If all
goes well, the stored procedure returns successfully. If a problem arises (such as lack of
available product or a customer credit problem), a returned error code and message
describes it. By using the stored procedure, the network traffic is reduced to a single
client/server interaction.

There are several other advantages to using stored procedures, but the reduction in
network traffic is one of the major ones. It was a major selling advantage of Sybase SQL
Server when it was first introduced and helped to position Sybase as a DBMS specialized
for high-performance OLTP applications. With the popularity of stored procedures,
every major general-purpose enterprise DBMS now offers this capability.
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Enterprise Applications and Data Caching
Today, major applications from the large packaged enterprise software vendors are all
based on SQL and relational databases. Examples include large Enterprise Resource
Planning (ERP), Supply Chain Management (SCM), Human Resources Management
(HRM), Customer Relationship Management (CRM), financial management, and other
packages from vendors such as SAP, BAAN, PeopleSoft, Vantive, Clarify, Siebel Systems,
i2 Technologies, Manugistics, and others. These large-scale applications typically run on
large UNIX-based server systems and place a heavy workload on the supporting DBMS.
To isolate the applications and DBMS processing, and apply more total processing power
to the application, they often use a three-tier architecture shown in Figure 23-17.

Even with the use of stored procedures to minimize network traffic, the network and
database access demands of the most data-intensive of these enterprise applications can
outstrip the available network bandwidth and DBMS transaction rates. For example,
consider a supply chain planning application that helps a manufacturing company
determine the parts that it must order from suppliers. To generate a complete plan, the
application must examine every open order and apply the product bill-of-materials to it.
A complex product might involve hundreds of parts, some of which are themselves
subassemblies consisting of dozens or hundreds of parts.

If written using straightforward programming techniques, the planning application
must perform a database inquiry to determine the parts makeup of every product,
and then every subassembly, for every order, and it will accumulate the total needed
information in the planning database for each of these parts. Using this technique, the
application will take hours to process the hundreds of thousands of orders that may be
currently on the books. In fact, the application will probably run so long that it cannot

Figure 23-16. Client/server architecture with stored procedures



possibly complete its work during the typical overnight low-volume batch processing
window of time during which the company normally runs such applications.

To deliver acceptable performance, all data-intensive enterprise applications employ
caching techniques, pulling the data forward out of the database server, closer to the
application. In most cases, the application uses relatively primitive caching techniques. For
example, it might read the bill-of-materials once and load it into main-memory data tables
within the application program. By eliminating the heavily repeated product-structure
queries, the program can dramatically improve its performance.

Recently, enterprise application vendors have begun to use more complex caching
techniques. They may replicate the most heavily accessed data (the hot data) in a
duplicate database table, on the same system as the application itself. Main-memory
databases offer an even higher-performance alternative and are already being used
where there is a relatively small amount of hot data (tens to hundreds of megabytes).
With the advent of 64-bit operating system architectures and continuing declines in
memory prices, it is becoming practical to cache larger amounts of data (several
gigabytes or tens of gigabytes).

Advanced caching and replication will become more important in response to
emerging business requirements. Leading-edge manufacturing companies want to
move toward real-time planning, where incoming customer orders and changes
immediately impact production plans. They want to offer more customized products,
in more configurations, to more closely match customer desires. These and similar
trends will continue to raise the volume and complexity of database access.
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Figure 23-17. Three-tier architecture of a major enterprisewide application
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High-Volume Internet Data Management
High-volume Internet applications are also driving the trend to database caching and
replication in networked database architectures. For example, financial services firms
are competing for online brokerage clients by offering more and more advanced real-time
stock reporting and analysis capabilities. The data management to support this application
involves real-time data feeds (to insure that pricing and volume information in the
database is current) and peak-load database inquiries of tens of thousands of transactions
per second. Similar volume demands are found in applications for managing and
monitoring high-volume Internet sites. The trend to personalize web sites (determining
on the fly which banner ads to display, which products to feature, and so on) and
measure the effectiveness of such personalization is another trend driving peak-load
data access and data capture rates.

The Web has already shown to be an effective architecture for dealing with these
types of peak-load Internet volume demands—through web site caching. Copies of
heavily accessed web pages are pulled forward in the network and replicated. As a
result, the total network capacity for serving web pages is increased, and the amount
of network traffic associated with those page hits is reduced. Similar architectures are
beginning to emerge for high-volume Internet database management, as shown in
Figure 23-18. In this case, an Internet information services application caches hot data,
such as the most recent news and financial information, in a very high-performance
main-memory database from a vendor such as TimesTen Performance Software. It also
stores summary user profile information in a main-memory database, which is used to
personalize users’ experiences as they interact with the web site.

As Figure 23-18 shows, the methods for handling high-performance data management
are beginning to follow those already established for high-performance web page
management. The issues for databases are more complex because of database integrity
issues, but the emerging techniques are similar—replication, high-volume read access,
memory-resident databases, and highly fault-tolerant architectures. These demands
will only grow as Internet traffic and personalization continues to increase, leading to
more advanced network database architectures.

Summary
This chapter described the distributed data management capabilities offered by various
DBMS products and the trade-offs involved in providing access to remote data:

� A distributed database is implemented by a network of computer systems, each
running its own copy of the DBMS software and operating autonomously for
local data access. The copies of the DBMS cooperate to provide remote data
access when required.
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� The ideal distributed database is one in which the user doesn’t know and
doesn’t care that the data is distributed; to the user, all of the relevant data
appears as if it were on the local system.

� Because this ideal distributed DBMS is very difficult to provide and involves
too many performance trade-offs, commercial DBMS products are providing
distributed database capability in phases.

� Remote database access can be useful in situations where the remote access is a
small part of total database activity; in this case, it’s more practical to leave the data
in the remote location and incur the network overhead for each database access.

Figure 23-18. Staging data for high-performance data management



� Database replication is very useful in situations where there is relatively heavy
access to data in multiple locations; it brings the data closer to the point of access,
but at the cost of network overhead for replica synchronization and data that is
not 100 percent up to date.

� The particular trade-offs of remote data access and replication strategies have
implications beyond technology decisions; they should reflect underlying
trade-offs in business priorities as well.

� Enterprisewide distributed applications, Internet-based applications, data
warehousing, and other trends are increasing the complexity of the distributed
data management environment. The N-tier architectures they use will require
smart data caching and replication strategies to deliver adequate performance.
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T
he only serious challenge to the dominance of SQL and relational database
management over the last few years has come from the emergence of an equally
significant trend—the growing popularity of object-oriented technologies.

Object-oriented programming languages (such as C++ and Java), object-oriented
development tools, and object-oriented networking (including object request brokers,
and more recently, Web Services) have emerged as foundation technologies for modern
software development. Object technologies gained much of their initial popularity for
building personal computer applications with graphical user interfaces. But their
impact has grown, and they are being used today to build (and more importantly,
to link together) enterprisewide network-based applications for large corporations.

In the early 1990s, a group of venture-backed object-oriented database companies
was formed with the goal of applying object-oriented principles to database management.
These companies believed that their object-oriented databases would supplant the
outdated relational databases as surely as the relational model had supplanted earlier
data models. However, they met with limited marketplace success in the face of
entrenched relational technologies and SQL. In response to the object challenge,
many relational database vendors moved aggressively to graft object technologies
onto their relational systems, creating hybrid object-relational models. This chapter
describes the object database challenge to SQL and the resulting object-relational
features provided by some major DBMS vendors.

Object-Oriented Databases
Considerable academic research on database technology over the past decade has been
focused on new, post-relational data models. Just as the relational model provided
clear-cut advantages over the earlier hierarchical and network models, the goal of
this research was to develop new data models that would overcome some of the
disadvantages of the relational model. Much of this research has focused on how to
merge the principles of object-oriented programming and design with traditional
database characteristics, such as persistent storage and transaction management.

In addition to the academic research, in the early and mid-1990s, some large
venture capital investments flowed into a group of startup software companies
whose goal was to build a new generation of data management technologies. These
companies typically started with the object data structures used by an object-oriented
program to manage its in-memory data, and extended them for disk-based storage and
multiuser access. Enthusiastic supporters of these object-oriented databases (OODBs)
firmly believed that they would mount a serious challenge to the relational model and
become the dominant database architecture by the end of the decade. That scenario
proved far off the mark, but the object database vendors have had a significant impact
on their relational rivals.
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Object-Oriented Database Characteristics
Unlike the relational data model, where Codd’s 1970 paper provided a clear,
mathematical definition of a relational database, there is no single definition of an
object-oriented database. However, the core principles embodied in most object-
oriented databases include:

� Objects. In an object-oriented database, everything is an object and is
manipulated as an object. The tabular, row/column organization of a
relational database is replaced by the notion of collections of objects.
Generally, a collection of objects is itself an object and can be manipulated
in the same way that other objects are manipulated.

� Classes. Object-oriented databases replace the relational notion of atomic
data types with a hierarchical notion of classes and subclasses. For example,
VEHICLES might be a class of object, and individual members (instances)
of that class would include a car, a bicycle, a train, or a boat. The VEHICLES
class might include subclasses called CARS and BOATS, representing a more
specialized form of vehicle. Similarly, the CARS class might include a subclass
called CONVERTIBLES, and so on.

� Inheritance. Objects inherit characteristics from their class and from all of the
higher-level classes to which they belong. For example, one of the characteristics
of a vehicle might be “number of passengers.” All members of the CARS,
BOATS, and CONVERTIBLES classes also have this attribute, because they are
subclasses of VEHICLES. The CARS class might also have the attribute “number
of doors,” and the CONVERTIBLES class would inherit this attribute. However,
the BOATS class would not inherit the attribute.

� Attributes. The characteristics that an object possesses are modeled by its
attributes. Examples include the color of an object, or the number of doors
that it has, and its English-language name. The attributes are related to the
object they describe in roughly the same way that the columns of a table relate
to its rows.

� Messages and methods. Objects communicate with one another by sending
and receiving messages. When it receives a message, an object responds by
executing a method, a program stored within the object that determines how it
processes the message. Thus, an object includes a set of behaviors described by
its methods. Usually, an object shares many of the same methods with other
objects in higher-level classes.

� Encapsulation. The internal structure and data of objects is hidden from the
outside world (encapsulated) behind a limited set of well-defined interfaces.
The only way to find out about an object, or to act on it, is through its methods,
whose functions and behaviors are clearly specified. This makes the object
more predictable and limits the opportunities for accidental data corruption.
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� Object identity. Objects can be distinguished from one another through
unique object identifiers, usually implemented as an abstract pointer known
as an object handle. Handles are frequently used to represent relationships
among objects; an object points to a related object by storing the object’s handle
as one of its data items (attributes).

These principles and techniques make object-oriented databases well suited
to applications involving complex data types, such as computer-aided design or
compound documents that combine text, graphics, and spreadsheets. The database
provides a natural way to represent the hierarchies that occur in complex data. For
example, an entire document can be represented as a single object, composed of
smaller objects (sections), composed of still smaller objects (paragraphs, graphs,
and so on). The class hierarchy allows the database to track the type of each object
in the document (paragraphs, charts, illustrations, titles, footnotes, and so on).

Finally, the message mechanism offers natural support for a graphical user
interface. The application program can send a “draw yourself” message to each part
of the document, asking it to draw itself on the screen. If the user changes the shape
of the window displaying the document, the application program can respond by
sending a “resize yourself” message to each document part, and so on. Each object
in the document bears responsibility for its own display, so new objects can easily
be added to the document architecture.

Pros and Cons of Object-Oriented Databases
Object-oriented databases have stirred up a storm of controversy in the database
community. Proponents claim that object databases are essential to create a proper
match between the programming and database data models. They claim that the rigid,
fixed, row/column structure of relational tables is a holdover from the punch-card era
of data processing with its fixed data fields and record orientation. A more flexible
model, where classes of objects can be similar to one another (that is, share certain
attributes) but also different from one another is essential, they claim, to effectively
model real-world situations.

Another claim is that the multitable joins that are an integral part of the relational
data model inherently create database overhead and make relational technology
unsuitable for the ever-increasing performance demands of today’s applications.
Finally, since objects are well-established as the in-memory data model for modern
programs, the proponents claim that the only natural data model is one that
transparently extends the in-memory model to permanent, shared, disk-based,
multiuser storage.

Opponents of object-oriented databases are just as adamant in their claims that
object-oriented databases are unnecessary and offer no real, substantive advantages
over the relational model. They claim that the handles of object-oriented databases
are nothing more than the embedded database pointers of prerelational hierarchical
and network databases, recycled with different names. They point out that, like these
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earlier database technologies, the object-oriented databases lack the strong underlying
mathematical theory that forms the basis of relational databases. The lack of object
database standards and the absence of a standardized query language like SQL are
reflections of this deficiency, and have prevented the development of vendor-
independent tools and applications that have been essential to the development of
the database industry.

In response to claims of inferior performance, they point to the use of relational
technology in some of the most performance-demanding enterprise applications.
They are also careful to draw a distinction between the external relational model of
data and the underlying implementation, which may well contain embedded pointers
for performance acceleration. Finally, they claim that any mismatch between object-
oriented programming and relational databases can be addressed by technologies
like JDBC and other object-to-relational interfaces.

Objects and the Database Market
In the marketplace, pure object-oriented databases have gained some success in
applications with very complex data models and those where the object-oriented
model of classes and inheritance closely parallels the real world. However, the object
database companies have had real difficulty breaking through into the mainstream.
Many have not survived into the first decade of the twenty-first century. The survivors
have had a hard time reaching the $100 million annual revenue mark, and achieving
sustainable profits, and have experienced significant management changes. In contrast,
the largest relational database vendors have continued to experience steady growth.
The largest have annual revenues measured in billions of dollars per year, proving that
relational database technology clearly continues to dominate the database market today.

Not surprisingly, the object-oriented and relational camps have had a substantial
impact on one another. With the slow marketplace acceptance of object-oriented
technology, the object-oriented vendors have focused on some of the factors that
created the success of the relational generation two decades ago. They have formed
standards groups, such as the Object Data Management Group (ODMG), to standardize
object-oriented database technology. Several have added relational adapters, with
standard interfaces such as ODBC and SQL, as optional layers for relational access to
their databases. Several have focused on the international standards process and have
worked to put strong object-oriented capabilities into the SQL3 standard. The net result
has been a trend toward embracing or coexisting with the relational world, rather than
competing with it.

The object-oriented challenge has had a significant impact on the relational
mainstream as well. Several features that began as relational capabilities (for example,
stored procedures) are now being touted as providing object-oriented advantages
(for example, encapsulation). Vendors have also steadily added onto their relational
databases selected object-oriented capabilities, such as abstract data types. The resulting
object-relational databases provide a hybrid of relational and object capabilities. They
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stretch the relational model—some would say past the breaking point—to incorporate
features such as tables within tables, which model the relationships between object
classes.

One of the major vendors, Informix Software, gained its object-relational capabilities
by acquisition, buying Illustra Software. Illustra’s object-relational technology was
based on the Postgres work at the University of California at Berkeley, a follow-up to
the university’s pioneering relational database system, Ingres. The Informix version
of the Illustra product was renamed Informix Universal Server. Another of the major
vendors, Oracle Corporation, evolved its own mainstream database system to include
object-relational technologies. Oracle8, introduced in 1998, embodies several years of
intensive Oracle development in this area, and Oracle9 further expanded it.

The object-oriented database vendors and the relational vendors’ response to
it have also had a major impact on the SQL standards efforts. The most significant
change to the SQL2 standard addressed in the work on SQL3 was the addition of
object capabilities. When the SQL3 work was finally approved as the SQL:1999 official
standard, the new object-oriented capabilities nearly doubled the size of the SQL
language specification in terms of page count. The acquisition and development
of object-relational databases by the industry leaders, and the formal adoption of
object extensions to SQL, signal the growing synergy between SQL and the world
of object technology.

Object-Relational Databases
Object-relational databases typically begin with a relational database foundation, and
add selected features that provide object-oriented capabilities. This approach simplifies
the addition of object capabilities for the major RDBMS vendors, whose enterprise-class
RDBMS products have been developed over the course of 15 or more years and would
be tremendously costly to reproduce from scratch. It also recognizes the large installed
base of relational systems and gives those customers a smoother upgrade path (not to
mention an upgrade revenue stream for the vendors).

The object extensions that are commonly found in object-relational databases are:

� Large data objects. Traditional relational data types are small in size—integers,
dates, short character strings; large data objects can store documents, audio and
video clips, web pages, and other new media data types.

� Structured/abstract data types. Relational data types are atomic and indivisible;
structured data types allow groups of individual data items to be grouped into
higher-level structures that can be treated as entities of their own.

� User-defined data types. Relational databases typically provide a limited
range of built-in data types; object-oriented systems and databases emphasize
the user’s ability to define his or her own new data types.
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� Tables within tables. Relational database columns store individual data items;
object-relational databases allow columns to contain complex data items, such
as structured types or even entire tables. This can be used to represent object
hierarchies.

� Sequences, sets, and arrays. In a traditional relational database, sets of data are
represented by rows in their own table, linked to an owning entity by a foreign
key; object-relational databases may allow the direct storage of collections of
data items (sequences, sets, arrays) within a single column.

� Stored procedures. Traditional relational databases provide set-based interfaces,
such as SQL, for storing, selecting, and retrieving data; object-relational databases
provide procedural interfaces, such as stored procedures, that encapsulate the
data and provide strictly defined interactions.

� Handles and object-ids. A pure relational database requires that data within
each row of the database itself (the primary key) uniquely identifies the row;
object-relational databases provide built-in support for row-ids or other unique
identifiers for objects.

Large Object Support
Relational databases have traditionally focused on business data processing. They
store and manipulate data items that represent money amounts, names, addresses,
unit quantities, dates, times, and the like. These data types are relatively simple and
require small amounts of storage space, from a few bytes for an integer that holds
order or inventory quantities to a few dozen bytes for a customer name, employee
address, or product description. Relational databases have been optimized to manage
rows containing up to a few dozen columns of this type of data. The techniques they
use to manage disk storage and to index data assume that data rows will occupy a few
hundred to a few thousand bytes. The programs that store and retrieve data can easily
hold dozens or hundreds of these types of data items in memory, and can easily store
and retrieve entire rows of data at a time through reasonably sized memory buffers.
The row-at-a-time processing techniques for relational query results work well.

Many modern types of data have quite different characteristics from traditional
business data. A single high-resolution graphical image to be displayed on a PC screen
can require hundreds of thousands of bytes of storage or more. A word processing
document, such as a contract or the text of this book, can take even more storage. The
HTML text that defines web pages and the PostScript files that define printed images
are other examples of larger, document-oriented data items. Even a relatively short
high-quality audio track can occupy millions of bytes, and video clips can run to
hundreds of megabytes or even gigabytes of data. As multimedia applications have
become more important, users have wanted to manage these types of data along with
the other data in their databases. The capability to efficiently manage large objects,
often called binary large objects (BLOBs), was one of the earliest advantages claimed
for object-oriented databases.



BLOBs in the Relational Model
The first approach to supporting BLOBs in relational databases was through the
underlying operating system and its file system. Each individual BLOB data item
was stored in its own operating system file. The name of the file was placed in a
character-valued column within a table, as a pointer to the file. The table’s other
columns could be searched to find rows that met certain criteria. When an application
needed to manipulate the BLOB content associated with one of the rows, it read
the name of the file and retrieved the BLOB data from it. Management of the file
input/output was the responsibility of the application program. This approach
worked, but it was error-prone and required that a programmer understand both
the RDBMS and the file system interfaces. The lack of integration between the BLOB
contents and the database was readily apparent. For example, you couldn’t ask
the database to compare two BLOB data items to see if they were the same, and the
database couldn’t provide even basic text searching capability for BLOB contents.

Today, most major enterprise-class DBMS systems provide direct support for
one or more types of BLOB data. You can define a column as containing one of these
BLOB data types and use it in certain situations in SQL statements. There are typically
substantial restrictions on the BLOB data, such as not allowing its use in a join condition
or a GROUP BY clause.

Sybase provides two large object data types. Its TEXT data type can store up to
2 billion bytes of variable-length text data. You can use a limited set of SQL capabilities
(such as the LIKE text-search operator) to search the contents of TEXT columns. A
companion IMAGE data type can store up to 2 billion bytes of variable-length binary
data. Microsoft SQL Server supports these types, plus an NTEXT data type that allows
up to 1 billion characters of 2-byte national language text.

IBM’s DB2 provides a similar set of data types. A DB2 character large object (CLOB)
type stores up to 2 billion bytes of text. A DB2 double-byte character large object
(DBCLOB) type stores up to 1 billion 2-byte characters. A DB2 binary large object (BLOB)
stores up to 2 billion bytes of binary data.

Oracle historically provided two large object data types. A LONG data type stored
up to 2 billion bytes of text data. A LONG RAW data type stored up to 2 billion bytes
of binary data. Oracle restricted the use of either LONG type to only a single column
per table. With the introduction of Oracle8, support for BLOB data was expanded
substantially:

� An Oracle BLOB type stores up to 4 gigabytes of binary data within the
database.

� An Oracle CLOB type stores up to 4 gigabytes of single-byte character data
within the database.

� An Oracle NCLOB type stores multibyte character data as a BLOB.

� An Oracle BFILE type stores long binary data in a file external to the database.
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The BLOB, CLOB, and NCLOB types are tightly integrated into Oracle’s operation,
including transaction support. BFILE data is managed through a pointer within the
database to an external operating system file. It is not supported by Oracle transaction
semantics. Special Oracle PL/SQL functions are provided to manipulate BLOB, CLOB,
and NCLOB data from within PL/SQL stored procedures, as described in the next section.

Informix Universal Server’s support for large object data is similar to that of Oracle.
It supports simple large objects and smart large objects:

� An Informix BYTE type is a simple large object that stores binary data.

� An Informix TEXT type is a simple large object that stores text data.

� An Informix BLOB type is a smart large object that stores binary data.

� An Informix CLOB type is a smart large object that stores text (character) data.

Informix simple large objects store up to 1 gigabyte of data. The entire large object
must be retrieved or stored as a unit from the application program, or it can be copied
between the database and an operating system file. Smart large objects can store up
to 4 terabytes of data. Special Informix functions are provided to process smart large
objects in smaller, more manageable chunks. These functions provide random access
to the contents of an Informix smart object, similar to the random access typically
provided for operating system files. Informix also provides advanced controls over
logging, transaction management, and data integrity for smart large objects.

Specialized BLOB Processing
Because BLOBs can be very large in size compared to the data items typically handled
by RDBMS systems, they pose special problems in several areas:

� Data storage and optimization. Storing a BLOB item in-line with the other
contents of a table’s row would destroy the optimization that the DBMS
performs to fit database data neatly into pages that match the size of disk pages.
For this reason, BLOB data is always stored out-of-line in separate storage areas.
Most DBMS brands that support BLOBs provide special BLOB storage options,
including named storage spaces that are specified when the BLOB type column
is created.

� Storing BLOB data in the database. Because a BLOB can be tens or hundreds
of megabytes in size, most programs can’t hold the entire contents of a BLOB
in a memory buffer at once. They process portions of the BLOB at a time (for
example, pages of a long document or individual frames of a video clip). But
Embedded SQL and normal SQL APIs are designed for row-at-a-time processing
(through INSERT and UPDATE statements) that store the values for all columns
in the row at once. Special techniques are required to put data into a database
BLOB column piece by piece, through multiple API calls per BLOB column.
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� Retrieving BLOB data from the database. This is the same issue as retrieving
the data, but in reverse. Embedded SQL and normal SQL APIs are designed
for SELECT statement or FETCH statement processing that retrieves data values
for all columns of a row at once. But because a stored BLOB value can be tens
or hundreds of megabytes in size, most programs can’t possibly process it all
at once in a memory buffer. Special techniques are required to retrieve the
database BLOB column data, piece by piece, so that it can be processed by the
application.

� Transaction logging. Most DBMS’s support transactions by maintaining before
and after images of modified data in a transaction log. Because of the potentially
large size of BLOB data, the logging overhead could be extreme. For this reason,
many DBMS’s don’t support logging for BLOB data, or they allow logging but
provide the ability to turn it on and off.

Several DBMS’s address these issues through extended APIs that specifically
support BLOB manipulation. These calls provide random access to individual
segments of the BLOB contents, allowing the program to retrieve or store the BLOB in
manageable chunks. Oracle8 introduced this capability for manipulating its LOB data
types (character and binary) within stored procedures written in the Oracle PL/SQL
language. Its capabilities are similar to those provided by other object-relational
databases, such as Informix Universal Server.

When a stored procedure reads an Oracle LOB column from a table, Oracle does
not actually return the contents of the column. Instead, a locator for the LOB data (in
object parlance, a handle for the LOB) is returned. The locator is used in conjunction
with a set of nine special LOB-processing functions that the stored procedure can then
use to manipulate the actual data stored in the LOB column of the database. Here is a
brief description of each LOB-processing function:

� dbms_lob.read(locator, length, offset, buffer). Reads into the PL/SQL buffer
the indicated number of bytes/characters from the LOB identified by the locator,
starting at the offset.

� dbms_lob.write(locator, length, offset, buffer). Writes the indicated number
of bytes/characters from the PL/SQL buffer into the LOB identified by the
locator, starting at the offset.

� dbms_lob.append(locator1, locator2). Appends the entire contents of the
LOB identified by locator2 to the end of the contents of the LOB identified by
locator1.

� dbms_lob.erase(locator, length, offset). Erases the contents of the LOB
identified by the locator at offset for length bytes/characters; for character-based
LOBs, spaces are inserted, and for binary LOBs, binary zeroes are inserted.

� dbms_lob.copy(locator1, locator2, length, offset1, offset2). Copies length
bytes/characters from the LOB identified by locator2 at offset2 into the LOB
identified by locator1 at offset1.
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� dbms_lob.trim(locator1, length). Trims the LOB identified by the locator to
the indicated number of bytes/characters.

� dbms_lob.substr(locator, length, offset). Returns (as a text string return
value) the indicated number of bytes/characters from the LOB identified by
the locator, starting at the offset; the return value from this function may be
assigned into a PL/SQL VARCHAR variable.

� dbms_lob.getlength(locator). Returns (as an integer value) the length in
bytes/characters of the LOB identified by the locator.

� dbms_lob.compare(locator1, locator2, length, offset1, offset2). Compares
the LOB identified by locator1 to the LOB identified by locator2, starting at offset1
and offset2, respectively, for length bytes/characters; returns zero if they are the
same and nonzero if they are not.

� dbms_lob.instr(locator, pattern, offset, i). Returns (as an integer value) the
position within the LOB identified by the locator where the i-th occurrence of
pattern is matched; the returned value may be used as an offset in subsequent
LOB processing calls.

Oracle imposes one further restriction on updates and modifications to LOB values
that are performed through these functions. LOBs can impose an unacceptably high
overhead on Oracle’s transaction mechanisms, so Oracle normally does not lock the
contents of a LOB data item when the row containing the LOB is read by an application
program or a PL/SQL routine. If the LOB data is to be updated, the row must be
explicitly locked prior to modifying it. This is done by including a FOR UPDATE clause
in the SELECT statement that retrieves the LOB locator. Here is a PL/SQL fragment
that retrieves a row containing a LOB that contains document text, and updates
100 characters in the middle of the LOB data:

declare

lob     CLOB;

textbuf varchar(255);

begin

/* Put text to be inserted into buffer /

. . .

/* Get lob locator and lock LOB for update */

select document_lob into lob

from documents

where document_id = '34218'

for update;

/* Write new text 500 bytes into LOB */
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dbms_lob.write(lob,100,500,textbuf);

commit;

end;

Abstract (Structured) Data Types
The data types envisioned by the relational data model are simple, indivisible, atomic
data values. If a data item such as an address is actually composed of a street address,
city, state, and postal code, as a database designer, you have two choices. You can treat
the address as four separate data items, each stored in its own column, so that you can
search and retrieve the items individually. Or you can treat the address as a single unit,
in which case, you cannot process its individual component parts within the database.
There is no middle ground that allows you to treat the address as a unit for certain
situations and access its component parts for others.

Many programming languages (including even nonobject-oriented languages like
C or Pascal) do provide such a middle ground. They support compound data types
or named data structures. The data structure is composed of individual data items or
lower-level structures, which can be accessed individually. But the entire data structure
can also be treated as a single unit when that is most convenient. Structured or composite
data types in object-relational databases provide this same capability in a DBMS context.

Informix Universal Server supports abstract data types through its concept of row
data types. You can think of a row type as a structured sequence of individual data items,
called fields. Here is an Informix CREATE TABLE statement for a simple PERSONNEL
table that uses a row data type to store both name and address information:

CREATE TABLE PERSONNEL (

EMPL_NUM INTEGER,

NAME ROW(

F_NAME VARCHAR(15),

M_INIT CHAR(1),

L_NAME VARCHAR(20))

ADDRESS ROW(

STREET VARCHAR(35),

CITY VARCHAR(15),

STATE CHAR(2),

POSTCODE ROW(

MAIN INTEGER,

SFX INTEGER)));

This table has three columns. The first one, EMPL_NUM, has an integer data type.
The last two, NAME and ADDR, have a row data type, indicated by the keyword ROW,
followed by a parenthesized list of the fields that make up the row. The NAME column’s
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row data type has three fields within it. The ADDRESS column’s row data type has four
fields. The last of these four fields itself has a row data type and consists of two fields.
In this simple example, the hierarchy is only two levels deep, but the capability can be
(and often is) extended to additional levels.

Individual fields within the columns of the table are accessible in SQL statements
through an extension of the SQL dot notation that is already used to qualify column
names with table names and user names. Adding a dot after a column name allows
you to specify the names of individual fields within a column. This SELECT statement
retrieves the employee numbers and first and last names of all personnel with a specified
main postal code:

SELECT EMPL_NUM, NAME.F_NAME, NAME.L_NAME

FROM PERSONNEL

WHERE ADDRESS.POSTCODE.MAIN = '12345';

Suppose another table within the database, named MANAGERS, had the same NAME
structure as one of its columns. Then this query retrieves the employee numbers of
employees who are also managers:

SELECT EMPL_NUM

FROM PERSONNEL, MANAGERS

WHERE PERSONNEL.NAME = MANAGERS.NAME;

In the first of these two queries, it makes sense to retrieve the individual fields
within the NAME column. The second query shows a situation where it’s more
convenient to use the entire name column (all three fields) as the basis for comparison.
It’s clearly a lot more convenient to ask the DBMS to compare the two abstract data
typed columns than it is to specify separate comparisons for each of the individual
fields. Together, these examples show the advantages of the row data type in allowing
access to the fields at any level of the hierarchy.

The row data type columns require special handling when inserting data into the
database. The PERSONNEL table has three columns, so an INSERT statement for the
table must have three items in its VALUES clause. The columns that have a row data
type require a special ROW value-constructor to put together the individual data items
into a row-type item that matches the data type of the column. Here is a valid INSERT
statement for the table that illustrates the use of the ROW constructor:

INSERT INTO PERSONNEL

VALUES (1234,

ROW('John', 'J', 'Jones'),

ROW('197 Rose St.', 'Chicago', 'IL',

ROW(12345, 6789)));
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Defining Abstract Data Types
With the Informix row data type capabilities illustrated so far, each individual
structured column is defined in isolation. If two tables need to use the same row data
type structure, it is defined within each table. This violates one of the key principles
of object-oriented design, which is reusability. Instead of having each object (the two
columns in the two different tables) have its own definition, the row data type should
be defined once and then reused for the two columns. Informix Universal Server
provides this capability through its named row type feature. (The row data types shown
in previous examples are unnamed row data types.)

You create an Informix named row type with the CREATE ROW TYPE statement.
Here are examples for the PERSONNEL table:

CREATE ROW TYPE NAME_TYPE (

F_NAME VARCHAR(15),

M_INIT CHAR(1),

L_NAME VARCHAR(20));

CREATE ROW TYPE POST_TYPE (

MAIN INTEGER,

SFX INTEGER);

CREATE ROW TYPE ADDR_TYPE (

STREET VARCHAR(35),

CITY VARCHAR(15),

STATE CHAR(2),

POSTCODE POST_TYPE);

Note that the definition of a named row type can depend on other, previously
created named row types, as shown by the ADDR_TYPE and POST_TYPE definitions.
With these row data types defined, the name and address columns in the PERSONNEL
table (and any other columns holding name or address data in other tables of the
database) can be defined using it. The aggressive use of abstract data types can thus
help to enforce uniformity in naming and data typing within an object-relational
database. Here is the new Informix definition of the PERSONNEL table, using the
just-defined abstract data types:

CREATE TABLE PERSONNEL (

EMPL_NUM INTEGER,

NAME NAME_TYPE,

ADDRESS ADDR_TYPE);
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Figure 24-1 shows some sample data for this table and the hierarchical column/
field structure created by the abstract data types.

Oracle supports abstract data types through a very similar structure, with slightly
different SQL syntax. Here is the Oracle CREATE TYPE statement to create the same
abstract data structure for names and addresses:

CREATE TYPE NAME_TYPE AS OBJECT (

F_NAME VARCHAR(15),

M_INIT CHAR(1),

L_NAME VARCHAR(20));

CREATE TYPE POST_TYPE AS OBJECT (

MAIN INTEGER,

SFX INTEGER);

CREATE TYPE ADDR_TYPE AS OBJECT (

STREET VARCHAR(35),

CITY VARCHAR(15),

STATE CHAR(2),

POSTCODE POST_TYPE);

Oracle calls the abstract data type an object instead of a row type. In fact, the type
is functioning as an object class in the usual object-oriented terminology. Extending the
object-oriented terminology further, the individual components of an Oracle abstract
data type are referred to as attributes (corresponding to the Informix fields described
earlier). The ADDR_TYPE type has four attributes in this example. The fourth attribute,
POSTCODE, is itself an abstract data type.

Figure 24-1. PERSONNEL table using abstract data types
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Both Oracle and Informix use the extended dot notation to refer to individual data
elements within abstract data types. With nested abstract types, it takes several levels
of dot-delimited names to identify an individual data item. The main postal code within
the PERSONNEL table is identified as:

PERSONNEL.ADDRESS.POSTCODE.MAIN

If the table were owned by another user, Sam, the qualified name becomes even
longer:

SAM.PERSONNEL.ADDRESS.POSTCODE.MAIN

Informix allows the use of row types to go one step beyond their role as data type
templates for individual columns. You can use a row type to define the structure of an
entire table. For example, with this row type definition:

CREATE ROW TYPE PERS_TYPE (

EMPL_NUM INTEGER,

NAME NAME_TYPE,

ADDRESS ADDR_TYPE)

you can define the PERSONNEL table using the row type as a model:

CREATE TABLE PERSONNEL

OF TYPE PERS_TYPE;

The columns of this PERSONNEL table will be exactly as they were in the previous
CREATE TABLE examples, but now PERSONNEL is a typed table. The most basic use
of the typed table capability is to formalize the object structure in the database. Each
object class has its own row type, and the typed table that holds objects (rows) of
that class is defined in terms of the row type. Beyond this usage, typed tables are
also a key component of the Informix notion of table inheritance, described later in
the “Inheritance” section.

Manipulating Abstract Data Types
Unfortunately, structured data types create new complexity for database update
statements that must insert or modify their structured data values. Informix Universal
Server is fairly liberal in its data type conversion requirements for unnamed row types.
The data you assign into a row-type column must simply have the same number of
fields, of the same data types. The ROW constructor is used, as shown in previous
examples, to assemble individual data items into a row-type value for inserting or
updating data.



For named row types, the requirement is more stringent; the data you assign into a
named row-type column must actually have the same named row type. You can achieve
this in the INSERT statement by explicitly casting the constructed row value to have
the NAME_TYPE data type:

INSERT INTO PERSONNEL

VALUES (1234,

ROW('John', 'J', 'Jones')::NAME_TYPE,

ROW('197 Rose St.', 'Chicago', 'IL',

ROW(12345, 6789)));

The double-colon operator casts the constructed three-field row as a NAME_TYPE
row and makes the VALUES clause compatible with the data types of the columns in
the table.

Oracle uses a slightly different approach to constructing structured data items and
inserting them into columns that have abstract data types. When you create an Oracle
abstract data type (using the CREATE TYPE statement), Oracle automatically defines a
constructor method for the type. You can think of the constructor method as a function
that takes as its arguments the individual components of the abstract data type and
returns an abstract data type value, with the individual components all packaged
together. The constructor is used in the VALUES clause of the INSERT statement to
glue the individual data item values together into a structured data value that matches
the column definition. Here is an INSERT statement for the PERSONNEL table:

INSERT INTO PERSONNEL

VALUES (1234,

NAME_TYPE('John', 'J', 'Jones'),

ADDR_TYPE('197 Rose St.', 'Chicago', 'IL',

POST_TYPE(12345, 6789)));

The constructors (NAME_TYPE, ADDR_TYPE, POST_TYPE) perform the same
functions as the ROW constructor does for Informix, and also provide the casting
required to ensure strict data type correspondence.

Inheritance
Support for abstract data types gives the relational data model a foundation for
object-based capabilities. The abstract data type can embody the representation
of an object, and the values of its individual fields or subcolumns are its attributes.
Another important feature of the object-oriented model is inheritance. With inheritance,
new objects can be defined as being a particular type of an existing object type (class)
and inherit the predefined attributes and behaviors of that type.
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Figure 24-2 shows an example of how inheritance might work in a model of a
company’s employee data. All employees are members of the class PERSONNEL, and
they all have the attributes associated with being an employee (employee number,
name, and address). Some employees are salespeople, and they have additional
attributes (such as a sales quota and the identity of their sales manager). Other
employees are engineers, with a different set of attributes (such as the academic
degrees they hold or the current project to which they are assigned). Each of these
employee types has its own class, which is a subclass of PERSONNEL. The subclass
inherits all of the characteristics of the class above it in the hierarchy (we want to
track all of the core personnel data for engineers and salespeople, too). However,
the subclasses have additional information that is unique to their type of object. In
Figure 24-2, the class hierarchy goes down to a third layer for engineers, differentiating
between technicians, developers, and managers.

Informix Universal Server’s abstract data type inheritance mechanism provides
an easy way to define abstract data types (Informix row types) that correspond to the
natural hierarchy in Figure 24-2. Assume that the Informix PERS_TYPE row type has
already been created, as in the example from the “Defining Abstract Data Types”
section earlier in this chapter, and a typed table named PERSONNEL has been created
based on this row type. Using the Informix inheritance capabilities, here are some
CREATE ROW TYPE statements for other types in the hierarchy:

CREATE ROW TYPE SALES_TYPE (

SLS_MGR INTEGER,             /* employee number of sales mgr */

SALARY MONEY(9,2),          /* annual salary */

QUOTA MONEY(9,2))

UNDER 1PERS_TYPE;

CREATE ROW TYPE ENGR_TYPE (

SALARY MONEY(9,2),           /* annual salary */

YRS_EXPER INTEGER               /* years of experience */

UNDER PERS_TYPE;

CREATE ROW TYPE MGR_TYPE (

BONUS MONEY(9,2))            /* annual bonus */

UNDER ENGR_TYPE;

CREATE ROW TYPE TECH_TYPE (

WAGE_RATE MONEY(5,2))            /* hourly wage rate */

UNDER ENGR_TYPE;
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The type defined for technicians (TECH_TYPE) is a subtype (subclass) of the
engineer type (ENGR_TYPE), so it inherits all of the fields for the personnel type
(PERS_TYPE), plus the fields added at the ENGR_TYPE level, plus the additional
field added in its own definition. An abstract type that is defined UNDER another
type, and inherits its fields, is called a subtype of the higher-level type. Conversely,
the higher-level type is a supertype of the lower-level types defined UNDER it.

With this type hierarchy defined, it’s easy to create Informix typed tables that use
them. Here are some Informix statements that create a table for engineers, separate
tables for managers and technicians, and another table to hold salesperson data:

CREATE TABLE ENGINEERS

OF TYPE ENGR_TYPE;

CREATE TABLE TECHNICIANS

OF TYPE TECH_TYPE;

CREATE TABLE MANAGERS

OF TYPE MGR_TYPE;

CREATE TABLE REPS

OF TYPE SALES_TYPE;

The type hierarchy has pushed the complexity into the data type definitions and
made the table structure very simple and easy to define. All other characteristics of
the table can (and must) still be defined within the table definition. For example, the
salesperson table contains a column that is actually a foreign key to the personnel table,
so its table definitions should probably include a FOREIGN KEY clause like this:

CREATE TABLE REPS

OF TYPE SALES_TYPE

FOREIGN KEY (SLS_MGR)

REFERENCES PERSONNEL(EMPL_NUM);

Figure 24-2. Natural class hierarchy for a personnel application
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Type inheritance creates a relationship among the structure of the tables that are
based on the defined row types, but the tables remain independent of one another in
terms of the data that they contain. Rows inserted into the TECHNICIANS table don’t
automatically appear in the ENGINEERS table nor in the PERSONNEL table. Each is a
table in its own right, containing its own data. A different kind of inheritance, table
inheritance, provides a very different level of linkage between the table’s contents,
actually turning the tables into something much closer to object classes. It is described
in the next section.

Table Inheritance: Implementing Object Classes
Informix Universal Server provides a capability called table inheritance that moves the
table structure of a database away from the traditional relational model and makes it
much closer to the concept of an object class. Using table inheritance, it’s possible to
create a hierarchy of typed tables (classes), such as the one shown in Figure 24-3. The
tables are still based on a defined type hierarchy, but now the tables themselves have
a parallel hierarchy.

Here is a set of CREATE TABLE statements that implements this table inheritance:

CREATE TABLE ENGINEERS

OF TYPE ENGR_TYPE

UNDER PERSONNEL;

CREATE TABLE TECHNICIANS

OF TYPE TECH_TYPE

UNDER ENGINEERS;

CREATE TABLE MANAGERS

OF TYPE MGR_TYPE

ENDER ENGINEERS;

CREATE TABLE REPS

OF TYPE SALES_TYPE

UNDER PERSONNEL;

When a table is defined in this way (as under another table), it inherits many more
characteristics from its supertable than just the column structure. It inherits the foreign
key, primary key, referential integrity, and check constraints of the supertable, any triggers
defined on the supertable, as well as indexes, storage areas, and other Informix-specific
characteristics. It’s possible to override this inheritance by specifically including the
overridden characteristics in the CREATE TABLE statements for the subtables.
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A table type hierarchy has a profound impact on the way that the Universal Server
DBMS treats the rows stored in the tables. The tables in the hierarchy now form a
collection of nested sets of rows, as shown in Figure 24-4. When a row is inserted into

Figure 24-3. An Informix table inheritance hierarchy

Figure 24-4. Nested sets represented by a table inheritance hierarchy
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the table hierarchy, it is still inserted into a specific table. Joe Jones, for example, is in
the TECHNICIANS table, while Sam Wilson is in the ENGINEERS table and Sue Marsh
is in the PERSONNEL table.

SQL queries behave quite differently, however. When you perform a database
query on one of the tables in the hierarchy, it returns rows not only from the table
itself, but from all of the included subtables of that table. This query:

SELECT *

FROM PERSONNEL;

returns rows from the PERSONNEL table and rows from the ENGINEERS,
TECHNICIANS, and REPS tables. Similarly, this query:

SELECT *

FROM ENGINEERS;

returns rows from TECHNICIANS and MANAGERS in addition to ENGINEERS. The
DBMS is now treating the tables as a nested collection of rows, and a query on a table
(rowset) applies to all rows included in the set. If you want to retrieve only the rows
that appear in the top-level table itself, you must use the ONLY keyword:

SELECT *

FROM ONLY(ENGINEERS);

The DBMS applies the same set-of-rows logic to DELETE operations. This DELETE
statement:

DELETE FROM PERSONNEL

WHERE EMPL_NUM = 1234;

successfully deletes the row for employee number 1234 regardless of which table in the
hierarchy actually contains the row. The statement is interpreted as “Delete any rows
from the PERSONNEL set that match these criteria.” As with the queries, if you want to
delete only rows that appear in the ENGINEERS table of the hierarchy, but not rows
from any of its subtables, you can use this statement:

DELETE FROM ONLY(ENGINEERS)

WHERE EMPL_NUM = 1234;
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The same logic holds for UPDATE statements. This one changes the employee
number, regardless of which table in the hierarchy actually holds the row for
the employee:

UPDATE PERSONNEL

SET L_NAME = 'Harrison'

WHERE EMPL_NUM = 1234;

Again, the ONLY construct may be used to restrict the scope of the UPDATE
operation to only rows that actually appear in the named table and not those that
appear in its subtables.

Of course, when operating at a given level within the table hierarchy, your SQL
statements can reference only columns that are defined at that level. You cannot use
this statement:

DELETE FROM PERSONNEL

WHERE SALARY < 20000.00;

because the SALARY column doesn’t exist in the top-level PERSONNEL table (class).
It is defined only for some of its subtables (subclasses). You can use this statement:

DELETE FROM MANAGERS

WHERE SALARY < 20000.00;

because SALARY is defined at this level of the table (class) hierarchy.
As noted, table inheritance moves the operation of Informix Universal Server fairly

far out of the relational database realm and into the object-oriented world. Relational
purists point to examples like the previous ones to claim that object-relational databases
bring with them dangerous inherent inconsistencies. They ask these typical kinds of
questions: “Why should an INSERT of a row into one table cause it to suddenly appear
in two other tables?” and “Why should a searched DELETE statement that doesn’t
match any rows of a table cause other rows in other tables to disappear?” Of course,
the table hierarchy has stopped behaving strictly as if it were a set of relational tables,
and instead has taken on many of the characteristics of an object class and object class
hierarchy. Whether this is good or bad depends on your point of view. It does mean
that you must be very careful about applying relational database assumptions blindly
to an object-relational implementation.
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Sets, Arrays, and Collections
In a relational database, tables are the only database structure used to represent a set
of objects. For example, the set of engineers in our personnel database is represented by
the rows in the ENGINEERS table. Suppose each engineer has a set of academic degrees
(a B.S. in science from MIT, a Ph.D. in electrical engineering from Michigan, and so on)
that are to be stored in the database. The number of degrees for each engineer will
vary—from none for some engineers to perhaps half a dozen for others. In a pure
relational database, there is only one correct way to add this information to the data
model. A new table, DEGREES, must be created, as shown in Figure 24-5. Each row
in the DEGREES table represents one individual academic degree held by one of the
engineers. A column in the DEGREES table holds the employee number of the engineer
holding the degree described by that particular row, and serves as a foreign key to the
ENGINEERS table, linking the two tables in a parent/child relationship. The other
columns in the DEGREES table describe the particulars of the degree.

You have seen the type of parent/child relational table structure shown in Figure 24-5
many times in the earlier chapters of this book, and it has been a basic construct of
relational databases since the beginning. However, there are some disadvantages to

Figure 24-5. A relational modeling of engineers and their degrees
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having this be the only way in which sets of data attributes can be modeled. First, the
database tends to have a great many tables and foreign key relationships and becomes
hard to understand. Second, many common queries need to join three, four, or more
tables to get the required answers. Third, with the implementations of relational joins
provided by most DBMS systems, the performance of queries will deteriorate as they
involve more and more joins.

An object-oriented model of the engineers and their degrees would tend to reject
the table structure of Figure 24-5. It would claim that the degrees are not substantial
objects in their own right and deserving of their own table. Instead, they are attributes
of the engineer holding the degrees. True, a variable number of degrees are associated
with each engineer, but the object-oriented model would have no problem with
representing this situation as an array or a set of data within the engineer object.

The object-relational databases support this object-oriented view of data by
supporting sets, arrays, or other collection data types. A column within a table can
be defined to have one of these data types. It will then contain not a single data item
value, but a set of data item values. Special SQL extensions allow a user, or more often
a stored procedure, to manipulate the set of data items as a whole or to access individual
members of the set.

Defining Collections
Informix Universal Server supports collections of attributes through its collection data
types. Three different collection data types are supported:

� Lists. A list is an ordered collection of data items, all of which have the same
type. Within a list, there is the concept of a first item, a last item, and the n-th
item. The items in the list are not required to be unique. For example, a list of
the first names of the employees hired in the last year, in order of hire, might
be {'Jim', 'Mary', 'Sam', 'Jim', 'John'}.

� Multisets. A multiset is an unordered collection of data items, all of which have
the same type. There is no concept of a sequencing to the items in a multiset;
its items have no implied ordering. The items are not required to be unique.
The list of employee first names could be considered a multiset if you didn’t
care about the order of hire: {'Jim', 'Sam', 'John', 'Jim', 'Mary'}.

� Sets. A set is an unordered collection of unique data items, all of which have
the same type. As in a multiset, there is no concept of first or last; the set has
no implied ordering. The items must have unique values. The first names in
the previous examples wouldn’t qualify, but the last names might: {'Johnson',
'Samuels', 'Wright', 'Jones', 'Smith'}.
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To illustrate the concept of collection data, we will expand the tables in our
example object-relational database as follows:

� The REPS table will include sales targets for each of the first, second, third,
and fourth quarters. The quarterly targets can naturally be represented as a
list column added to the REPS table. The quarters have a natural ordering
(first through fourth), the quota for each quarter has the same data type
(money), and the values are not necessarily unique (that is, the quotas for the
first and second quarters might be the same).

� The ENGINEERS table will include information about the academic degrees
that each engineer holds. Two items of data will actually be stored about each
degree—the actual degree (B.S., Ph.D., MBA, and so on) and the school. This
data will be stored as a multiset column added to the ENGINEERS table, because
it’s possible to have two identical entries—for example, an engineer may have a
B.S. degree in engineering and a B.S. degree in business from the same school.

� The TECHNICIANS table will include information about the projects to which
each technician is assigned. Each technician may be assigned to two or more
projects, but each project has a unique name. This data will be stored as a set
column added to the TECHNICIANS table. The data values must be unique,
but no particular order is associated with them.

Here are some Informix ALTER TABLE statements that implement these changes to
the previously defined tables:

ALTER TABLE REPS

ADD QTR_TGT LIST(MONEY(9,2));  /* four quarterly targets */

ALTER TABLE TECHNICIANS

ADD PROJECT SET(VARCHAR(15));  /* projects assigned */

ALTER TABLE ENGINEERS (

ADD DEGREES MULTISET(ROW(      /* degree info */

DEGREE VARCHAR(3),

SCHOOL VARCHAR(15));

These collection column types create a row-within-a-row structure within the
table that contains them, as shown in Figure 24-6. In the case of the ENGINEERS table,
the structure might more accurately be described as a table within a table. Clearly, the
relational model of row/column tables with atomic data items has been stretched
considerably by the introduction of collection data types.

Informix Universal Server allows collections to be used quite generally and
intermixed with other object-relational extensions. A collection can be a field of a row
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data type. The items of a collection can be row data types. It’s also possible to define
collections within collections where that makes sense. For example, the projects in this
example might have subprojects that must be tracked for each technician. At each level
of additional complexity, the complexity of the stored procedure language (SPL) and
SQL expressions that are required to manipulate the data items and process them
increases accordingly.

Figure 24-6. Tables with collection data typed columns
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Oracle also provides extensive support for collection-type data, through two
different Oracle object-relational extensions:

� Varying arrays. A varying array is an ordered collection of data items, all having
the same data type. There is no requirement that the items in the array be
unique. You define the maximum number of data items that can occur when
you specify a varying array type for a column. Oracle provides extensions to
SQL to access the individual items within the array.

� Nested tables. A nested table is an actual table within a table. A column with a
nested table type contains individual data items that are themselves tables.
Oracle actually stores the nested table data separately from the main table that
contains it, but it uses SQL extensions to process nested references to the inner
table. Unlike a varying array, a nested table can contain any number of rows.

A column within a table can be declared to have a VARRAY (varying array) or TABLE
OF (nested table) structure. Here are some Oracle CREATE TYPE and CREATE TABLE
statements that use varying arrays and nested tables to achieve table structures like
those shown in Figure 24-6:

CREATE TABLE REPS (

EMPL_NUM INTEGER,

NAME NAME_TYPE,

ADDRESS ADDR_TYPE,

SLS_MGR INTEGER,                        /* employee number of mgr */

SALARY MONEY(9,2),                     /* annual salary */

QUOTA MONEY(9,2),                     /* sales quota */

QTR_TGT VARRAY(4) OF NUMBER(9,2));      /* four quarterly tgts */

CREATE TYPE DEGR_TYPE AS OBJECT ( (

DEGREE VARCHAR(3),

SCHOOL VARCHAR(15));

CREATE TABLE ENGINEERS (

EMPL_NUM INTEGER,

NAME NAME_TYPE,

ADDRESS ADDR_TYPE,

SALARY NUMBER(9,2),                    /* annual salary */

YRS_EXPER INTEGER,                        /* years of experience */

DEGREES TABLE OF DEGR_TYPE);

NESTED TABLE DEGREES STORE AS DEGREES_TABLE;
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The quarterly target information for the REPS table is most easily represented as
an Oracle varying array column. There will be exactly four quarters of information, so
the maximum size of the array is known in advance. In this example, the varying array
contains a simple data item as its element, but it’s also common to define varying
arrays whose items are themselves abstract (structured) data types.

The academic degree information for the ENGINEERS table is represented as a
nested table. For a data item like this one, you could decide to place an upper limit
on the number of rows and use a varying array structure instead, but in general, if the
maximum number of items is unknown, a nested table is the right choice. In this case,
the nested table has an abstract data type composed of two attributes. Each row of the
nested table will contain information about a degree granted and the school that
granted it.

Querying Collection Data
Collection-valued columns complicate the process of querying the tables that contain
them. In the SELECT item list, they generate multiple data values for each row of
query results. In search conditions, they don’t contain individual data items, but it’s
sometimes convenient to treat them as sets of data. The object-relational databases
typically provide a limited set of SQL extensions or extend existing SQL concepts to
provide simple queries involving collection data. For more advanced queries, they
require you to write stored procedure language programs with loop structures that
process the collection data items one by one.

For query purposes, Informix treats the collection types as if they were a set of data
values, like the values that might be returned by a subquery. You can match individual
items within a collection using the SQL IN search condition. Here is a query that finds
any technicians who work on a project named “bingo”:

SELECT EMPL_NUM, NAME

FROM TECHNICIANS

WHERE 'bingo' IN (PROJECTS);

The name of the collection-valued column (in this case, the set-valued column
PROJECTS) appears in parentheses. Informix treats the members of the collection
as a set and applies the IN matching condition. In interactive SQL, you can put a
collection-valued column in the select item list. Informix displays the collection of
data as either a SET, LIST, or MULTISET in the displayed output. To process collection-
valued data in the select list of a programmatic request (that is, from a program using
ESQL or a call-level API), you must use special API extensions and/or extensions to
the Informix stored procedure language.
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Oracle provides additional capabilities for processing nested tables within SQL
queries. A special THE keyword flattens the nested table, in effect, producing an
unnested table with one row for each row of the nested table within each row of
the main table. Here’s a query that shows the schools from which one of the engineers
has received degrees:

SELECT NEST.SCHOOL

FROM THE (SELECT DEGREES

FROM ENGINEERS

WHERE EMPL_NUM = 1234) NEST;

The query within the inner parentheses is a query against the main (ENGINEERS)
table. It selects the column containing the nested table, but it could select other columns
as well. The THE operation, applied to the query results, flattens them out, creating
a row for each nested row within each row of the main table. This flattened table is
assigned an alias (NEST in this example), and it becomes the source of candidate query
results rows from the FROM clause of the main, top-level query. With this table as a
source, the main query in this example is quite simple; it selects one column that
originated in the nested table.

The ability to flatten nested tables in this way and process them as if they were
actually joined versions of two separate tables is actually quite powerful. It allows
many queries to be expressed in high-level SQL that would otherwise require you to
resort to stored procedures. However, the logic behind such queries and the task of
actually constructing them correctly can be extremely complicated, as even this simple
example begins to show.

Manipulating Collection Data
Extensions to standard SQL syntax are used to insert new rows into a table containing
collection-valued columns. Informix provides a trio of constructors—the SET constructor,
MULTISET constructor, and LIST constructor—for this purpose. They transform a list
of data items into the corresponding collections to be inserted. Here is a pair of INSERT
statements that illustrates their use with the tables in Figure 24-6:

INSERT INTO TECHNICIANS

VALUES (1279,

ROW('Sam', 'R', 'Jones'),

ROW('164 Elm St.', 'Highland', 'IL', ROW(12345, 6789)),

SET{'atlas', 'checkmate', 'bingo'}");
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INSERT INTO ENGINEERS

VALUES (1281,

ROW('Jeff', 'R', 'Ames'),

ROW('1648 Green St.', 'Elgin', 'IL', ROW(12345, 6789)),

MULTISET{ROW('BS', 'Michigan'),

ROW('BS', 'Michigan'),

ROW('PhD','Stanford')}");

The first statement inserts a single row into the TECHNICIANS table with a
three-item set in the PROJECTS column. The second inserts a single row into the
ENGINEERS table with a three-item multiset in the DEGREES column. Because the
members of this particular multiset are themselves row types, the row constructor
must be used for each item.

Oracle uses a different approach to constructing the collection-valued data items
for insertion into the table. Recall from the discussion of Oracle abstract data types that
each Oracle abstract data type automatically has an associated constructor method that is
used to build a data item of the abstract type out of individual data items. This concept
is extended to varying arrays and nested tables. A constructor method is automatically
supplied for each varying array or nested table, and it is used in the INSERT statements:

INSERT INTO TECHNICIANS

VALUES (NAME_TYPE('Sam', 'R', 'Jones'),

ADDR_TYPE('164 Elm St.', 'Highland', 'IL',

POST_TYPE(12345, 6789)),

PROJECTS('atlas', 'checkmate', 'bingo'));

INSERT INTO ENGINEERS

VALUES (NAME_TYPE('Jeff', 'R', 'Ames'),

ADDR_TYPE('1648 Green St.', 'Elgin','IL',

POST_TYPE(12345, 6789)),

DEGREES(DEGREE_TYPE('BS', 'Michigan'),

DEGREE_TYPE('BS', 'Michigan'),

DEGREE_TYPE('PhD', 'Stanford')));

Collections and Stored Procedures
Collections pose special problems for stored procedures that are retrieving and
manipulating data in tables that contain them. Both Oracle and Informix provide
special stored procedure language facilities for this purpose. In Informix, special SPL
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collection variables must be used. Here is an SPL stored procedure fragment that
handles the PROJECTS collection column from the TECHNICIANS table:

define proj_coll collection;     /* holds project collection */

define a_project varchar(15);    /* holds individual project */

define proj_cnt  integer;        /* number of projects */

define empl_name name_type;      /* buffer for tech name */

/* Check how many projects the technician is supporting */

select cardinality(projects) into proj_cnt

from technicians

where empl_num = 1234;

/* If too many projects, then refuse to add a new one */

if (proj_cnt > 6) then . . .

/* Retrieve row, including project set for the technician */

select name, projects into empl_name, proj_coll

from technicians

where empl_num = 1234;

/* Add the 'gonzo' project to the list for this tech */

insert into table(proj_coll)

values ('gonzo');

/* Search through project list one by one */

foreach proj_cursor for

select * into a_project

from table(proj_coll)

if (a_project = 'atlas') then

begin

update table(proj_coll)(project)

set project = 'bingo'

where current of proj_cursor;

exit foreach;

end;

end if;

end foreach;



C h a p t e r 2 4 : S Q L a n d O b j e c t s 867
S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

/* Update the database row with modified project list */

update technicians

set projects = proj_coll

where empl_num = 1234;

The example shows several aspects of collection-handling in Informix SPL. First,
the collection is retrieved from the database into an SPL variable as a collection data
type. It would also be possible to retrieve it into a variable explicitly declared as
having a SET type (or in other situations, a LIST or MULTSET type). The collection
stored in the variable is then explicitly treated as a table for manipulating items within
the collection. To add a new project, an INSERT is performed into the collection table.
To find and modify a specific project, a cursor is used to search through the collection
table, and a cursor-based UPDATE statement is used to change the value of one member
of the collection. Note that the FOREACH loop retrieves each item of the collection into a
variable so that the SPL routine can process it. Finally, the collection variable’s contents
are used to update the collection column within the table.

Oracle takes a similar approach to processing varying arrays. The individual
elements of an array within an abstract data type are available through subscripted
references within a structured data type. The typical Oracle PL/SQL process for
accessing variable array elements is:

1. Retrieve the row from the table containing the varying array into a local
variable whose data type is defined to match the row structure of the table,
or of the particular columns being retrieved.

2. Execute a FOR loop with an index variable, n, that counts from 1 to the number
of elements in the varying array. The number of elements is available through
the value of a special attribute of the array column named COUNT.

3. Within the FOR loop, a subscript is used on the varying array name to access the
n-th element of the varying array.

A similar technique can be used to process nested tables; however, it’s usually not
necessary. Instead, the THE operator is generally used to flatten the table in a SQL query,
and the results are processed with a single cursor-driven FOR loop. The processing
may still be complex. In particular, the stored procedure may need to detect whether
a particular row coming from the query results is from the same main table row as
the previous row and, upon detecting a change in main table rows, perform special
processing such as computing subtotals. In this aspect, the processing of both varying
arrays and nested tables begins to resemble the nested-loop processing typical of the
COBOL report-writing programs of 30 years ago that handled master and detail records.

As the discussion in this section has illustrated, collection types and the processing
of individual collection items tend to call for programmatic access through stored



procedures rather than for ad hoc SQL use. One of the criticisms of object-oriented
databases is that they are a regression from the simplicity of the relational model and
reintroduce that need for explicit database navigation that was part of the prerelational
databases. Examples like these provide evidence that there is at least a certain amount
of truth in the criticism.

User-Defined Data Types
Object-relational data management systems generally provide a mechanism through
which a user can extend the built-in data types provided by the DBMS with additional,
user-defined data types. For example, a mapping application might need to operate on
a LOCATION data type that consists of a pair of latitude and longitude measurements,
each consisting of hours, minutes, and seconds. To effectively process location data, the
application may need to define special functions, such as a DISTANCE(X,Y) function
that computes the distance between two locations. The meanings of some built-in
operations, such as a test for equality (=), will need to be redefined for location type data.

One way that Informix Universal Server supports user-defined data types is
through its OPAQUE data type. An OPAQUE data type is (not surprisingly) opaque to the
DBMS. The DBMS can store and retrieve data with this type, but it has no knowledge
of the internal workings of the type. In object-oriented terms, the data is completely
encapsulated. The user must explicitly provide (in external routines, written in C or
some similar programming language) the data structure for the type, code to implement
the functions or operations that can be performed on the type (such as comparing two
data items of the type for equality), and code to convert the opaque type between
internal and external representations. Thus, OPAQUE data types represent a low-level
capability to extend the core functionality of the DBMS with data types that appear as
if they were built-in.

A more basic user-defined data type capability is provided by the implementation
of DISTINCT data types within Informix. A DISTINCT type is useful to distinguish
among different types of data, all of which use one of the DBMS built-in data types. For
example, the city and company name data items in a database might both be defined
with the data type VARCHAR(20). Even though they share the same underlying DBMS
data type, these data items really represent quite different types of data. You would
never normally compare a city value to a company name, and yet the DBMS will let
you do this because the two VARCHAR(20) columns are directly comparable.

To maintain a higher level of database integrity, you could define each of these
three data items as having a DISTINCT data type:

CREATE DISTINCT TYPE CITY_TYPE AS VARCHAR(20);

CREATE DISTINCT TYPE CO_NAME_TYPE AS VARCHAR(20);
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Now tables can be created containing city and customer name data items in terms
of the CITY_TYPE and CO_NAME_TYPE data types. If you try to compare columns
with these two different data types, the DBMS automatically detects the situation and
generates an error. You can compare them, but only by explicitly casting the data type
of one item to match the data type of the other. As a result, the distinct data types
assigned to the different columns help to maintain the integrity of the database and
prevent inadvertent errors in programs and ad hoc queries that use the database.

Methods and Stored Procedures
In object-oriented languages, objects encapsulate both the data and programming code
that they contain; the details of the data structures within an object and the programming
instructions that manipulate those data structures are explicitly hidden from view. The
only way to manipulate the object and obtain information about it is through methods,
which are explicitly defined procedures associated with the object (or more accurately
with the object class). For example, one method associated with a customer object
might obtain the customer’s current credit limit. Another method might provide the
ability to change the credit limit. The credit limit data itself is encapsulated, hidden
within the customer object.

The data within the tables of a relational database is inherently not encapsulated.
The data and its structure are directly visible to outside users. In fact, one of the main
advantages of a relational database is that SQL can be used to carry out ad hoc queries
against the database. When the system catalog of a relational database is considered,
the contrast with the object-oriented ideal is even more extreme. With the catalog,
the database is self-describing, so that even applications that don’t know the internal
structure of the database in advance can use SQL queries to find out what it is.

Stored procedures provide a way for relational databases to offer capabilities that
resemble those of object-oriented methods. At the extreme, all users of a relational
database could be granted permission only to execute a limited set of stored procedures,
and no underlying data access permissions on the base tables at all. In this case, the
users’ access would approach the encapsulation of the object-oriented ideal. In practice,
stored procedures are often used to provide application designers with the limited
database access they need. However, the ad hoc capabilities of the database are almost
always exploited by query tools or reporting programs.

Oracle formalizes the linkage between object methods and database stored
procedures by allowing you to explicitly define a stored procedure as a member function
of an abstract data type. Once defined in this way, the member function can be used
in queries involving the abstract data type, just as if it were a built-in function of the
DBMS designed to work on that type. Here is a redefinition of the ADDR_TYPE abstract
data type that is used to store addresses, with a relatively simple member function,
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named GET_FULL_POST. The function takes the postal-code part of the address, which
stores both a five-digit main postal code and a four-digit suffix as two separate
numbers, and combines them into one nine-digit number, which it returns:

CREATE TYPE ADDR_TYPE AS OBJECT (

STREET VARCHAR(35),

CITY VARCHAR(15),

STATE CHAR(2),

POSTCODE POST_TYPE,

MEMBER FUNCTION GET_FULL_POST(POSTCODE IN POST_TYPE)

RETURN NUMBER,

PRAGMA RESTRICT_REFERENCES(GET_FULL_POST, WNDS));

CREATE TYPE BODY ADDR_TYPE AS

MEMBER FUNCTION GET_FULL_POST(POSTCODE POST_TYPE)

RETURN NUMBER IS

BEGIN

RETURN((POSTCODE.MAIN * 10000) + POSTCODE.SFX);

END;

. . .

The member function is identified as such within the CREATE TYPE statement for
the abstract data type, following the lines that describe the data items. The additional
PRAGMA clause tells Oracle that the function does not modify the contents of the
database, which is a requirement for a function that is to be used within query
expressions. There are several more options, which are beyond the scope of this
discussion. A separate CREATE TYPE BODY statement defines the actual procedural
code for the function. After the first few words of the statement, it follows the same
format as the standard CREATE PROCEDURE or CREATE FUNCTION statements. Once
the member function is defined, it can be used in query expressions like this one, which
finds employees living in postal code 12345-6789:

123456789;

Informix Universal Server doesn’t have an extended mechanism like Oracle’s to
turn stored procedures into object-oriented methods. Instead, it’s possible to use an
Informix row type (corresponding to an Oracle object type) as the parameter of a stored
function. When called, the function is passed a data item with the appropriate row type
(such as the POSTCODE abstract data item in the preceding Oracle example) and can
perform appropriate calculations on it. You could, for example, define an Informix
stored function GET_FULL_POST() with a single parameter of type POST_TYPE. With
that definition, the preceding Oracle SELECT statement could be used, unmodified, in
the equivalent Informix database.
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Another powerful feature associated with object-relational stored procedures is the
overloading of procedure definitions to allow them to process different types of data. In
an object class hierarchy, it’s frequently necessary to define a method that carries out
the same or very similar operations on different classes of objects. For example, you
may want to define a GET_TGT_WAGES method (function) that can obtain the target
total annual wages for any of the subclasses of the PERSONNEL class in our example
database. The method (which will be implemented as a stored function) should return
the target total wages for the employee to which it is applied. The particulars of the
calculation differ, depending on the type (class) of employee:

� For technicians, total wages are the hourly rate times a normal 40-hour
week × 52 weeks per year.

� For managers, total wages are equal to their annual salary plus bonus.

� For all other engineers, total wages are equal to their annual salary.

To solve this problem, a different GET_TGT_WAGES routine is defined for each
class. The routine takes an object (a row of the TECHNICIANS, ENGINEERS, or
MANAGERS table) as its parameter and returns the calculated amount. The three
routines are identically named, which is the reason why the procedure name is said
to be overloaded—a single name is associated with more than one actual stored
procedure. When the routine is called, the DBMS looks at the particular data type of
the argument (that is, the particular class of the object) and determines which of the
routines is the appropriate one to call.

Informix Universal Server implements this stored procedure overloading capability
without any additional object-oriented extensions. It allows you to define many
different stored procedures with identical names, provided that no two of them have
the identical number of arguments with identical data types. In the previous example,
there would be three CREATE FUNCTION definitions like this:

/* Calculates target wages for a technician */

CREATE FUNCTION GET_TGT_WAGES(PERSON TECH_TYPE)

RETURNS MONEY(9,2) AS RETURN (PERSON.WAGE_RATE * 40 * 52)

END FUNCTION;

/* Calculates target wages for a manager */

CREATE FUNCTION GET_TGT_WAGES(PERSON MGR_TYPE)

RETURNS MONEY(9,2) AS RETURN (PERSON.SALARY + PERSON.BONUS)

END FUNCTION;

/* Calculates target wages for an engineer */

CREATE FUNCTION GET_TGT_WAGES(PERSON ENGR_TYPE)

RETURNS MONEY(9,2) AS RETURN (PERSON.SALARY)

END FUNCTION;
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With these definitions in place, you can invoke the GET_TGT_WAGES() function
and pass it a row from the ENGINEERS, MANAGERS, or TECHNICIANS table. The DBMS
automatically figures out which of the functions to use and returns the appropriate
calculated value.

Stored procedures are made even more valuable for typed tables through Informix
Universal Server’s substitutability feature. If you call a stored procedure whose argument
is a row type and pass it one of the rows from a typed table, Informix will first search
for a stored procedure with the appropriate name whose argument data type is an
exact match. For example, if you call a GET_LNAME() stored procedure to extract the
last name from a TECH_TYPE row (probably from the TECHNICIANS table), Informix
searches for a procedure written to process TECH_TYPE data. But if Informix doesn’t
find such a stored procedure, it does not immediately return with an error. Instead, it
searches upwards in the type hierarchy, trying to find a procedure with the same name
that is defined for a supertype of TECH_TYPE. If there is a GET_LNAME() stored procedure
defined for the ENGR_TYPE type, Informix will execute that stored procedure to obtain the
required information. If not, it will continue up the hierarchy, looking for a GET_LNAME()
stored procedure defined for the PERS_TYPE type. Thus, substitutability means that
you can define stored procedures (methods) for the highest-level type in the hierarchy
to which they apply. The stored procedures are automatically available to process all
subtypes of that type. (That is, all subclasses inherit the method from the class.)

Object Support in the SQL:1999 Standard
As mentioned at the beginning of this chapter, the largest area of SQL expansion in the
SQL:1999 standard was object-relational support. The SQL:1999 standard specifies new
statements, clauses, and expressions in the SQL language in these areas:

� User-defined data types

� Composite (abstract) data types

� Array values

� Overloaded (polymorphic) stored procedures

� Row constructors and table constructors supporting abstract types

� Row-valued and table-valued expressions supporting abstract types

The SQL:1999 extensions don’t exactly match any of the major commercial object-
relational DBMS products in their specifics, but the underlying concepts are the same
as those illustrated in the earlier sections for specific products. It’s likely that this area
of SQL will follow the pattern of others with respect to the standard. Slowly, over a
series of major releases, the major DBMS vendors will provide support for the SQL:1999
syntax where it can be added in parallel to their own, well-established proprietary
syntax. This process has just begun for SQL:1999 object support. For the next several
years, the object-relational capabilities that matter for real-world implementations will
continue to be the vendor-proprietary capabilities.



Summary
Object-oriented databases will likely play an increasing role in specialized market
segments, such as engineering design, compound document processing, and graphical
user interfaces. They are not being widely adopted for mainstream enterprise data
processing applications. However, hybrid object-relational databases are being offered
by some of the leading enterprise DBMS vendors:

� The object-relational databases significantly extend the SQL and stored
procedure languages with object-oriented statements, structures, and
capabilities.

� Common object-relational structures include abstract/structured data types,
tables within tables, and explicit support for object identifiers. These capabilities
stretch the simple relational model a great deal and tend to add complexity
for casual or ad hoc users.

� The object-relational extensions added by the various DBMS vendors are highly
proprietary. There are significant conceptual differences in the approaches as
well as differences in implementation approach.

� Object-relational capabilities are particularly well suited for more complex data
models, where the overall design of the database may be simpler, even though
individual tables/objects are more complex.

� Object-relational capabilities are a major focus of the SQL3 standards efforts,
and more relational databases are likely to incorporate them in the future.
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T
he eXtensible Markup Language (XML) is one of the most important new
technologies to come out of the evolution of the Internet and the World Wide
Web. XML is a standard language for representing and exchanging structured

data. SQL is a standard language for defining, accessing, and updating the structured
data stored in relational databases. It seems obvious on the surface that there should be
a relationship between XML and SQL. The natural question is what is the relationship,
and are the two technologies naturally in conflict or complementary to one another?
The answer is a little bit of both. This chapter provides an overview of XML basics,
and then examines the evolving relationship of XML and SQL, and how XML is being
integrated into major SQL products.

What Is XML?
As implied by its name, XML is a markup language. It shares many characteristics with
its more familiar cousin, the HyperText Markup Language (HTML), which has become
wildly popular as the core technology enabling the World Wide Web and web browsers.
The languages have common origins in document markup, a technique that is as old as
the printing and publishing business. When a complex document, such as this book or
a newsletter or a magazine, is to be printed, it can be thought of as having two related
logical parts. The content of the document, which usually consists of text and graphics,
contains its meaning. The structure of the document (titles, subtitles, paragraphs,
captions) and the accompanying formatting (fonts, indentations, page layouts) help to
organize the contents and ensure that they are presented in a meaningful way. Since
the earliest days of printing and publishing, editors have employed markup symbols
and formatting marks, embedded within the contents of the document itself, to indicate
the document’s structure and how it should be formatted for printing.

When computerized publishing systems arrived on the scene, markup commands
embedded within the contents of a document became instructions for the publishing
software programs. Each type of publishing software or equipment had its own
proprietary markup commands, making it difficult to move from one system to
another. The Standard General Markup Language (SGML) was developed as a way to
standardize markup languages, and eventually was adopted as an ISO standard. More
precisely, SGML is a metalanguage for defining specific markup languages. Its inventors
recognized that no single markup language could cover all of the possible markup
requirements, but that all markup languages had common elements. By standardizing
these common elements, a family of closely related markup languages could be created.
HTML is one such markup language, focused especially on the use of hypertext to link
documents together. XML is another such language, focused especially on strong typing
and tight structuring of document contents. Their common roots in SGML make HTML
and XML cousin languages, and account for their similarity.

Both HTML and XML are World Wide Web Consortium (W3C) recommendations,
defined by specifications that are developed by, voted on, and then published by the
W3C. The W3C is an independent, nonprofit consortium whose purpose is to develop
and advocate the use of standards associated with the Internet and the World Wide
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Web. W3C recommendations have “officially adopted” status; the terminology means
that the W3C organization advocates and recommends their use. Through this process,
HTML and XML are vendor-independent industry standards.

HTML was the first SGML-based language to gain widespread popularity. The
contents of every web page on every web site on the World Wide Web are expressed as
an HTML document. Special markup elements, called tags within an HTML document,
indicate graphical elements, such as buttons to be displayed by a web browser. The
tags also describe the hypertext links to other documents that the browser should
follow when a button is clicked. Other tags identify graphical elements that are to be
inserted into the HTML text when it is displayed.

As the use of the World Wide Web exploded in the 1990s, HTML was rapidly
adapted to display much richer content on highly formatted web pages. HTML tags
were quickly invented to control the formatting of web pages, directing the display of
boldface or italic text, centering and indents, and text location within the page. In some
cases, these tags were even unique to a specific web browser, such as the Netscape
browser or Microsoft’s Internet Explorer. Over time, a great deal of the markup within
an HTML page became focused on formatting and presentation of information. This
had the benefit that web page formatting was tightly specified, so pages tended to be
displayed in the same way regardless of the browser or device on which it was displayed.
It had the disadvantage that the logical structure of web page content tended to get lost
in the formatting and presentation details.

An important original goal of SGML was that a given logical element, such as a
page title or a web page subsection, could be consistently identified across hundreds of
documents (for example, across hundreds of pages on a web site). A simple directive to
the browser, such as “display all subsection titles in blue, boldfaced, 16-point Times New
Roman font,” would then ensure consistent presentation of all pages. Instead, web page
authors tended to explicitly mark every element, such as those subsection titles, with its
own detailed formatting instructions. These could easily become inconsistent, and worse,
a change to the formatting instructions would require hundreds of individual page edits
rather than being specified once for all pages.

One of the main driving forces behind the development of XML was to restore a
more logical-level, rather than formatting-level, approach to markup. XML implements
much more rigid rules about document structure than HTML. Most of its components
and capabilities are squarely focused at representing logical document structure.
Companion standards, such as XML Schema, which specifies types of documents,
extend this focus of XML even farther.

XML Basics
To understand the interactions between XML and SQL, you need a basic understanding
of XML and how it is used. If you already understand or use XML, feel free to skip this
section and go on to the next. If you are not familiar with XML, this section provides a
simple introduction, based on some examples of XML documents.
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Figure 25-1 shows a typical XML representation of a text document, a portion of
Part II of this book. This example has little to do with data processing or SQL, but it
shows XML in its original environment, and it illustrates key XML concepts. Each
element of the XML document in the figure—each component part—is represented by
a corresponding XML element with the simple structure shown in Figure 25-2. The
element is identified by an opening tag, which contains the name of the element type,
enclosed between less-than (<) and greater-than (>) symbols.

In Figure 25-1, paragraphs are identified by an opening <para> tag, and headers
are identified by an opening <header> tag. The end of each element is identified by a
closing tag, which again contains the name of the element type, preceded by a slash (/)
character, again enclosed between less-than and greater-than symbols. In Figure 25-1,
paragraphs end with a </para> tag and headers end with a </header> tag. Between
the opening and closing tags is the content of the element. Most of the content in Figure 25-1
is text, enclosed in quotes. You can use single or double quotes to enclose the text, as long
as you use the same type of quotation mark for the beginning and ending of a piece of text.

Figure 25-1 shows the hierarchy of elements typical of most XML documents. At the
top level is the part element. Its contents are not text, but other elements—a sequence
of chapter elements. Each chapter element contains a title element, possibly some
introductory para elements, and then a series of section elements. Each section
element contains a header element and one or more para elements, possibly interspersed
with some figure elements and some table elements. Each para element has only
text as its contents.

In addition to the element hierarchy, Figure 25-1 shows some examples of attributes,
another fundamental XML structure. An attribute is associated with a specific XML
element, and describes some characteristic of the element. Each attribute has an attribute
name and a value. In Figure 25-1, the chapter element has an attribute called chapNum
whose value is the chapter number associated with that particular content. The chapter
element has another attribute called revStatus whose value indicates whether the
chapter is in its original draft, being rewritten, or in final form. Individual <header>
elements in Figure 25-1 also have an attribute called hdrLevel that indicates whether
the header is top level (level 1) or lower level (level 2 or 3).

The first line of the XML document in Figure 25-1 identifies it as an XML 1.0
document. Every other part of the document describes the element structure, element
contents, or attributes of elements. XML documents can become considerably more
complex, but these fundamental components are the ones that are important for
XML/database interaction. Note that element names and attribute names are
case-sensitive. An element named bookPart and one named bookpart are not
considered the same element. This is different from the usual SQL convention for table
and column names, which are usually case-insensitive.

One additional XML shorthand notation is not shown in Figure 25-1 for clarity,
but is very useful in practice. For elements that have no content of their own but only
attributes, the end of the element can be indicated within the same pair of less-than
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Figure 25-2. Anatomy of an XML element

<?xml version="1.0"?>
<bookPart partNum="2" title=“Retrieving Data">
<para>Queries are at the heart… used to handle complex queries.</para>
<chapter chapNum = "5" revStatus="final">

<title>SQL Basics</title>
<para>This chapter begins… described in this chapter."</para>
<section>
<header hdrLevel="1">Statements</header>
<para>The main body of… in Figure 5-1.</para>
<para>Every SQL statement… constands, or expressions.</para>
<figure figNum="5-1"></figure>
<table tabNum="5-1"></table>
<para>The ANSI/ISO SQL…. In Table 5-3.</para>
<table tabNum="5-2"></table>
<table tabNum="5-3"></table>
<para>Throughout this book… in lowercase.</para>
<figure figNum="5-2"></figure>
<para>Variable items… is UNDERLINED.</para>

</section>
<section>
<header hdrLevel="1">Names</header>
<para>The objects in a… data entry forms (Ingres).</para>
<para>The original… special characters.</para>
<section>

<header> hdrLevel=“"2">Table Names</header>
<para>When you specify… or designer.</para>
<para>In a larger… table name</para>

… etc …
</section>

</section>
</chapter>
<chapter chapNum="6">
<title>Simple Queries</title>
<para>In many ways … in the database.</para>
<section>

… etc …
</section>

</chapter>
… etc …

</bookPart>

Figure 25-1. XML document for part of a book



and greater-than symbols as the opening tag, indicated by a slash just before the
greater-than symbol. Using this convention, this element from Figure 25-1:

<figure figNum=“5-1”></figure>

can be instead represented as:

<figure figNum=“5-2” />

The XML specification defines certain rules that every XML document should
follow. It dictates that elements within an XML document must be strictly nested
within one another. The closing tag for a lower-level element must appear before the
closing tag for a higher-level element that contains it. The standard also dictates that an
attribute must be uniquely named within its element; it is illegal to have two attributes
with the same name attached to a single element. XML documents that obey the rules
are described as well-formed XML documents.

XML for Data
Although the roots of XML are in documents and document processing, XML can be

quite useful for representing the structured data commonly found in data processing
applications as well. Figure 25-3 shows a typical XML document from the data processing
world, a very simplified purchase order. This is quite a different type of document than
the book excerpt in Figure 25-1, but the key components of the document are the same.
Instead of a chapter, the top-level element is a purchaseOrder. Its contents, like
those of the chapter, are subelements—a customerNumber, an orderNumber, an
orderDate, and an orderItem. The orderItem in turn is composed of further
subelements. Figure 25-3 also shows some business terms associated with the purchase
order as attributes of the terms element. The ship attribute specifies how the order is to
be shipped. The bill attribute specifies the credit terms for the order.

It should be obvious that the simple XML purchase order document in Figure 25-3
has a strong relationship to the ORDERS table in the sample database. You may want
to compare it to the structure of the ORDERS table shown in Appendix A (Figure A-5).
The lowest-level elements in the document mostly match the individual columns of the
ORDERS table, except for the terms element. The top-level element in the document
represents an entire row of the table. The transformation between a group of documents
like the one in Figure 25-3 and a set of rows in the ORDERS table is a straightforward,
mechanical one, which can be automatically performed by a simple computer program.

Unlike the ORDERS table, the XML document imposes one middle level of hierarchy,
grouping together the information about the ordered product—the manufacturer ID,
product ID, quantity, and total amount. In a real-world purchase order, this group of
data items might be repeated several times, forming multiple line items on the order.
The XML document could be easily extended to support this structure, by adding a
second or third orderItem element after the first one. The sample database cannot
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be so easily extended. To support orders with multiple line items, the ORDERS table
would probably be split into two tables: one holding the order header information
(order number, date, customer-ID, and so on), and the other holding individual order
line items.

XML and SQL
The SGML origins give XML several unique and useful characteristics, which have
strong parallels to the SQL language:

� Descriptive approach. XML approaches document structure by telling what
each element of a document is, rather than how to process it. You may recall
this is also a characteristic of SQL, which focuses on which data is requested
rather than how to retrieve it.

� Building blocks. XML documents are built up from a very small number of
basic building blocks, including two fundamental concepts, elements and
attributes. There are some strong (but not perfect) parallels between an XML
element and a SQL table, and between an XML attribute and a SQL column.

� Document types. XML defines and validates documents as conforming to
specific document types that parallel real-world documents, such as a purchase
order document or a business reply letter document or a vacation request
document. Again, there are strong parallels to SQL, where tables represent
different types of real-world entities.
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<?xml version="1.0"?>
<purchaseOrder>
<customerNumber>2117</customerNumber>
<orderNumber>112961</orderNumber>
<orderDate>1989-12-17</orderDate>
<repNumber>106</repNumber>
<terms ship="ground" bill="Net30"></terms>
<orderItem>
<mfr>REI</mfr>
<product>2A44L</product>
<qty>7</qty>
<amount>31500.00</amount>

</orderItem>
</purchaseOrder>

Figure 25-3. XML document for a simple purchase order



Although there are some strong parallels between XML and SQL, there are also
some very strong differences:

� Document vs. data orientation. The core concepts of XML arise out of typical
document structures. XML is text-centric, and it implements a strong distinction
between the content itself (the elements of a document) and characteristics of
the content (attributes). The core concepts of SQL arise out of typical data
processing record structures. It is data-centric, with a range of data types (in
their binary representations), and its structures (tables and columns) focus on
content (data). This mismatch between the fundamental XML and SQL models
can cause some conflicts or difficult choices when using them together.

� Hierarchical vs. tabular structure. Natural XML structures are hierarchical,
reflecting the hierarchy of elements in most types of documents (for example,
a book contains chapters, chapters contain sections, and sections contain a
heading, paragraphs, and figures). The structures are also flexible and variable.
One section may contain five paragraphs and a single figure, the next one three
paragraphs and two figures, and the next one six paragraphs and no figures.
In contrast, SQL structures are tabular, not hierarchical, and they reflect the
records typical of data processing applications. SQL structures are also quite
rigid. Every row of a table contains exactly the same columns, in the same
order. Each column has the same data type in every row. There are no optional
columns; every column must appear in every row. These differences can also
cause conflicts when using XML and SQL together.

� Objects vs. operations. The core purpose of the XML language is to represent
objects. If you take a meaningful piece of XML text and ask “What does this
represent?” the answer will be an object: a paragraph, a purchase order, or a
customer address, for example. The SQL language has a broader purpose, but
most of it is focused on manipulating objects. If you take a meaningful piece of
SQL text and ask “What does this represent?” the answer will usually be an
operation on an object: creating an object, deleting an object, finding one or more
objects, or updating object contents. These differences make the two languages
fundamentally complementary in their purpose and use.

Elements vs. Attributes
The relational model offers only one way to represent data values within the database—
as values of individual columns within individual rows of a table. The XML document
model offers two ways to represent data:

� Elements. An element within an XML document has contents, and the contents
can include a data value in the form of text for that element. When represented
in this way, the data value is a fundamental part of the XML document hierarchy;
the hierarchy is built up from elements. Often, an element containing a data
value will be a leaf node in the XML document tree; that element will be a
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child of higher-level elements, but it will not itself have any children. This
will almost always be true of elements that represent data that comes from
a relational database. However, XML does support mixed elements, which
contain a combination of text (content) and other subelements.

� Attributes. An element within an XML document may have one or more named
attributes, and each attribute has a text value. The attributes are attached to an
element within the XML hierarchy but are not the content of the element. The
names of different attributes of an element must be different, so you can’t have
two attributes with the same name. Also, XML treats the order of the attributes
of an element as insignificant; they can appear in any order. This differs from
the XML treatment of elements, which have a definite position within an XML
document, and where the difference between the first, second, and third child
elements of a higher-level element is significant.

The existence of two different ways to represent data in XML means that there are
two different legitimate ways to express the contents of a relational database as XML.
These two rows of data:

ORDER_NUM  MFR  PRODUCT   QTY      AMOUNT

---------  ---  -------  ----  ----------

112963  ACI    41004    28   $3,276.00

112983  ACI    41004     3     $702.00

might be represented by this XML document when elements are used to represent
column values:

<?xml version="1.0"?>

<queryResults>

<row>

<orderNum>112963</orderNum>

<mfr>ACI</mfr>

<product>41004</product>

<qty>28</qty>

<amount>3276.00</amount>

</row>

<row>

<orderNum>112983</orderNum>

<mfr>ACI</mfr>

<product>41004</product>

<qty>3</qty>

<amount>702.00</amount>

</row>

</queryResults>
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and would be represented by this XML document when attributes are used:

<?xml version="1.0"?>

<queryResults>

<row orderNum="112963"

mfr="ACI"

product="41004"

qty="28"

amount="3276.00">

</row>

<row orderNum="112983"

mfr="ACI"

product="41004"

qty="3"

amount="702.00">

</row>

</queryResults>

As you might expect, there are strong advocates for both the element-representation
and the attribute-representation methods, with strongly held beliefs. Advocates of the
element approach make these arguments:

� Elements are more fundamental to the XML model than attributes; they are the
carriers of content in all markup languages (HTML, XML, SGML, etc.), and the
content of the database (column values) should be represented as content in XML.

� Element order matters, and in some cases, so does the ordering of data in a DBMS
(for example, when identifying a column by number in a query specification or
when using a column number to retrieve query results with an API).

� Elements provide a uniform way of representing column data, regardless of
whether the column has a simple, atomic data type (integer, string) or more
complex, compound, user-defined data types supported by the object-relational
extensions and SQL3. Attributes don’t provide this capability. (Attribute values
are atomic.)

Advocates of the attribute approach make these arguments:

� Attributes are a fundamental match for the columns in the relational model.
Individual rows represent entities, so they should be mapped into elements.
Column values describe attributes of the entity (row) in which they appear;
they should be represented as attribute values in XML.

� The restriction of unique attribute names within an element matches the
uniqueness required of column names within a table. The unordered nature
of attributes matches the unordered nature of columns in the fundamental
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relational model. (The places where column position is used are shortcuts for
convenience, not fundamental to the underlying relations.)

� The attribute representation is more compact, since column names appear only
once in the XML form, not as both opening and closing tags. This is a practical
advantage when storing or transmitting XML.

Both the element-centric and attribute-centric styles are found in today’s XML and
SQL products. The choice depends on the preferences of the document author and the
conventions of the organization using XML with SQL. In addition, standards imposed
by industry bodies for document exchange using XML may dictate one style or the other.

Using XML with Databases
With the rapidly growing popularity of XML, database product vendors have moved
quickly to offer XML support in their products. The form of XML support varies, but
tends to fall into one or more of these categories:

� XML output. An XML document can easily represent the data in one or more
rows of query results. With this support, the DBMS generates an XML document
as its response to a SQL query instead of the usual row/column query results.

� XML input. An XML document can easily represent the data to be inserted as
one or more new rows of a table. It can also represent data to update a row of a
table, or the identification of a row to be deleted. With this support, the DBMS
accepts an XML document as input instead of a SQL request.

� XML data exchange. XML is a natural way to express data that is to be
exchanged between different DBMS systems or among DBMS servers. Data
from the source database is transformed into an XML document and shipped to
the destination database, where it is transformed back into a database format.
This same style of data exchange is useful for moving data between relational
databases and non-DBMS applications, such as corporate Enterprise Resource
Planning (ERP) or Enterprise Application Integration (EAI) systems.

� XML storage. A relational database can easily accept an XML document (which
is a string of text characters) as a piece of variable-length character string
(VARCHAR) or character large object (CLOB) data. At the most basic level of XML
support, an entire XML document becomes the content of one column in one
row of the database. Slightly stronger XML support may be possible if the DBMS
allows the column to be declared with an explicit “XML-data” data type.

� XML data integration. A more sophisticated level of integrated XML storage
is possible if the DBMS can parse an XML document, decompose it into its
component elements, and store the individual elements in individual columns.
Ordinary SQL can then be used to search those columns, providing search
support for elements within the XML document. In response to a query, the
DBMS can recompose the XML document from its stored component elements.
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XML Output
One of the most straightforward combinations of XML and database technology is to
use XML as a format for SQL query results. Query results have a structured tabular
format that can easily be translated into an XML representation. Consider this simple
query from the sample database:

SELECT ORDER_NUM, MFR, PRODUCT, QTY, AMOUNT

FROM ORDERS

WHERE CUST = 2103;

ORDER_NUM  MFR  PRODUCT   QTY      AMOUNT

---------  ---  -------  ----  ----------

112963  ACI    41004    28   $3,276.00

112983  ACI    41004     3     $702.00

113027  ACI    41002    54   $4,104.00

112987  ACI    4100Y    11  $27,500.00

If the DBMS is instructed to output the query results in XML format instead, here is
the output that might result:

SELECT ORDER_NUM, MFR, PRODUCT, QTY, AMOUNT

FROM ORDERS

WHERE CUST = 2103;

<?xml version="1.0"?>

<queryResults>

<row>

<order_num>112963</order_num>

<mfr>ACI</mfr>

<product>41004</product>

<qty>28</qty>

<amount>3276.00</amount>

</row>

<row>

<order_num>112983</order_num>

<mfr>ACI</mfr>

<product>41004</product>

<qty>3</qty>

<amount>702.00</amount>

</row>

<row>
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<order_num>113027</order_num>

<mfr>ACI</mfr>

<product>41002</product>

<qty>54</qty>

<amount>4104.00</amount>

</row>

<row>

<order_num>112987</order_num>

<mfr>ACI</mfr>

<product>4100Y</product>

<qty>11</qty>

<amount>27500.00</amount>

</row>

</queryResults>

This is typical of the output you could actually receive from some of the popular
DBMS products that currently support XML output. The query results are a well-formed,
self-contained XML document. If you submit the results to an XML parser (parsers are
described in the “Large Objects and Parsers” section later in this chapter), the parser
will correctly interpret them as having:

� One root element, queryResults

� Four row subelements beneath the root

� Five subelements beneath each row element, and in this case, all five
subelements appearing for every row element, and in the same order

Having XML-formatted query output can be a significant advantage. The output
can be sent directly to programs that accept XML documents as input, for further
processing. The output can be sent across a network to another system, and because of
its XML format, its elements are self-describing—every receiving system or application
will interpret the query results in the same way—as four rows of five elements each.
Because the output is in pure text format, it won’t be misinterpreted because of
differences in binary data representations between sending and receiving systems.
Finally, if the XML is transmitted over an HTTP link using the Simple Object Access
Protocol (SOAP) protocol standards, the XML-formatted message can typically move
through corporate firewalls and link an originating application in one company with a
receiving application in a different company.

The XML-formatted output also has some disadvantages. One is the raw size of the
data. There are about four times as many characters in the XML-formatted results as in
the tabular format. If the XML form is being stored on disk, it requires four times the
storage. If it’s being sent to another computer system over a network, it will take four
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times as long to transmit, or it will require a network with four times the bandwidth to
preserve the same transmission time. These aren’t serious problems for the small
amount of data in the example, but they can be very significant for results with
thousands or tens of thousands of rows, multiplied by hundreds of applications in
an enterprise data center.

This simple XML output format also loses some information about the data. The
currency symbol that appeared in the tabular display has disappeared, so it’s impossible
to determine, from the XML content itself, that the data has a currency type and what
kind of currency it is. The XML Schema capability provides a way to gain back this
information, as described later in the “XML Schema” section, but at the expense of still
more increase in the size of the query results text.

XML Input
Just as XML can be used to represent a row of query results that is output from
a database, XML can easily be used to represent a row of data to be inserted into a
database. To process the XML data, the DBMS must analyze the XML document
containing the data to be inserted and identify the individual data items (represented
as either elements or attributes). The DBMS must then match (usually using column
names) or translate (using a DBMS-specific scheme) the corresponding element
or attribute names to columns in the target table that is to receive the new data.
Conceptually, this simple INSERT statement:

INSERT INTO OFFICES (OFFICE, CITY, REGION, SALES)

VALUES (23,'San Francisco','Western',0.00)

can be easily translated into an equivalent hybrid SQL/XML statement like this one:

INSERT INTO OFFICES (OFFICE, CITY, REGION, SALES)

VALUES <?xml version="1.0"?>

<row>

<office>23</office>

<city>San Francisco</city>

<region>Western</region>

<sales>0.00</sales>

</row>

Updates to the database can be similarly handled. This simple UPDATE statement:

UPDATE OFFICES

SET TARGET = 200000.00, MGR = 108

WHERE OFFICE = 23
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can be translated into this equivalent hybrid SQL/XML statement:

UPDATE OFFICES

WHERE OFFICE = 23

<?xml version="1.0"?>

<update_info>

<values>

<target>200000.00</target>

<mgr>108</mgr>

</values>

<where>office = 23</where>

</update_info>

and a DELETE statement requires only the specification of the WHERE clause, using the
same conventions.

While several SQL DBMS brands have added the capability to process XML-based
INSERT, UPDATE, and DELETE operations using this type of approach, the specific
techniques for representing table and column names and data values in the XML text,
and for mapping them to corresponding database structures, are DBMS-specific. There
are no standards (yet) for the type of hybrid SQL/XML syntax in these examples.

Although representing input and update values as small XML documents is
conceptually straightforward, it represents some significant DBMS processing issues.
For example, the column list in a SQL INSERT statement appears to be redundant if
the XML document containing the data values to be inserted also contains the column
names as either element or attribute names. Why not simply drop the column list and
let the XML documents specify which columns to insert? For interactive SQL, there is
no problem in doing this, but the XML format is unlikely to be used for an interactive
SQL session. For programmatic use of SQL, the problem is that the XML document and
the data values that it contains will be supplied to the DBMS at runtime. If the column
names (or even the table name) are also supplied only in the XML document, then
the DBMS cannot know, until runtime, which tables and columns are affected. In this
situation, the DBMS must use dynamic SQL to handle the processing, as described in
Chapter 18, with all of its associated performance penalties.

Similar problems arise with the WHERE clause in an UPDATE or DELETE statement,
and the SET clause of the UPDATE statement. To get the performance and efficiency of
static SQL, the DBMS must know in advance (when the program is compiled) which
search conditions will be used and which columns will be updated. One approach to
this problem is to use the parameterized form of these statements. Here is the same
UPDATE example, using this approach:

UPDATE OFFICES

SET TARGET = ?, MGR = ?

WHERE OFFICE = ?



<?xml version="1.0"?>

<update_info>

<param>200000.00</param>

<param>108</param>

<param>23</param>

</update_info>

With this style, the XML text and the SQL text are actually quite separate. The SQL
text is self-contained, and can be processed at compile-time. The XML text is self-contained,
and the DBMS can match its parameter values to the needed statement parameters at
runtime. This example follows the usual SQL style of specifying parameters by position,
but the XML document loses a lot of its self-describing qualities as a result. Depending
on the DBMS, it may be possible to use named elements within the XML document and
match them to named statement parameters at runtime.

XML Data Exchange
A DBMS can support XML data exchange in a simple form merely by supporting XML
output for query results and XML input for INSERT operations. However, this requires
the user or programmer to carefully construct the format of the generated query results
in the source database to match the expected format for the INSERT operations in the
destination database. XML data exchange is more useful if the DBMS provides more
explicit built-in support.

Several commercial DBMS products now offer the ability to perform a bulk export
of a table (or in a more sophisticated operation, the results of a query) into an external
file, formatted as an XML document. At the destination end, these products offer the
same ability to do a bulk import from this same type of file into a DBMS table. With
this scheme, the XML document file becomes a standard way of representing table
contents for the exchange.

Note that once XML-based table import/export capabilities are offered, their use is
not restricted to database-to-database exchanges. The source of the XML document in
the data exchange file could well be an enterprise application, such as a Supply Chain
Management (SCM) system. The destination similarly could be an enterprise application.
In addition, many EAI systems now support XML document files. These systems provide
further processing and integration capabilities, such as eliminating duplicated data and
combining data from multiple input files.

XML Storage and Integration
XML input, output, and data exchange capabilities offer a very effective way to integrate
existing relational databases with the emerging world of XML. With these approaches,
XML is used in the external world to represent structured data, but the data within the
database itself retains its row/column, tabular, binary structure. As XML documents
proliferate, a natural next step is to consider storing XML documents themselves within
a database.
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Simple XML Storage with Large Objects
Any SQL-based DBMS that supports large objects automatically contains basic support
for XML document storage and retrieval. The section titled “Large Object Support” in
Chapter 24 described how several commercial databases store and retrieve large text
documents through character large object (CLOB) or binary large object (BLOB) data
types. Many commercial products support documents of up to 4 gigabytes for CLOB
or BLOB data, which is adequate for the vast majority of XML documents.

To store XML documents using BLOBs or CLOBs, you would typically define a
table that contains one BLOB or CLOB column to contain the document text, and some
auxiliary columns (using standard data types) that contain attributes that identify the
document. For example, if a table is to store purchase order documents, you might
define auxiliary columns to hold the customer number, order date, and purchase order
number using INTEGER, VARCHAR, or DATE data, in addition to the CLOB column for
the XML document. You can search the table of purchase orders based on customer
numbers, order dates, or P.O. numbers, and use the CLOB processing techniques
described in Chapter 24 to retrieve or store the XML document.

An advantage of this approach is that it is relatively simple to implement. It also
maintains a clean separation between the SQL operations (such as query processing)
and the XML operations. A disadvantage is that the level of XML/DBMS integration is
fairly weak. In the simplest implementations, a stored XML document is completely
opaque to the DBMS; the DBMS knows nothing about its contents. You cannot search
for a document based on one of its attributes or its element values, unless that particular
attribute or element has been extracted from the XML document and is also represented
as a separate column in the table. If you can anticipate in advance which types of
searches are likely, this is not a large restriction.

Some object-relational databases provide a more advanced search capability for
CLOBs by extending the SQL WHERE clause with full-text search capability. These
products allow you to search CLOB columns as text, using the type of text search
capabilities typically found in word processors. This provides an expanded, but
typically still limited, capability for searching XML documents stored as CLOB columns.
Using full-text search, you could, for example, locate every purchase order where the
phrase “Type 4 Widgets” occurred. However, it will be difficult or impossible to search
for only those XML documents where “Type 4 Widgets” applies in an order item
description element. Because the search software doesn’t explicitly know about the
structure of XML documents, it will probably also return rows where “Type 4 Widgets”
occurred in a comments element or some other element.

Large Objects and Parsers
When exchanged between applications or stored in a file or in a DBMS CLOB column,
XML documents are always in text form. This makes the contents very portable, but
unwieldy for computer programs to handle. An XML parser is a piece of computer
software that translates XML documents from their text form to a more program-friendly,
internal representation. Any SQL-based DBMS that supports XML will have an XML
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parser as part of its software, for its own use in processing XML. If the DBMS brand
supports CLOBs, it can provide further integration with XML by allowing an XML
parser to operate directly on the CLOB column contents.

There are two popular types of XML parsers, which support two styles of XML
processing:

� Document Object Model (DOM). DOM parsers transform an XML document
into a hierarchical tree structure within a computer’s main memory. A program
can than make calls to the DOM API to navigate through the tree, moving up
and down or sequentially through the element hierarchy. The DOM API makes
the element structure of an XML document easily accessible to programmers
and simplifies random access to portions of the document.

� Simple XPI for XML (SAX). SAX parsers transform an XML document into a
series of callbacks to a program, which inform the program of each part of the
XML document as it is encountered. A program can be structured to take
certain actions when the beginning of a document section is encountered, or
when a particular attribute is encountered. The SAX API imposes a more
sequential style of processing on a program using it. The API’s callback style
matches well with an event-driven program structure.

Either type of XML parser will validate that an XML document is well formed,
and can also validate an XML document against a schema, as described in the “XML
Schema” section later in this chapter. A DOM parser is practical when the size of the
stored XML document is fairly small; it will require double the memory space of the
text XML document, because it generates a second, tree-structured representation of
the entire document. For very large documents, a SAX parser makes it easy to process
documents in small, discrete pieces. However, the fact that the entire document is not
available at one time may require a program to make multiple passes through it, if the
program needs to process various sections of the document out of sequential order.

XML Marshalling
Storing XML documents as large objects within a database is an excellent solution
for some types of SQL/XML integration. If the XML documents are, for example,
text-oriented business documents, or if they are text components of web pages, then
there is really very little need for the DBMS to “understand” the internals of the XML
documents themselves. Each document can probably be identified by one or more
keywords or attributes, which can easily be extracted and stored as conventional
columns for searching.

If the XML documents to be processed are really data processing records, however,
the simple integration provided by large objects may be too primitive. You will probably
want to process and access individual elements, and search based on their contents and
attributes. The DBMS already provides these capabilities for its native row/column
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data. Why can’t the DBMS automatically decompose an incoming XML document,
transforming its element contents and attribute values into a corresponding set of
internal row/column data for processing? On the outbound side, we have already
seen how this approach can work to transform row/column query results into an XML
document. The same technique could be used to recompose an XML document if it
were once again needed in its external text form.

The challenge of transforming XML documents, which are an excellent external
data representation, to and from internal data representations more useful for programs
is not unique to database systems. The same problems occur, for example, in Java
processing of XML, where it is very desirable to transform an XML document to and
from a set of Java class instances for internal processing. The process of decomposing
an XML document into its component elements and attributes in some internal, binary
representation is called unmarshalling in the XML literature. Conversely, the process of
reassembling these individual element and attribute representations into a complete
text XML document is called marshalling.

For very simple XML documents, the marshalling and unmarshalling process is
straightforward, and commercial DBMS products are moving to support it. Consider
once again the simple purchase order document in Figure 25-3. Its elements map
directly, one to one, onto individual columns of the ORDERS table. In the simplest
case, the names of the elements (or attributes) will be identical to the names of the
corresponding columns. The DBMS can receive an inbound XML document like the one
in the figure, automatically turn its elements (or attributes, depending on the style used)
into column values, using the element names (or attribute names) to drive the process.
Reconstituting the XML document from a row of the table is also no problem at all.

The DBMS must do slightly more work if the element names in the XML document
don’t precisely match column names. In this case, some kind of mapping between
element names (or attribute names) and column names must be specified. It’s relatively
straightforward to put such a mapping into the DBMS system catalog.

Many useful real-world XML documents do not map neatly into single rows of a
table. Figure 25-4 shows a simple extension of the purchase order XML document from
Figure 25-3, which supports the typical real-world requirement that a purchase order
may contain multiple line items. How should this XML document be unmarshalled
into the sample database? One solution is to make each line item from the purchase
order into a separate row of the ORDERS table. (Ignore for the moment that each row
in the ORDERS table must contain a unique order number because the order number is
the primary key.) This would result in some duplication of data, since the same order
number, order date, customer number, and salesperson number will appear in several
rows. It would also make marshalling the data to reconstitute the document more
complex—the DBMS would have to know that all of the rows with the same order
number should be marshaled into one purchase order XML document with multiple
line items. Clearly, the marshalling/unmarshalling of even this simple document
requires a more complex mapping.
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The multiline purchase order merely scratches the surface of marshalling and
unmarshalling XML documents. The more general situation is shown in Figure 25-5,
where the DBMS must unmarshal an XML document into multiple rows of multiple,
interrelated tables. To marshal the document, the DBMS must exercise the relationships
between the tables to find the related rows and recompose the XML hierarchy. The
underlying reason for this complexity is the mismatch between XML’s natural hierarchical
structure and the flat, normalized, row/column structure of a relational database.

Marshalling and unmarshalling is both simplified and made more complex if
a DBMS supports object-relational extensions, such as structured data types. The
translation to and from XML can be simpler because individual columns of a table
can now have their own hierarchical structure. A higher-level XML element (such as a
billing address composed of street, city, state, country, and postal code elements) can
be mapped into a corresponding column with an abstract ADDRESS data type, with its
own internal hierarchy. However, the translation to and from XML now involves more
decisions in the database design, trading off the marshalling/unmarshalling simplicity
of structured data types against the flexibility of a flattened row/column approach.

Several commercial products are beginning to offer marshalling/unmarshalling
capabilities, or have announced plans to provide this capability in future releases. The
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<?xml version="1.0"?>
<purchaseOrder>
<customerNumber>2117</customerNumber>
<orderNumber>112961</orderNumber>
<orderDate>1989-12-17</orderDate>
<repNumber>106</repNumber>
<terms ship="ground" bill="Net30"></terms>
<orderItem>
<mfr>REI</mfr>
<product>2A44L</product>
<qty>7</qty>
<amount>31500.00</amount>

</orderItem>
<orderItem>
<mfr>ACI</mfr>
<product>41003</product>
<qty>10</qty>
<amount>6520.00</amount>

</orderItem>
</purchaseOrder>

Figure 25-4. A slightly expanded XML purchase order document
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performance overhead of this translation can be very substantial, and it remains to be
seen how popular these capabilities will be in practice. However, if an application is
handling external data in XML form, the translation between XML and SQL data
must occur at some point, and translation within the DBMS itself may be the most
efficient approach.

XML and Metadata
One of the most powerful qualities of the relational model is its very rigid support for
data types and data structure, implemented by the definitions of tables, columns,
primary keys, foreign keys, and constraints. In addition, as shown in Chapter 16, the
system catalog of a relational database contains metadata, or “data about the data” in
the database. By querying the system catalog, you can discover the structure of the
database, including the data types of its columns, the columns that comprise its tables,
and intratable relationships.

In contrast, XML documents by themselves provide only very limited metadata.
They impose a hierarchical element structure on their data, but the only real data about
the structure is the names of the elements and attributes. An XML document can be
well formed and still have quite an irregular structure. For example, there is nothing to
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prevent a well-formed XML document from having a named element that contains text
data in one instance and subelements in another instance, or a named attribute that has
an integer value for one element and a date value for another. Clearly, a document
with this structure, while it may be well formed, does not represent data that is easily
transformed to and from a relational database. When using XML for data processing
documents, stronger support for data types and rigid structure is needed.

XML standards and products have addressed this need in multiple ways during the
short history of XML technologies. These include:

� Document Type Definition (DTD). A part of the original XML 1.0 specification,
Document Type Definitions provided a way to specify and restrict the structure
of a document. XML parsers can examine an XML document in the context of a
DTD and determine whether it is a valid document (i.e., whether it conforms to
the DTD restrictions).

� XML-Data. Submitted to the W3C in 1998, XML-Data was an early attempt to
address some of the deficiencies in the DTD scheme. It never received W3C
endorsement, but many of its ideas have carried forward into the XML Schema
specification. Microsoft adapted its own form of XML-Data, called XML-Data
Reduced (XDR), and implemented it as part of its BizTalk integration server
and Internet Explorer 5.0 browser. The energy around the XML-Data proposal
shifted in late 1999 and 2000 to the XML Schema proposal.

� XML Schema. A stand-alone specification that became a W3C recommendation
in May 2001, XML Schema built on and extended the ideas in XML-Data. XML
Schema provides much more rigorous data type support, and has the advantage
that the schema definition (the document metadata) is itself expressed as an
XML document, in much the same way that relational database metadata is
provided via a standard relational table structure.

� Industry group standards. Various industry groups have banded together to
define XML standards for specific types of documents that are important for
data exchange within their industry. For example, financial services firms are
working on standards to describe financial instruments (stocks, bonds, etc.)
and market data. Manufacturing firms are working on standards to describe
purchase order documents, order confirmations, and the like. These standards
for specific industry-oriented documents are usually built on generic standards,
such as DTD and XML Schema.

The area of XML metadata and document type standards is evolving rapidly. The
W3C consortium provides a frequently updated web site at http://www.w3.org, which
provides access to the various XML-related standards and information about their
status. You can find information about industry-specific standards at http://www.xml.org,
a site organized and hosted by the Organization for the Advancement of Structured
Information Systems (OASIS). The site contains a registry of XML-based standards,
classified by industry.
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Document Type Definitions (DTDs)
The earliest attempt to standardize XML metadata was contained in the Document
Type Definition (DTD) capability of the original XML 1.0 specification. DTD’s are used
to specify the form and structure of a particular type of document (such as a purchase
order document or a transfer-of-funds document). Figure 25-6 shows a DTD that might
be used for a simple purchase order document in Figure 25-5. This DTD demonstrates
only a fraction of the full capabilities of DTDs, but it illustrates the key components of a
typical DTD.

The !ELEMENT entries in the DTD define the element hierarchy that gives the
document its basic form. DTDs provide for these different types of elements:

� Text-only element. The element contains only a text string, which can represent
a data value from a single column of database data.

� Element-only element. The element’s contents are other elements
(subelements); it is the parent in a local parent/child hierarchy of elements.
This type of element can be used to represent a row of a table, with subelements
representing the columns.

� Mixed-content element. The element can contain a mixture of interspersed text
contents and subelements. This type is not typically used for database contents,
because this mix of subelements and data doesn’t naturally appear in the
row/column structure of tables.

� Empty-content element. The element has no content—neither subelements nor
text content—but it may have attributes. This type of element can represent a
row of a table when its attributes are used to represent individual column values.
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<!ELEMENT purchaseOrder (customerNumber, orderNumber,
orderDate, terms, orderItem*)>

<!ELEMENT customerNumber (#PCDATA)>
<!ELEMENT orderDate (#PCDATA)>
<!ELEMENT repNumber (#PCDATA)>
<!ELEMENT terms EMPTY>
<!ATTLIST terms
ship CDATA
bill CDATA #REQUIRED>

<!ELEMENT orderItem (mfr, product, qty, amount)>
<!ELEMENT mfr (#PCDATA)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT qty (#PCDATA)>
<!ELEMENT amount (#PCDATA)>

Figure 25-6. DTD for a simple purchase order document



� Any-content element. The element has unrestricted content. The content may be
empty, or may contain a mix of subelements and/or text. Like the mixed-content
element, this type is typically not useful for XML documents used in database
processing.

In the purchase order DTD of Figure 25-6, the top-level purchaseOrder element
and the orderItem element have the element-only type. Their declarations list the
subelements that they contain. The customerNumber and OrderDate elements
are text-only elements, indicated by the #PCDATA definitions. The TERMS element
is empty; it only has attributes. Both attributes have values that are character data
(indicated by the CDATA type); one is required, and the other is optional, as indicated.
Note that this DTD combines a data-as-elements style (for the customer information)
and a data-as-attributes style (for the order terms) only for illustrative purposes. In
practice, you would choose one style or the other of data representation and use it
consistently, to simplify processing.

Document Type Definitions are critical to make XML actually useful in practice
for representing structured documents for data exchange. They allow you to define
the essential elements of a transactional document, such as a purchase order or an
employee personnel action form or a request-for-quote form. With a DTD for such a
document in place, it is straightforward to validate that a document that originates
somewhere else within a company, or even outside a company, is a valid document of
the specific type and can be processed. Any XML parser, whether based on the DOM
API or the SAX API, is capable of validating an XML document against a supplied
DTD. In addition, it’s possible to explicitly declare the DTD to which an XML document
should conform within the document itself.

Document Type Definitions have some drawbacks, however. They lack the strong
data typing typically found in relational databases. There is no way to specify that an
element must contain an integer or a date, for example. DTDs also lack good support
for user-defined (or corporate-defined) types or subdocument structures. For example,
it’s possible that the orderItem element in Figure 25-6 will appear not only in a
purchase order document, but also in a change order document, an order cancellation
document, a backorder document, and an order acknowledgement document. It would
be convenient to define the orderItem substructure once, give it a name, and then
refer to it in these other document definitions, but DTDs don’t provide this capability.

DTDs are also somewhat restrictive in the types of content structures that they allow,
although in practice, they are usually rich enough to support the kinds of transactional
documents needed for hybrid database/XML applications. Finally, the expressions used
by DTDs to define document structure are an extended form of Backus Naur Form
(BNF). (An example of this is the asterisk that appears after the orderItem declaration
within the purchaseOrder element list in Figure 25-6, which means, “This element may
be repeated zero or more times.”)

While familiar to computer science students who deal with computer languages, this
format is unfamiliar to people who approach XML from the document markup world of
HTML. All of these deficiencies became visible soon after the adoption of XML 1.0, and
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work began to define a stronger metadata capability for XML documents. Eventually,
these efforts resulted in the XML Schema specification, described in the next section.

XML Schema
XML Schema 1.0 became an official W3C recommendation in May 2001, and support
for it is rapidly growing in commercial XML-related products. DTD’s are still widely
supported for backward compatibility, but XML Schema offers some compelling
advantages, and addresses most of the shortcomings of DTD. Figure 25-7 shows the
document schema for the purchase order document in Figure 25-5, this time defined
using an XML Schema. It’s useful to compare the XML Schema declaration in Figure 25-7
with the DTD declaration in Figure 25-6. Even this simple example shows the strong
data type support in XML Schema; elements and attributes have data types that
look very much like SQL data types. Also, the schema in Figure 25-7 is itself an XML
document, so it is more readable for someone who is familiar with XML basics than
the DTD in Figure 25-6.
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<schema xmlns="http://www.w3.org/2001/XMLSchema">

<element name="purchaseOrder" type="POType" />

<complexType name="POType">

<sequence>

<element name="customerNumber" type="integer" />

<element name="orderNumber" type="integer" />

<element name="orderDate" type="date" />

<element name="repNumber" type="integer" length="3" />

<element name="terms">

<attribute name="ship" type="string" />

<attribute name="bill" type="string" />

</element>

<element name="orderItem" minOccurs="0" maxOccurs="unbounded">

<complexType>

<sequence>

<element name="mfr" type="string" length="3" />

<element name="product" type="string" />

<element name="qty" type="integer" />

<element name="amount" type="decimal" fractionDigits="2" />

</sequence>

</complextype>

</element>

</sequence>

</complexType>

</schema>

Figure 25-7. XML Schema for a simple purchase order document



Data Types in XML Schema
From a database point of view, XML Schema’s strong support for data types and data
structures is one of its major advantages. XML Schema defines over 20 built-in data
types, which correspond fairly closely to the defined SQL data types. Table 25-1 lists
the most important XML Schema built-in data types for database processing.
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XML Schema Data Type Description

Numeric data

Integer Integer number

PositiveInteger Positive integers only

NegativeInteger Negative integers only

NonNegativeInteger Zero or positive integers only

NonPositiveInteger Zero or negative integers only

Int 32-bit signed integer

UnsignedInt 32-bit unsigned integer

Long 64-bit signed integer

UnsignedLong 64-bit unsigned integer

Short 16-bit signed integer

UnsignedShort 16-bit unsigned integer

Decimal Numeric, with possible decimal places

Float Standard precision floating point

Double Double precision floating point

Character data

String Variable-length character string

NormalizedString String, with newline, carriage return, and tab
characters converted to spaces

Token String, processed like normalizedString, plus
leading/trailing space removal and multiple
spaces collapsed to a single space

Table 25-1. XML Schema Built-In Data Types
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Like the SQL2 and SQL3 standards, XML Schema supports user-defined data types
that are derived from these built-in types or from other user-defined types. You can
specify a derived data type as a restriction on another XML type. For example, here is
a definition for a derived repNumType type that restricts legal employee numbers to a
range from 101 to 199:

<simpleType name="repNumType">

<restriction base="integer">

<minInclusive value="101" />

<maxExclusive value="200" />

</restriction>

</simpleType>

XML Schema Data Type Description

Date and time data

Time Time of day (hr/min/seconds/thousandths)

DateTime Day and time (equivalent to SQL TIMESTAMP)

Duration Length of time (equivalent to SQL DURATION)

Date Year/month/day only

Gmonth Gregorian month (1 to 12)

Gyear Gregorian year (0000 to 9999)

Gday Gregorian day (1 to 31)

GmonthDay Gregorian month/day

Other data

Boolean TRUE/FALSE value

Byte Single byte data, with assumed sign bit

UnsignedByte Single byte data, no sign bit

base64Binary Binary data, expressed with base 64 notation

HexBinary Binary data, expressed with hexadecimal notation

AnyURI Internet URI, such as http://www.w3.org

Language Valid XML language (English, French…)

Table 25-1. XML Schema Built-In Data Types (continued)
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With this data type defined, you can declare entities or attributes in a schema as
having a data type of repNumType and the restriction is automatically implemented.
XML Schema provides a rich set of data type characteristics (called facets) on which you
can build restrictions. These include data length (for strings and binary data), inclusive
and exclusive data ranges, number of digits and fractional digits (for numeric data),
and explicit lists of permitted values. There is even a built-in pattern-matching capability,
where data values can be restricted using a regular expression syntax like that used in
the Perl scripting language.

XML Schema also gives you the ability to define complex data types, which are
user-defined structures. For example, here is a definition for a complex custAddrType
type that is comprised of familiar subelements:

<complexType name="custAddrType">

<sequence>

<element name="street" type="string" />

<element name="city" type="string" />

<element name="state" type="string" />

<element name="postCode" type="integer" />

</sequence>

</complexType>

You can also create a user-defined data type that is a list of data items with another
type. For example, here is a definition for a complex repListType type, which is a list
of salesperson employee numbers:

<simpleType name=repListType">

<list itemType="repNumType" />

</simpleType>

XML Schema also allows you to overload a user-defined data type, allowing it to
take on one of several different underlying data types depending on the specific need.
For example, in the preceding custAddrType definition, the postal code portion of the
address is defined as an integer. This works for US-style five-digit zip codes (except
that it doesn’t preserve the leading zero), but not for Canadian six-digit postal codes,
which include letters and digits. A more international approach is to declare the U.S.
and Canadian versions, and then a more universal postal code, which may be any of
the types:

<simpleType name="usZip5Type">

<restriction base="integer">

<totalDigits value=5 />



</restriction>

</simpleType>

<simpleType name="canPost6Type">

<restriction base="string">

<length value=6 />

</restriction>

</simpleType>

<simpleType name="intlPostType">

<union memberTypes="usZip5Type canPost6Type" />

</simpleType>

With user-defined data type definitions in place, you can more easily define larger,
more complex structures. For example, here is part of the purchase order document in
Figure 25-7, expanded to include a bill-to and ship-to address, and to permit a list of
sales representatives:

<complexType name="purchaseOrderType">

… other element declarations go here …

<element name="billAddr" type="custAddrType" />

<element name="shipAddr" type="custAddrType" />

<element name="repNums" type="repListType" />

… other element declarations continue…

Elements and Attributes in XML Schema
Building on its support for a rich data type structure, XML Schema also provides a rich
vocabulary for specifying the legal structure of a document type and the permitted
elements and attributes that comprise it. XML Schema supports the same basic element
types defined in the DTD model:

� Simple content. The element contains only text content (although as explained
in the preceding section, the text can be restricted to data of a specific type like
a date or a numeric value). Content of this type is defined using a
simpleContent element.

� Element-only content. The element contains only subelements. Content of this
type is defined using a complexType element.

� Mixed content. The element contains a mix of subelements and its own text
content. Unlike the DTD mixed-content model, XML Schema requires that the
sequence of elements and text content be rigidly defined, and valid documents
must conform to the defined sequence. Content of this type is defined using a
mixed attribute on a complexType element.
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� Empty content. The element contains only attributes, and no text content of its
own. XML Schema treats this as a special case of element-only content, with no
declared elements.

� Any content. The element contains any mix of content and subelements, in any
order. Content of this type is defined using the XML Schema data type
anyType as the data type of the element.

These basic element types can appear individually in the declarations of elements
within a schema. You can also specify that an element may occur multiple times within
a document, and optionally, specify a minimum and a maximum number of occurrences.
XML Schema also supports SQL-style NULL values for elements, to indicate that element
contents are unknown. The XML terminology is nil values, but the concept is the
same. This capability simplifies mapping of data between XML document elements
and database columns that can contain NULL values.

XML Schema lets you define a logical group of elements that are typically used
together, and give the element group a name. Subsequent element declarations can then
include the entire named group of elements as a unit. Grouped elements also provide
additional flexibility for element structure. The group can specify a sequence of elements,
which must all be present, in the specified order. Alternatively, it can specify a choice of
elements, indicating that only one of a set of defined element types must appear.

XML Schema provides similar control over attributes. You can specify an individual
attribute as optional or required. You can specify a default attribute value, to be used if
an explicit value is not provided in the document instance, or a fixed attribute value,
which forces the attribute to always have the specified value in an instance document.
Attribute groups allow you to define and name a group of attributes that are typically
used together. The entire group of attributes can be declared for an element in a schema
simply by naming the attribute group.

Finally, XML Schema provides extensive support for XML namespaces, which are
used to store and manage different XML vocabularies—that is, different collections of
data type definitions and data structure declarations that are used for different purposes.
In a large organization, it will be useful to define standardized XML representations for
common basic business objects, such as an address, a product number, or a customer-id,
and collect these in a common repository. Higher-level XML declarations for documents
such as purchase orders, vacation time requests, payment authorization forms, and the
like will also be useful, but should typically be collected together in groups based on
shared usage.

XML namespaces support these capabilities by allowing you to collect together
related XML definitions and declarations, store them in a file, and identify them by name.
An XML schema for a new type of document can then draw its basic data definitions
and structures from one or more namespaces by referencing the namespaces in the
schema header. In fact, the standard XML vocabulary and many of the built-in data
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types are defined in a namespace maintained on the W3C organization web site. An
Internet-style URL identifies the source file for an XML namespace.

If an XML Schema declaration incorporates definitions from more than one XML
namespace, the potential for name conflict exists. The same name could easily have
been chosen by the developers of two different namespaces to represent two quite
different XML structures or data types. To remove the potential ambiguity, XML data
types and structure definitions can be specified using qualified names, using a technique
that closely parallels the use of qualified column names in SQL. Each namespace that
is identified in a schema header can be assigned a prefix name, which is then used to
qualify references to items within that namespace. For clarity, the prefix names have
been omitted from the schema examples in this chapter. Here is a more typical schema
header and excerpt from a schema body that uses prefix names and qualification to
reference the main XML Schema namespace (maintained by W3C) and a corporate
namespace:

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:corp="http://www.mycompany.com/schemas/purchasing" >

<complexType name="purchaseOrderType">

… other element declarations go here …

<element name-="orderDate" type="xsd:date" />

<element name="billAddr" type="corp:custAddrType" />

<element name="shipAddr" type="corp:custAddrType" />

<element name="repNums" type="corp:repListType" nillable="true" />

… other element declarations continue…

In this example, the corporate XML namespace is identified by the prefix corp and
the main XML Schema namespace by the prefix xsd. All of the data type references are
qualified by one of these prefixes, and as a result, they are unambiguous. Because qualified
references can become quite cumbersome, it’s also possible to specify default namespaces
that minimize the need for prefixes. The complete XML Schema naming system is quite a
bit more sophisticated than the capabilities outlined here, but the capabilities are clearly
directed toward supporting the creation of very complex document type specifications
by large groups of people.

As with DTDs, the power of XML Schema is that it allows you to specify well-defined
document types against which individual document instances can be validated. All of the
popular XML parsers, whether they implement the SAX API or the DOM API, provide
XML Schema–based validation. You can specify the schema to which an XML document
claims conformance within the XML document itself, but you can also ask a parser to
validate an arbitrary XML document against an arbitrary schema.
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XML and Queries
SQL provides a powerful and very useful query facility for finding, transforming, and
retrieving structured data from relational databases, so it’s natural to seek a similar
query capability for finding, transforming, and retrieving structured data from XML
documents. The earliest efforts to define a query and transformation capability were
embodied in a pair of specifications—eXtensible Stylesheet Language Transformation
(XSLT) and XML Path Language (XPath). Like XML itself, these specifications have
their roots in document processing

XSLT focuses on transforming an XML document, as shown in Figure 25-8. A
stylesheet governs the transformation, selecting which elements of the input XML
document are to be transformed and dictating how they are modified and combined
with other elements to produce the output XML document. One popular use for XSLT
is to transform a single, generic version of a web page into various forms that are
appropriate for rendering on different screen sizes and display devices.

Within the XSLT language, it is often necessary to select individual elements or
groups of elements to be transformed, or to navigate through the element hierarchy to
specify data to be combined from parent and child elements. XPath originally emerged
as a part of the XSLT language for element selection and navigation. It quickly became
apparent that XPath was useful for other applications as well, and the specification was
split out of XSLT to stand on its own. In the early days of XML, XPath was the de facto
query capability for XML documents.

More recently, industry attention has focused on some of the deficiencies of XPath
as a full query language. A W3C working group was formed to specify a query facility
under the working name XML Query, or XQuery. As the specification passed through

Figure 25-8. Transforming an XML document with XSLT



S
Q

L
T
O

D
A

Y
A

N
D

T
O

M
O

R
R

O
W

various drafts, the XSL working group (responsible for XSLT and XPath) and the
XQuery working groups joined forces. At this writing, both XQuery 1.0 and XPath 2.0
are in Working Draft stage, and the two languages are tightly linked, with common
syntax and semantics wherever possible.

A full description of XQuery and XPath is beyond the scope of this book. Because
XQuery 1.0 has only Working Draft and not Official Recommendation status, it is still
subject to change as it is reviewed by the W3C membership. However, a brief review
of XQuery concepts and a few examples will illustrate the relationship to SQL, and
these fundamentals are unlikely to change as XQuery 1.0 moves toward official
standard status.

XQuery Concepts
If the underlying data model beneath the SQL language is the row/column table, the
underlying data model beneath XQuery is a tree-structured hierarchy of nodes that
represent an XML document. XQuery actually uses a finer-grained tree structure than
the element hierarchy of XML documents and XML Schema. These XQuery nodes are
relevant for database-style queries:

� Element node. This type of XQuery node represents an element itself.

� Text node. This type of node represents element contents. It is a child of the
corresponding element node.

� Attribute node. This type of node represents an attribute and attribute value
for an element. It is a child of the corresponding element node.

� Document node. This is a specialized element node that represents the top,
or root level, of a document.

To navigate through an item tree and identify one or more items for processing,
XQuery uses a path expression. In many ways, a path expression plays the same role
for XQuery as the SQL3 query expression, described in Chapter 24, plays for SQL.
A path expression identifies an individual node in the XQuery item tree by specifying
the sequence of steps through the tree hierarchy that is needed to reach the node.
XQuery path expressions come in two types:

� Rooted path expression. A rooted path expression starts at the top (the root) of
the item tree, and steps down through the hierarchy to reach the target node.
Within the book document in Figure 25-1, the rooted path expression /bookPart/
chapter/section/para navigates down to an individual paragraph within a
section of a chapter.

� Relative path expression. A relative path expression starts the current node of
the item tree (the node where processing is currently focused) and steps up
and/or down through the hierarchy to reach the target node. Within the book
document in Figure 25-1, the relative path expression section/para navigates
down to a specific paragraph if the current node is a chapter node.
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The steps within a path can specify motion downward within the node tree to child
nodes that represent subelements, element contents, or element attributes. The steps can
also specify upward motion to the parent of a node. With each step, you can specify a
node test that must be passed to continue on the path to the target element. Table 25-2
shows some typical path expressions and the navigation path that they specify.
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Path Expression Navigation

section/para Move down to a child section
element, and down from there to a child
para element.

/book/part/chapter Start at the top of the hierarchy, and
move down through book, then part
children, to a chapter child.

.. Move up from the current node to its
parent.

../chapter Move up to the parent of the current
node, then down to a chapter child
node.

.//para Select any child para node that appears
anywhere below the current node in the
hierarchy.

@hdrLevel Select the hdrLevel attribute of the
current node.

/header@hdrLevel Select the hdrLevel attribute of a child
header node.

para[3] Select the third child element with a
para type.

* Select all children of the current node.

*/para Select all para grandchildren of the
current node.

chapter[@revStatus=“draft”] Select all chapter children of the
current node that have an attribute
named status with value draft.

Table 25-2. Some Typical XQuery Path Expressions



Like SQL, XQuery is a set-oriented language. It is optimized to work on an XQuery
sequence, an ordered collection of zero or more items. The items themselves might be
elements, attributes, or data values. XQuery operations tend to take sequences as their
input and produce sequences as their output. A simple atomic data item is usually
treated as if it were a one-item sequence.

XQuery also resembles SQL in being a strongly typed language. The working draft
of the XQuery specification is evolving to align the XQuery data types with those
specified in XML Schema, which were described earlier in this chapter in the “XML
Schema” section. Like SQL3, XQuery provides constructors to build up more complex
data values.

XQuery differs substantially from SQL in being an expression-oriented rather than
a statement-oriented language. Casually stated, everything in XQuery is an expression,
which is evaluated to produce a value. Path expressions are one type of XQuery
expression, and they produce a sequence of nodes as their result. Other expressions
may combine literal values, function calls, arithmetic and Boolean expressions, and the
typical parenthesized combinations of these to form arbitrarily complex expressions.
Expressions can also combine sequences of nodes, using set operations like the union
or intersection of sets, which match the corresponding SQL set operations.

Named variables in XQuery are denoted by a leading dollar sign ($) in their names.
For example, $orderNum, $currentOffice, and $c would be valid XQuery variable
names. Variables can be used freely in XQuery expressions to combine their variables
with literals and other variable values and node values. Variables receive new values
through function calls, and by assignment in for or let expressions.

Query Processing in XQuery
XQuery path expressions can provide the XML equivalent of the simple SQL SELECT
statement with a WHERE clause. Assume that a collection of XML documents contains
the XML equivalent of the contents of the sample database, with the top-level documents
named with the names of the tables in the sample database and the individual row
structures named with the singular equivalents of those names (e.g., the OFFICES
document contains individual OFFICE elements to represent the rows of the OFFICES
table, and so on). Here are some query requests and their corresponding path
expressions:

Identify the offices managed by employee number 108.

/offices/office[mgr=108]

Find all offices with sales over target.

/offices/office[sales > target]
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Find all orders for manufacturer ACI with amounts over $30,000.

/orders/order[mfr = 'ACI' and amount > 35000.00]

Because the sample database is a shallow row/column structure, the XML hierarchy
is only three levels deep. To illustrate the query possibilities in more hierarchical XML
documents, consider once again the book document in Figure 25-1. Here are some query
requests and their corresponding path expressions:

Find all components of chapters that have draft status.

/book/part/chapter[revStatus='draft']/*

Get the third paragraph of the second chapter of part 2.

/book/part[2]/chapter[2]/para[3]

These expressions don’t give you the same control over query results as the SELECT
list provides in SQL queries. They also don’t provide the equivalent of SQL cursors for
row-by-row processing. XQuery provides both of these capabilities through For/Let/
Where/Returns expressions (FLWR expressions, pronounced “flower”). An example is
the best way to illustrate the capability. Once again, assume a set of XML documents
structured to resemble the sample database, as in the previous examples. This query
implements a two-table join and generates three specific columns of query results:

List the salesperson’s name, order date, and amount of all orders under $5000, sorted by amount.

<smallOrders> {

for $o in document("orders.xml")//order[amount < 5000.00],

$r in

document("salesreps.xml")//salesreps[empl_num=$o/order/rep]

return

<smallOrder> {

$r/name,

$o/order_date,

$o/amount

}

</smallOrder>

sortby(amount)

}

</smallOrders>



At the outer level, the contents of the smallOrders element are specified by the
XQuery expression enclosed in the outer braces. The for expression uses two variables
to iterate through two documents, corresponding to the ORDERS and SALESREPS tables.
These two variables effectively implement a join between the two tables (documents).
The predicates at the end of each line following the for keyword correspond to the
SQL WHERE clause. The predicate in the first line restricts the query to orders with
amounts over $5000. The predicate in the second row implements the join, using the
$o variable to link rows in the SALESREPS table (document) with rows in the ORDERS
table (document).

The return part of the for expression specifies which elements should be returned
as the results of the expression evaluation. It corresponds to the select list in a SQL
query. The returned value will be an XML sequence of smallOrder elements, and
each element comes from one corresponding element in the source tables (documents).
Once again, the iteration variables are used to qualify the specific path to the element
whose contents are to be returned. Finally, the sortby part of the expression functions
in the same way as the corresponding ORDER BY clause of a SQL query.

There are a few additional query-processing capabilities not illustrated in this
example. You can use a let expression within the for iteration to capture additional
variable values within the for loop that you may need in predicates or other expressions.
An if…then…else expression supports conditional execution. Aggregate functions
support grouped XQuery queries, corresponding to the SQL summary queries described
in Chapter 8. With these capabilities, the flexibility of XQuery is comparable to that of
SQL query expressions. However, as you can see from the example, the style of the
query expression is quite different, reflecting both the expression orientation and the
very strong navigational orientation of XQuery and XML documents.

XML Databases
With the proliferation of XML usage and XML documents, several venture-backed
startup companies have been formed to commercialize native XML databases. Typically,
these databases store and model their data contents as XML documents. The actual
database contents may be stored in native form as XML text, or in some parsed form
such as that maintained by a DOM XML parser. Most of the XML database products
currently support XPath as a core query capability, and many of them have added
proprietary extensions to XPath to make it a more complete query language. They
typically pledge support for XQuery as a replacement for XPath or as a second,
complementary query language, as soon as the XQuery specification is finalized.

The vendors of native XML databases tend to make the same arguments in favor of
their products that the object-oriented database vendors made a decade earlier. With
external data increasingly represented as XML, the best match is a database that carries
the same underlying data model. The choice of XML documents as a native format
reduces the overhead of XML marshalling and unmarshalling, but provides the same
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level of individual element and attribute access and navigation. Finally, they argue that
with a growing body of users trained in HTML and XML, an XML database can be
more accessible to more people than SQL-based relational databases.

The native XML databases are relatively new to the market at this writing, and it is
too soon to judge their eventual market success and impact. It seems likely that a native
XML database may be a good match for data management needs within an XML-based
web site for storing, accessing, and transforming XML documents. However, the
previous history of pure object-oriented databases suggests that relational database
vendors are capable of extending their core products to incorporate the most important
features of new data models at a pace that is fast enough to retain their dominant
market shares. It seems very likely that relational databases will remain the dominant
native database type for data processing applications. But within these products, XML
integration will grow tighter over time and relational products will offer more and
more XML-oriented features.

Summary
This chapter described the relationships between XML and SQL, and between XML
documents and the relational databases processed by each language:

� XML has its origins in printing and publishing; it was originally designed as a
way to indicate and specify document contents.

� XML’s document orientation produces a natural hierarchical view of data. The
mismatch between XML hierarchies and SQL row/column tables is one of the
biggest challenges when integrating the two technologies.

� XML documents are comprised of a hierarchy of elements. Elements can carry
contents, they can have named attributes, and they can have other elements
as children.

� XML integration with relational databases can take several forms, including XML
query output, XML input, XML data exchange, and the storage and retrieval of
XML data within the database itself.

� XML Schema, and an older standard, XML DTDs, define rigid structures for
specific types of documents. They are useful to restrict document contents to
a standard form acceptable for data processing applications.

� XQuery is an emerging query language for XML documents. It has some parallels
to SQL, but its focus on expressions and path navigation make it quite different
in style from SQL.

� Native XML databases have been introduced, and are moving to adopt XQuery
as a native query language. They pose a challenge to the relational model, but
major DBMS vendors are moving quickly to provide XML extensions to their
relational products.
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S
QL and SQL-based relational databases are one of the most important foundation
technologies of the computer market today. From its first commercial
implementation about two decades ago, SQL has grown to become the standard

database language. In its first decade, the backing of IBM, the blessing of standards
bodies, and the enthusiastic support of DBMS vendors made SQL a dominant standard
for enterprise-class data management. In its second decade, the dominance of SQL
extended to personal computer and workgroup environments and to new, database-
driven market segments, such as data warehousing. In the early part of its third
decade, SQL stands as the standard database technology for Internet-based computing.
The market evidence clearly shows the importance of SQL:

� The world’s second-largest software company, Oracle, has been built on the
success of SQL-based relational data management, through both its flagship
database servers and tools and its SQL-based enterprise applications.

� IBM, the world’s largest computer company, offers its SQL-based DB2 product
line as a common foundation across all of its product lines and for use on
competitor’s systems as well, and has expanded its commitment to SQL with
the acquisition of Informix’s SQL DBMS.

� Microsoft, the world’s largest software company, uses SQL Server as a critical
part of its strategy to penetrate the enterprise computing market with server
editions of its Windows operating systems, and a key part of its .NET
architecture for delivering Internet web services.

� Every significant database company offers either a SQL-based relational database
product or SQL-based access to its nonrelational products.

� All of the major packaged enterprise applications (Enterprise Resource Planning
(ERP), Supply Chain Management (SCM), Human Resource Management (HRM),
Sales Force Automation (SFA), Customer Relationship Management (CRM),
and so on) are built on SQL-based databases.

� SQL is emerging as a standard for specialized databases in applications ranging
from data warehousing to mobile laptop databases to embedded applications in
telecomm and data communications networks.

� SQL-based access to databases is an integral feature of Windows, available on
the vast majority of personal computer systems, and it is a built-in capability of
popular PC software products such as spreadsheets and report writers.

� SQL-based access to databases is a standard part of Internet application servers,
required by the J2EE specification.

This chapter describes some of the most important current trends and developments
in the database market, and projects the major forces acting on SQL and database
management over the next several years.
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Database Market Trends
Today’s market for database management products exceeds $12 billion per year in
products and services revenues, up from about $5 billion per year a decade ago. On
several occasions over the last decade, lower year-over-year growth in the quarterly
revenues of the major database vendors has led analysts to talk about a maturing
database market. Each time, a wave of new products or new data management
applications has returned the market to double-digit growth. Client/server architecture,
ERP applications, data warehousing and business intelligence, three-tier web site
architectures—each of these spurred a new wave of database technology and a new
wave of SQL-based database deployments. If the history of the last two decades is any
indication, database technology will continue to find new applications and generate
increasing revenues for years to come. The trends shaping the market bode well for its
continued health and point to a continuing tension between market maturity and
consolidation on the one hand, and exciting new database capabilities and applications
on the other.

Enterprise Database Market Maturity
Relational database technology has become accepted as a core enterprise data
processing technology, and relational databases have been deployed by virtually all
large corporations. Because of the importance of corporate databases and years of
experience in using relational technology, many, if not most, large corporations have
selected a single DBMS brand as an enterprisewide database standard. Once such a
standard has been established and widely deployed within a company, there is strong
resistance to switching brands. Even though an alternative DBMS product may offer
advantages for a particular application or may pioneer a new, useful feature, an
announcement by the standard vendor that such features are planned for a future
release will often forestall the loss of a customer by the established vendor.

The trend to corporate database standards has tended to reinforce and strengthen
the market positions of the established major DBMS vendors. The existence of large
direct sales forces, established customer support relationships, and multiyear volume
purchase agreements has become as important as, or more important than, technology
advantage. With this market dynamic, the large established players tend to concentrate
on growing their business within their existing installed base instead of attempting to
take customers away from competitors. In the late 1990s, industry analysts saw and
predicted this tendency at both Informix and Sybase. Oracle, with a much larger share
of the market, was forced to aggressively compete for new accounts in its attempt to
maintain its database license revenue growth. Microsoft, as the upstart in the enterprise
database market, was cast in the role of challenger, attempting to leverage its position
in workgroup databases into enterprise-level prototypes and pilot projects as a way to
pry enterprise business away from the established players.

One important impact of the trend to corporate DBMS vendor standardization has
been a consolidation in the database industry. New startup database vendors tend to
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pioneer new database technology and grow by selling it to early adopters. These early
adopters have helped to shape the technology and identified the solution areas where
it can deliver real benefits. After a few years, when the advantages of the new
technology have been demonstrated, the startup vendors are acquired by large
established players. These vendors can bring the new technology into their installed
base, and bring their marketing and sales muscle to bear in an attempt to win business
in their competitor’s accounts. The early 1990s saw this cycle play out with database
vendor acquisitions of database tools vendors. In the late 1990s, the same cycle applied
to mergers and acquisitions of database vendors. Informix’s purchase of Illustra (a
pioneering object-relational vendor), Red Brick (a pioneering data warehousing
vendor), and Cloudscape (a pioneering pure Java database vendor) are three examples
of the pattern. Just a few years later, Informix itself was acquired by IBM, continuing
this particular chain of consolidation.

Market Diversity and Segmentation
Despite the maturing of some parts of the database market (especially the market for
corporate enterprise-class database systems), it continues to develop new segments and
niches that appear and then grow rapidly. For much of the 1990s, the most useful way
to segment the database market has been based on database size and scale—there were
PC databases, minicomputer databases, mainframe databases, and later, workgroup
databases. Today’s database market is much more diverse and is more accurately
segmented based on target application and specialized database capabilities to address
unique application requirements. Market segments that have appeared and have
experienced high growth include:

� Data warehousing databases, focused on managing thousands of gigabytes of
data, such as historical retail purchase data.

� Online analytic processing (OLAP) and relational online analytic processing
(ROLAP) databases, focused on carrying out complex analyses of data to
discover underlying trends (data mining), allowing organizations to make
better business decisions.

� Mobile databases, in support of mobile workers such as salespeople, support
personnel, field service people, consultants, and mobile professionals. Often,
these mobile databases are tied back to a centralized database for
synchronization.

� Embedded databases, which are an integral, transparent part of an application
sold by an independent software vendor (ISV) or a value-added reseller (VAR).
These databases are characterized by small footprints and very simple
administration.

� Microdatabases, designed for appliance-type devices, such as smart cards,
network computers, smart phones, and handheld PCs and organizers.
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� In-memory databases, designed for ultra-high-performance OLTP applications,
such as those embedded in telecomm and data communications networks and
used to support customer interaction in very high-volume Internet applications.

� Clustered databases, designed to take advantage of powerful, low-cost servers
used in parallel to perform database management tasks with high scalability
and reliability.

Packaged Enterprise Applications
A decade or two ago, the vast majority of corporate applications were developed
in-house by the company’s information systems department. Decisions about database
technology and vendor standardization were part of the company’s IS architecture
planning function. Leading-edge companies sometimes took a risk on new, relatively
unproven database technologies in the belief that they could gain competitive
advantage by using them. Sybase’s rise to prominence in the financial services sector
during the late 1980s and early 1990s is an example.

Today, most corporations have shifted from make to buy strategies for major
enterprisewide applications. Examples include ERP applications, SCM applications,
HRM applications, SFA applications, CRM applications, and others. All of these areas
are now supplied as enterprise-class packaged applications, along with consulting,
customization, and installation services, by groups of software vendors. Several of
these vendors have reached multihundred-million-dollar annual revenues. All of
these packages are built on a foundation of SQL-based relational databases.

The emergence of dominant purchased enterprise applications has had a significant
effect on the dynamics of the database market. The major enterprise software package
vendors have tended to support DBMS products from only two or three of the major
DBMS vendors. For example, if a customer chooses to deploy SAP as its enterprisewide
ERP application, the underlying database is restricted to those supported by the SAP
packages. This has tended to reinforce the dominant position of the current top-tier
enterprise database players and make it more difficult for newer database vendors. It
has also tended to lower average database prices, as the DBMS is viewed more as a
component part of an application-driven decision rather than a strategic decision in
its own right.

The emergence of packaged enterprise software has also shifted the relative power
of corporate IS organizations and the packaged software vendors. The DBMS vendors
today have marketing and business development teams focused on the major enterprise
application vendors to ensure that the latest versions of the applications support their
DBMS and to support performance tuning and other activities. The largest independent
DBMS vendor, Oracle Corporation, is playing both roles, supplying both DBMS software
and major enterprise applications (that run on the Oracle DBMS, of course). Oracle’s
single-vendor approach has created some considerable tension between Oracle and
the largest enterprise applications vendors, especially in the ranks of their field sales
organizations. Some industry analysts attribute the growing DBMS market share of IBM
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and Microsoft to a tendency for enterprise application vendors to steer prospective
customers away from Oracle’s DBMS products as a result.

Hardware Performance Gains
One of the most important contributors to the rise of SQL has been a dramatic increase
in the performance of relational databases. Part of this performance increase was due to
advances in database technology and query optimization. However, most of the DBMS
performance improvement came from gains in the raw processing power of the
underlying computer systems, and changed in the DBMS software designed to capitalize
on those gains. While the performance of mainframe systems steadily increased, the most
dramatic performance gains have been in the UNIX-based and Windows-based server
markets, where processing power has doubled or more year by year.

Some of the most dramatic advances in server performance come from the growth
of symmetric multiprocessing (SMP) systems, where two, four, eight, or even dozens
of processors operate in parallel, sharing the processing workload. A multiprocessor
architecture can be applied to OLTP applications, where the workload consists of many
small, parallel database transactions. Traditional OLTP vendors, such as Tandem, have
always used a multiprocessor architecture, and the largest mainframe systems have
used multiprocessor designs for more than a decade. In the 1990s, multiprocessor
systems became a mainstream part of the UNIX-based server market, and somewhat
later, an important factor at the high end of the PC server market.

With Intel’s introduction of multiprocessor chipsets, SMP systems featuring
two-way and four-way multiprocessing achieved near-commodity status in the LAN
server market, and were available for well under $10,000. In the midrange of the
UNIX-based server market, database servers from Sun, Hewlett-Packard, and IBM
routinely have 8 or 16 processors and sell in the hundred-thousand-dollar price range.
High-end UNIX servers today can be configured with more than 100 processors and
tens of gigabytes of main memory. These systems, which rival the computing power
of traditional mainframes, carry multimillion-dollar price tags.

SMP systems also provided performance benefits in decision support and data
analysis applications. As SMP servers became more common, the DBMS vendors
invested in parallel versions of their systems that were able to take the work of a single
complex SQL query and split it into multiple, parallel paths of execution. When a
DBMS with parallel query capabilities is installed on a four-way or eight-way SMP
system, a query that might have taken two hours on a single-processor system can be
completed in less than an hour. Companies are taking advantage of this hardware-
based performance boost in two ways: either by obtaining business analysis results in
a fraction of the time previously required or by leaving the timeframe constant and
carrying out much more complex and sophisticated analysis.

Operating system support for new hardware features (such as multiprocessor
architectures) has often lagged the availability of the hardware capabilities—often by
several quarters or even years. This has posed a special dilemma for DBMS vendors,
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who need to decide whether to bypass the operating system in an attempt to improve
database performance. The Sybase DBMS, for example, when originally introduced,
operated as a single process and took responsibility for its own task management,
event handling, and input/output—functions that are usually handled by an operating
system such as UNIX or VMS. In the short term, this gave Sybase a major performance
advantage over rival DBMS products with less parallel processing capability.

But when operating system SMP support arrived, many of its benefits were
automatically available to rival systems that had relied on the operating system for task
management, while Sybase had the continuing burden of extending and enhancing its
low-level performance-oriented software. This cycle has played out for SMP designs,
with major database vendors now relying on operating systems for thread support and
SMP scaling. But the same trade-offs continue to apply to new hardware features as
they appear and require explicit strategic decisions on the part of the DBMS vendors.

Today, the quest for higher and higher database performance certainly shows no
signs of stopping. With today’s highest-performance servers featuring hundreds of
multigigahertz processors, hardware advances have more than overcome the higher
overhead of the relational data model, giving it performance equal to, or better than,
the best nonrelational databases of the past. At the same time, of course, the demand
for higher and higher transaction rates against larger and larger databases continues
to grow. At the top end of the database market, it appears that one can never have too
much database performance.

Database Server Appliances
Another hardware-based market trend in the 1980s and early 1990s was the emergence
of companies that combined high-performance microprocessors, fast disk drives, and
multiprocessor architectures to build dedicated systems that were optimized as
database servers. These vendors argued that they could deliver much better database
performance with a specially designed database engine than with a general-purpose
computer system. In some cases, their systems included application-specific integrated
circuits (ASICs) that implement some of the DBMS logic in hardware for maximum
speed. Dedicated database systems from companies such as Teradata and Sharebase
(formerly Britton-Lee) found some acceptance in applications that involve complex
queries against very large databases. However, they have not become an important
part of the mainstream database market, and these vendors eventually disappeared
or were acquired by larger, general-purpose computer companies.

Interestingly, the notion of a packaged, all-in-one database server appliance was
briefly rekindled at the end of the 1990s by Oracle Corporation and its CEO, Larry
Ellison. Ellison argued that the Internet era had seen the success of other all-in-one
products, such as networking equipment and web cache servers. Oracle announced
partnerships with several server hardware vendors to build Oracle-based database
appliances. Over time, however, these efforts had little market impact, and Oracle’s
enthusiasm for database appliances faded from media attention.
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Several venture-backed startups have recently embraced the idea of database server
appliances once again, this time in the form of database caching servers that reside in a
network between the application and an enterprise database. These startups point to
the widespread success of web page caching within the Internet architecture, and posit
a similar opportunity for data caching. Unlike web pages, however, database contents
tend to have an inherent transactional character, which makes the synchronization of
cache contents with the main database both much more important (to insure that
requests satisfied by the database cache come up with the right response) and much
more difficult. Whether the notion of a database caching appliance will catch on or not
remains an open question as of this writing.

Benchmark Wars
As SQL-based relational databases have moved into the mainstream of enterprise data
processing, database performance has become a critical factor in DBMS selection. User
focus on database performance, coupled with the DBMS vendors’ interest in selling
high-priced, high-margin, high-end DBMS configurations, has produced a series of
benchmark wars among DBMS vendors. Virtually all of the DBMS vendors have joined
the fray at some point over the last decade. Some have focused on maximum absolute
database performance. Others emphasize price/performance and the cost-effectiveness
of their DBMS solution. Still others emphasize performance for specific types of database
processing, such as OLTP or OLAP. In every case, the vendors tout benchmarks that
show the superior performance of their products while trying to discredit the
benchmarks of competitors.

The early benchmark claims focused on vendor-proprietary tests, and then on two
early vendor-independent benchmarks that emerged. The Debit/Credit benchmark
simulated simple accounting transactions. The TP1 benchmark, first defined by
Tandem, measured basic OLTP performance. These simple standardized benchmarks
were still easy for the vendors to manipulate to produce results that cast them in the
most favorable light.

In an attempt to bring more stability and meaning to the benchmark data, several
vendors and database consultants banded together to produce standardized database
benchmarks that would allow meaningful comparisons among various DBMS products.
This group, called the Transaction Processing Council, defined a series of official OLTP
benchmarks, known as TPC-A, TPC-B, and TPC-C. The Council has also assumed a role
as a clearinghouse for validating and publishing the results of benchmarks run on
various brands of DBMS and computer systems. The results of TPC benchmarks are
usually expressed in transactions per minute (e.g., tpmC), but it’s common to hear the
results referred to simply by the benchmark name (e.g., “DBMS Brand X on hardware Y
delivered 10,000 TPC-Cs”).

The most recent TPC OLTP benchmark, TPC-C, attempts to measure not just
raw database server performance, but the overall performance of a client/server
configuration. Modern multiprocessor workgroup-level servers are delivering thousands
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or tens of thousands of transactions per minute on the TPC-C test. Enterprise-class
UNIX-based SMP servers are delivering multiple tens of thousands of tpmC. The
maximum results on typical commercially available systems (a multimillion-dollar 64-bit
Alpha processor cluster) exceed 100,000 tpmC.

The Transaction Processing Council has branched out beyond OLTP to develop
benchmarks for other areas of database performance. The TPC-D benchmark focuses
on data warehousing applications. The suite of tests that comprise TPC-D are based
on a database schema typical of warehousing environments, and they include more
complex data analysis queries, rather than the simple database operations more typical
of OLTP environments. Interestingly, the TPC benchmarks specify that the size of the
database must increase as the claimed number of transactions per minute goes up. A
TPC benchmark result of 5000 tpmC may reflect results on a database of hundreds of
megabytes of data, for example, while a result of 20,000 tpmC on the same benchmark
may reflect a test on a multigigabyte database. This provision of the TPC benchmarks is
designed to add more realism to the benchmark results since the size of database and
computer system needed to support an application with demands in the 5000 tpm
range is typically much smaller than the scale required to support an application with
20,000 tpm demands.

In addition to raw performance, the TPC benchmarks also measure database price/
performance. The price used in the calculation is specified by the council as the five-year
ownership cost of the database solution, including the purchase price of the computer
system, the purchase price of the database software, five years of maintenance and support
costs, and so on. The price/performance measure is expressed in dollar-per-TPC (e.g.,
“Oracle on a Dell four-way server broke through the $500-per- TPC-C barrier”). While
higher numbers are better for transactions-per-minute results, lower numbers are better
for price/performance measures.

Over the last several years, vendor emphasis on TPC benchmark results have
waxed and waned. The existence of the TPC benchmarks, and the requirement that
published TPC results be audited, have added a level of integrity and stability to
benchmark claims. It appears that benchmarking and performance testing will be part
of the database market environment for some time to come. In general, benchmark
results can help with matching database and hardware configurations to the rough
requirements of an application. On an absolute basis, small advantages in benchmark
performance for one DBMS over another will probably be masked by other factors.

SQL Standardization
The adoption of an official ANSI/ISO SQL standard was one of the major factors
that secured SQL’s place as the standard relational database language in the 1980s.
Compliance with the ANSI/ISO standard has become a checkoff item for evaluating
DBMS products, so each DBMS vendor claims that its product is compatible with
or based on the ANSI/ISO standard. Through the late 1980s and early 1990s, all of
the popular DBMS products evolved to conform to the parts of the standard that
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represented common usage. Other parts, such as the module language, were effectively
ignored. This produced slow convergence around a core SQL language in popular
DBMS products.

As discussed in Chapter 3, the SQL1 standard was relatively weak, with many
omissions and areas that are left as implementation choices. For several years, the
standards committee worked on an expanded SQL2 standard that remedies these
weaknesses and significantly extends the SQL language. Unlike the first SQL standard,
which specified features that were already available in most SQL products, the SQL2
standard, when it was published in 1992, was an attempt to lead rather than follow the
market. It specified features and functions that were not yet widely implemented in
current DBMS products, such as scroll cursors, standardized system catalogs, much
broader use of subqueries, and a new error message scheme. DBMS vendors are still in
the process of evolving their products to support the full features of SQL2. In practice,
proprietary extensions (such as enhanced support for multimedia data or stored
procedures or object extensions) have often been more important to a DBMS vendor’s
success than higher levels of SQL2 compliance.

The progress of the SQL standards groups continued, with work on a SQL3 standard
begun even before the SQL2 standard was published. As delays set in and the number
of different areas to be addressed by the next standard grew, the work on SQL3 was
divided into separate, parallel efforts, focused on the core of the language, a Call-Level
Interface (CLI), persistent stored modules (stored procedures), distributed transaction
capabilities, time-based data, and so fourth. Some of these efforts were published a
few years later as enhancements to the 1992 SQL2 standard. A SQL2-compatible CLI
standard was released in 1995, as SQL-CLI. A year later, in 1996, a standardized stored
procedure capability was released as SQL-PLM. In 1998, object language bindings for
SQL were standardized in the SQL-OLB specification. A basic set of OLAP capabilities
were published in a SQL-OLAP standard in 2000.

While progress continued on these additions to the SQL2 standard, the work on the
core language part of SQL3 (called the foundation part of the standard) focused on how
to add object capabilities to SQL2. This quickly became a very controversial activity.
Relational database theorists and purists took a strong stand against many of the proposed
extensions. They claimed that the proposals confuse conceptual and architectural issues
(e.g., adding substructure beyond the row/column tables) with implementation issues
(e.g., performance issues of normalized databases and multitable joins). Proponents of the
proposed SQL3 object extensions pointed to the popularity of object-oriented programming
and development techniques, and insist that the rigid row/column structure of relational
databases must be extended to embrace object concepts or it would be bypassed by the
object revolution. Their argument was bolstered in the marketplace as the major relational
DBMS vendors added object-oriented extensions to their products, to blunt the offensive
from pure object-oriented databases, and were largely successful with this strategy.

The controversy over the SQL3 work was finally resolved after a seven-year effort,
with the publication of the SQL:1999 standard. (The term SQL3, which was used
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during the development of the standard, has now been replaced by the official term
SQL:1999.) The SQL:1999 standard is structured in a series of parts:

� Part 1: Framework. Describes the overall goals and structure of the standard,
and the organization of its other parts.

� Part 2: Foundation. Is the main body of the standard, focused on the SQL
language itself. SQL statements and clauses, transaction semantics, database
structure, privileges, and similar capabilities are specified here. This part also
contains the object-oriented extensions to SQL.

� Part 3: Call-Level Interface. Contains the SQL-CLI (1995) extensions to the
SQL-92 standard, updated to conform to SQL:1999.

� Part 4: Persistent Stored Modules. Similarly contains the SQL-PSM (1996)
extensions to the SQL-92 standard, updated to conform to SQL:1999.

� Part 5: Host Language Bindings. Deals with the interactions between
procedural host languages (such as C or COBOL) and SQL.

� Part 9: Management of External Data. Describes how a SQL-based database
should manage data external to the database itself.

� Part 10: Object Language Bindings. Deals with the same issues as Part 5, but
for object-oriented languages.

Some parts of the standard are still under development at this writing, as indicated
by the missing part numbers. In addition, other SQL-related standardization efforts
have broken off into their own, separate standards activities. A separate standard is
under development for SQL-based handling of multimedia data, such as full-text
documents, audio, and video content. This is itself a multipart standard; some parts
have already been published. Another separate standard makes official the embedded
SQL for Java work known as SQLJ.

In the progression from SQL1 to SQL2, and then to SQL:1999, the official ANSI/ISO
SQL standards have ballooned in scope. The original SQL1 standard was less than 100
pages; the Framework section (Part 1) of the SQL:1999 standard alone is nearly that large.
The Foundation section of the SQL:1999 standard runs well over 1000 pages, and the
currently published parts, taken together, run over 2000 pages. The broadly expanded
scope of the SQL:1999 standard reflects the wide usefulness and applicability of SQL, but
the challenge of implementing and conforming to such a voluminous set of standards is
very formidable, even for large DBMS vendors with large development staffs.

It’s worth noting that the SQL:1999 standard takes a very different approach to
standards conformance claims than the SQL1 and SQL2 standards. The SQL2 standard
defined three levels of conformance, Entry, Intermediate, and Full, and laid out the
specific features of the standard that must be implemented to claim conformance at
each level. In practice, DBMS vendors found some features at each level to be important
to their customers, and others relatively unimportant. So virtually all current SQL
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implementations claim some form of compliance with SQL2, but very few, if any,
implement all of the features required for formal Intermediate or Full conformance.

With this experience in mind, the SQL:1999 standards group instead defined only
one Core SQL level of conformance, which corresponds roughly to the Entry level
of SQL2 plus selected features from the Intermediate and Full levels. Beyond this Core
SQL, additional features are grouped together in packages, to which conformance can
individually be claimed. There is a package for the SQL-CLI capabilities, one for SQL-
PSM, one for enhanced data integrity functions, one for enhanced date and time functions,
and so on. This structure allows individual DBMS vendors to pick and choose the areas
of the standard that are most important to the particular markets they serve, and makes
conformance to parts of the standard more practical.

At this writing, the SQL:1999 standard is too new to fully gauge its impact on the
DBMS market. If the experience with SQL2 is any guide, vendors will carefully evaluate
individual new pieces of SQL:1999 functionality and seek feedback from their customer
base about which ones are useful. With the very large new functionality required by
SQL:1999 features such as user-defined types and recursive queries, implementation of
some parts of SQL:1999 will be a multiyear project for even the largest DBMS vendors.
In practice, the SQL1 (SQL-89) standard defines the core SQL capabilities supported by
virtually all products; the SQL2 (SQL-92) standard represents the current state of the art
in large enterprise database products, and the SQL:1999 standard is a roadmap for future
development.

In addition to the official SQL standard, IBM’s and Oracle’s SQL products will
continue to be a powerful influence on the evolution of SQL. As the developer of SQL
and a major influencer of corporate IS management, IBM’s SQL decisions have always
had a major impact on other vendors of SQL products. Oracle’s dominant market
position has given it similar clout when it has added new SQL features to its products.
When the IBM, Oracle, and ANSI SQL dialects have differed in the past, most independent
DBMS vendors have chosen to follow the IBM or Oracle standards.

The likely future path of SQL standardization thus appears to be a continuation of the
history of the last several years. The core of the SQL language will continue to be highly
standard. More features will slowly become a part of the core, and will be defined as
add-on packages or new standards in their own right. Database vendors will continue
to add new, proprietary features in an ongoing effort to differentiate their products and
offer customers a reason to buy.

SQL in the Next Decade
Predicting the path of the database market and SQL over the next five to ten years is
a risky proposition. The computer market is in the midst of a major transition into an
Internet-driven era. The early stages of that era, dominated by the World Wide Web
and user/browser interaction, are giving way to a ubiquitous Internet used to deliver
all communication services, information services, and e-business interaction. The
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emergence of the PC and its creation of the client/server era of the 1980s and 1990s
illustrates how shifts in the underlying computer systems market can produce major
changes in data management architectures. It’s likely that the Internet will have at least
as large, if not a larger, impact on the data management architectures of the next ten
years. Nonetheless, several trends appear to be safe predictions for the future evolution
of database management. They are discussed in the final sections of this chapter.

Distributed Databases
As more and more applications are used on an enterprisewide basis or beyond, the
ability of a single, centralized database to support dozens of major applications and
thousands of concurrent users will continue to erode. Instead, major corporate databases
will become more and more distributed, with dedicated databases supporting the major
applications and functional areas of the corporation. To meet the higher service levels
required of enterprisewide or Internet-based applications, data must be distributed;
but to ensure the integrity of business decisions and operations, the operation of these
distributed databases must be tightly coordinated.

Another strain on centralized database architectures will be the continuing growth
of mobile personal computers and other mobile information appliance devices. These
devices are, by their nature, more useful if they can become an integral part of a
distributed network. However, by their nature, they are also occasionally connected—
they work in a sometimes-disconnected, sometimes-connected mode, using either
wired or wireless networks. The databases at the heart of mobile applications must be
able to operate in this occasionally connected environment.

These trends will drive heavy demand for data distribution, database integration,
data synchronization, data caching, data staging, and distributed database technology.
A one-size-fits-all model of distributed data and transaction is inadequate for the
highly distributed, anywhere/anytime environment that will emerge. Instead, some
transactions will require absolute synchronization with a centralized master database,
while others will demand support for long-duration transactions where synchronization
may take hours or days. Developing ways to create and operate these distributed
environments, without having them become a database administrator’s nightmare,
will be a major challenge for DBMS vendors in the next decade, and a major source
of revenues for the vendors that provide practical, relatively easy-to-use solutions.

Massive Data Warehousing
The last few years have demonstrated that companies that use database technology
aggressively and treat their data as a valuable corporate asset can gain tremendous
competitive advantage. The competitive success of WalMart, for example, is widely
attributed to its use of information technology (led by database technology) to track
its inventory and sales on a daily basis, based on cash register transaction data. This
allowed the company to minimize its inventory levels and closely manage its supplier
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relationships. Data mining techniques have allowed companies to discover unexpected
trends and relationships based on their accumulated data—including the legendary
discovery by one retailer that late-night sales of diapers were highly correlated with
sales of beer.

It seems clear that companies will continue to accumulate as much information as
they can on their customers, sales, inventories, prices, and other business factors. The
Internet creates enormous new opportunities for this kind of information-gathering.
Literally every customer or prospective customer’s interaction with a company’s
web site, click-by-click, provides potential clues to the customer’s wants, needs and
behavior. That type of click-by-click information can easily generate tens of gigabytes
of data or more per day on a busy web site. The databases to manage these massive
quantities of data will need to support multilevel storage systems. They will need to
rapidly import vast quantities of new data, and rapidly peel off large data subsets for
analysis. Despite the high failure rate of data warehousing projects, the large potential
payoffs in reduced operating costs and more on-target marketing and sales activities
will continue to drive data warehousing growth.

Beyond the collection and warehousing of data, pressure will build to perform
business analyses in real time. IS consulting groups are writing about the zero-latency
enterprise or the real-time enterprise to describe an architecture in which customer
interactions translate directly into changes in business plans with zero or very little
delay. To meet this challenge, database systems will continue to take advantage of
processor speed advances and multiprocessing technologies.

Ultra-High-Performance Databases
The emergence of an Internet-centric architecture is exposing enterprise data
processing infrastructures to new peak-load demands that dwarf the workloads of just
a few years ago. When databases primarily supported in-house applications used by
a few dozen employees at a time, database performance issues may have produced
employee frustration, but they did not really impact customers. The advent of call
centers and other customer support applications produced a closer coupling between
data management and customer satisfaction, but applications were still limited to at
most hundreds of concurrent users (the people manning the phones in the call center).

With the Internet, the connection between a customer and the company’s databases
becomes a direct one. Database performance problems translate directly into slow
customer response times. Database unavailability translates directly into lost sales.
Furthermore, databases and other parts of the data processing infrastructure are no
longer buffered from peak-load transaction rates. If a financial services firm offers
online trading or portfolio management, it will need to prepare for peak-load volumes
on days of heavy stock price movement that may be 10 or 20 times the average daily
volume. Similarly, an online retailer must gear up to support the heaviest end-of-year
selling season, not just mid-March transaction rates.
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The demands of e-commerce and real-time Internet information access are already
producing peak-load transaction rates from the most popular Internet services that are
one or two orders of magnitude higher than the fastest conventional disk-based RDBMS
systems. To cope with these demands, companies will increasingly turn to distributed
and replicated databases. They will pull hot data forward and cache it closer to the
customer interaction within the network. To meet peak-load demands, they will use
in-memory databases. This will, in turn, require new database support for deciding
which data to cache, and which levels of synchronization and replication are appropriate.
At first, these issues will apply only to the largest and highest-volume sites, but just
as web page caching has become an accepted and then an essential technique for
maintaining adequate web browser performance, hot data caching will become a
mainstream Internet data management architecture as volumes grow.

Internet and Network Services Integration
In the Internet era, database management will increasingly become just one more
network service, and one that must be tightly integrated with other services, such as
messaging, transaction services, and network management. In some of these areas,
standards are well established, such as the XA standard for distributed transaction
management. In others, standards are in their infancy or are just emerging, such as the
SOAP standard for sending XML data over the Internet’s HTTP protocol and the UDDI
standards for finding services in a distributed network environment.

The multitier architecture that is dominating Internet-centric applications also
poses new questions about which roles should be played by the database manager and
by other components of the overall information system. For example, when network
transactions are viewed from the point of distributed databases, a two-phase commit
protocol, implemented in a proprietary way by a DBMS vendor, may provide a
solution. When network transactions involve a combination of legacy applications
(e.g., mainframe CICS transactions), relational database updates, and interapplication
messages, the transaction management problem moves outside the database, and
external mechanisms are required.

A similar trade-off surrounds the emergence of Java-based application servers as
a middle-tier platform for executing business logic. Before the Internet era, stored
procedures became known as the accepted DBMS technique for embedding business
logic within the database itself. More recently, Java has emerged as a viable stored
procedure language, an alternative to earlier, vendor-proprietary languages. Now,
application servers create an alternative platform for business logic written in Java,
in this case, external to the database. It’s not yet clear how these two trends will be
rationalized, and whether business logic will continue its migration into the database
or will settle in an application server layer. Whichever trend predominates, tighter
integration between database servers and application servers will be required. Several
of the DBMS vendors now produce their own application servers, and it seems likely
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that they will provide the best integration within their own product lines. Whether this
approach will prevail against a best-of-breed approach remains another open question.

Embedded Databases
Relational database technology has reached into many parts of the computer industry,
from small handheld devices to large mainframes. Databases underlie nearly all
enterprise-class applications as the foundation for storing and managing their
information. Lightweight database technology underlies an even broader range of
applications. Directory services, a foundation technology for the new era of value-added
data communications network services, are a specialized form of database technology.
Lightweight, very-high-performance databases also form an integral part of
telecommunications networks, enabling cellular networks, advanced billing schemes,
smart messaging services, and similar capabilities.

These embedded database applications have traditionally been implemented using
proprietary, custom-written data management code tightly integrated with the
application. This application-specific approach produced the highest possible
performance, but at the expense of an inflexible, hard-to-maintain data management
solution. With declining memory prices and higher-performance processors, lightweight
SQL-based relational databases are now able to economically support these applications.

The advantages of a standards-based embedded database are substantial. Without
a serious compromise in performance, an application can be developed in a more
modular fashion, changes in database structure can be handled transparently, and new
services and applications can be rapidly deployed atop existing databases. With these
advantages, embedded database applications appear destined to be a new area of
growth potential for SQL and relational database technology. As in so many other
areas of information technology, the ultimate triumph of SQL-based databases may
be that they disappear into the fabric of other products and services—invisible as a
stand-alone component, but vital to the product or service that contains them.

Object Integration
The most significant unknown in the future evolution of SQL is how it will integrate
with object-oriented technologies. Modern application development tools and
methodologies are all based on object-oriented techniques. Two object-oriented
languages, C++ and Java, dominate serious software development, for both client-side
and server-side software. The core row/column principles of the relational data model
and SQL, however, are rooted in a much earlier COBOL era of records and fields, not
objects and methods.

The object database vendors’ solution to the relational/object mismatch has been
the wholesale discarding of the relational model in favor of pure object database
structures. But the lack of standards, steep learning curve, lack of simple query
facilities, and other disadvantages have prevented pure object databases from having
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any significant market success to date. The relational database vendors have responded
to the object database challenge by embracing object-oriented features, but the result
has been a proliferation of nonstandard, proprietary database features and SQL
extensions.

It’s clear that relational database technology and object technology must be more
tightly integrated if relational databases are to remain an integral part of the next
generation of applications. Several trends are visible today:

� Java-based interfaces to RDBMS’s, such as JDBC and embedded SQL for Java,
will continue to grow rapidly in popularity.

� Java will become a more important stored procedure language for
implementing business logic within a RDBMS. Virtually all of the major DBMS
vendors have announced plans to support Java as an alternative to their
proprietary stored procedure languages.

� DBMS products will expand support for abstract, complex data types that
exhibit object-oriented capabilities such as encapsulation and inheritance.
Beyond high-level agreement on the need to store objects within a row/column
structure, the specifics (nested tables, arrays, complex columns) vary
dramatically.

� The SQL:1999 standard for object-oriented extensions to SQL will influence
vendor products, but slowly, as vendors continue to seek competitive
advantages and user lock-in through proprietary object-oriented extensions.

� Message-oriented interfaces, including database triggers that produce messages
external to the DBMS for integration with other applications, will grow in
importance, as the database becomes a more active component for integrating
systems together.

� XML will emerge as an important standard format for representing both data
retrieved from a SQL database, and data to be entered into or updated in a
database.

� DBMS vendors will offer SQL extensions to store and retrieve XML documents,
and to search and retrieve their contents.

Whether these extensions to SQL and the relational model can successfully integrate
the worlds of RDBMS and objects remains to be seen. The object-oriented database
vendors continue to maintain that object capabilities bolted onto an RDBMS can’t
provide the kind of transparent integration needed. Most of them have enthusiastically
embraced XML as the newest wave of object technology. The enterprise DBMS vendors
have announced and added substantial object-relational capabilities, and more recently,
XML integration products and features, but it’s hard to determine how many of them
are actually being used. In addition, the emergence of XML as an important Internet
standard has given birth to a new round of database challengers, offering native XML



databases. With all of these competing alternatives, the further integration of object
technologies into the world of relational databases seems certain. The specific path that
this evolution will take remains the largest unknown in the future of SQL.

Summary
SQL continues to play a major role in the computer industry, and appears poised to
continue as an important core technology:

� SQL-based databases are flagship software products for the three largest
software vendors in the world: Microsoft, Oracle, and IBM.

� SQL-based databases operate on all classes of computer systems, from
mainframes and database servers to desktop computer clients, notebook
computers, and handheld PDAs.

� All of the major enterprise applications used in large organizations rely on
enterprise-class SQL databases to store and structure their data.

� SQL-based databases have responded successfully to the challenges of the
object model, with SQL extensions in object/relational databases.

� SQL-based databases are responding to the needs of Internet-based
architectures by incorporating XML and integrating with application servers.
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M
ost of the examples in this book are based on the sample database described
in this appendix. The sample database contains data that supports a simple
order processing application for a small distribution company. It consists of

five tables:

� CUSTOMERS. Contains one row for each of the company’s customers.

� SALESREPS. Contains one row for each of the company’s ten salespeople.

� OFFICES. Contains one row for each of the company’s five sales offices where
the salespeople work.

� PRODUCTS. Contains one row for each type of product that is available for sale.

� ORDERS. Contains one row for each order placed by a customer. For simplicity,
each order is assumed to be for a single product.

Figure A-1 graphically shows the five tables, the columns that they contain, and the
parent/child relationships among them. The primary key of each table is shaded. The
five tables in the sample database can be created using the CREATE TABLE statements
shown here:

CREATE TABLE CUSTOMERS

(CUST_NUM INTEGER NOT NULL,

COMPANY VARCHAR(20) NOT NULL,

CUST_REP INTEGER,

CREDIT_LIMIT MONEY,

PRIMARY KEY (CUST_NUM),

FOREIGN KEY HASREP (CUST_REP)

REFERENCES SALESREPS

ON DELETE SET NULL)

CREATE TABLE OFFICES

(OFFICE INTEGER NOT NULL,

CITY VARCHAR(15) NOT NULL,

REGION VARCHAR(10) NOT NULL,

MGR INTEGER,

TARGET MONEY,

SALES MONEY NOT NULL,

PRIMARY KEY (OFFICE),

FOREIGN KEY HASMGR (MGR)

REFERENCES SALESREPS

ON DELETE SET NULL)
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CREATE TABLE SALESREPS

(EMPL_NUM INTEGER NOT NULL,

NAME VARCHAR(15) NOT NULL,

AGE INTEGER,

REP_OFFICE INTEGER,

TITLE VARCHAR(10),

HIRE_DATE DATE NOT NULL,

MANAGER INTEGER,

QUOTA MONEY,

SALES MONEY NOT NULL,

PRIMARY KEY (EMPL_NUM),

FOREIGN KEY (MANAGER)

REFERENCES SALESREPS

ON DELETE SET NULL,

FOREIGN KEY WORKSIN (REP_OFFICE)

REFERENCES OFFICES

ON DELETE SET NULL)

CREATE TABLE ORDERS

(ORDER_NUM INTEGER NOT NULL,

ORDER_DATE DATE NOT NULL,

CUST INTEGER NOT NULL,

REP INTEGER,

MFR CHAR(3) NOT NULL,

PRODUCT CHAR(5) NOT NULL,

QTY INTEGER NOT NULL,

AMOUNT MONEY NOT NULL,

PRIMARY KEY (ORDER_NUM),

FOREIGN KEY PLACEDBY (CUST)

REFERENCES CUSTOMERS

ON DELETE CASCADE,

FOREIGN KEY TAKENBY (REP)

REFERENCES SALESREPS

ON DELETE SET NULL,

FOREIGN KEY ISFOR (MFR, PRODUCT)

REFERENCES PRODUCTS

ON DELETE RESTRICT)
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CREATE TABLE PRODUCTS

(MFR_ID CHAR(3) NOT NULL,

PRODUCT_ID CHAR(5) NOT NULL,

DESCRIPTION VARCHAR(20) NOT NULL,

PRICE MONEY NOT NULL,

QTY_ON_HAND INTEGER NOT NULL,

PRIMARY KEY (MFR_ID, PRODUCT_ID))

Figures A-2 through A-6 show the contents of each of the five tables in the sample
database. The query results in examples throughout the book are based on the data
shown in these figures.

Figure A-1. The structure of the sample database
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Figure A-2. The CUSTOMERS table

Figure A-3. The SALESREPS table
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Figure A-5. The ORDERS table

Figure A-4. The OFFICES table
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Figure A-6. The PRODUCTS table
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T
he database systems vendors profiled in this appendix have been selected because
of their unique positions within the broader database industry. They include the
providers of the leading enterprise-class DBMS products, some smaller companies

that are leaders in new technology areas, pioneers in newer segments of the database
market, and vendors that focus on embeddable database technology. Any compilation
like this cannot possibly be exhaustive, and the omission of a company does not mean
that its products or capabilities are inferior to those of the vendors profiled here.
Collectively, these companies and their profiles as presented, illustrate the landscape
of today’s multibillion-dollar database software and services market. The vendors are:

� A2i, Inc.

� Arbor Software (now Hyperion Solutions Corporation)

� Birdstep Technology

� Computer Associates (Jasmine, Ingres)

� Computer Corporation of America (Model 204)

� Empress Software

� eXcelon (ObjectStore, XIS)

� Gupta Technologies (SQLBase)

� Hewlett-Packard (NonStop SQL)

� IBM Corporation (DB2, Informix, Cloudscape)

� Informix Software (now part of IBM)

� Microsoft Corporation (SQL Server)

� MySQL AB

� Objectivity

� Oracle Corporation (Oracle, Rdb/VMS)

� Persistence Software

� Pervasive Software

� PointBase

� PostgreSQL

� Quadbase Systems

� Red Brick Systems (now part of Informix Software)

� Sybase, Inc.

� TimesTen Performance Software

� Versant Corporation
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A2i, Inc. (www.a2i.com)
Founded in 1993, A2i develops and markets an integrated, database-driven, cross-media
catalog publishing system that centralizes the management of catalog data, simplifies the
catalog production process, and completely automates the catalog production workflow.
The system includes tools for creating, designing, and publishing both printed and
electronic catalogs; supports single source cross-media publishing to paper, CD-ROM, and
the Web; and efficiently manages catalogs containing from hundreds to millions of items.

All of A2i’s software products layer on top of a SQL-based DBMS. They include
performance accelerators that improve catalog access by a factor of 10 to 1000 times
that of SQL alone, and feature additional catalog-specific functionality that supports
interactive browsing and sorting of large databases in ways that would otherwise be
impossible using a traditional SQL-based DBMS alone. A2i’s parametric search
technology—an alternative to DBMS-style query forms that is intuitive, easy to use,
and very, very fast—allows a user to search an entire catalog and locate any item or
group of items in a matter of seconds, narrowing down from thousands or millions
of items to one or several with just a few mouse clicks.

Arbor Software (www.hyperion.com)
Arbor was one of the early leaders in the development of Online Analytic Processing
(OLAP) databases and tools. Arbor’s flagship Essbase OLAP server was first introduced
in 1992 and pioneered many of the capabilities that have now become commonplace in
analytic systems. Large corporations typically use the Essbase product suite to create
integrated reporting, analysis, and planning systems.

Current versions of the Essbase product support both client/server and web-based
analytic processing and reporting. They also support both precalculated data (a hallmark
of most OLAP systems) and dynamic, on-the-fly calculations. Another major enhancement
of the Essbase product is distributed OLAP capability, which allows OLAP databases
to be partitioned across computer networks. Essbase supports both its own proprietary
multidimensional database formats and integrates with conventional relational databases.
The latest version, marketed under the brand name Essbase XTD, is positioned as a
business intelligence platform, and runs across a number of different operating systems.

In 1998, Arbor merged with Hyperion Solutions Corporation to create a $500
million company (annual revenue) focused on business reporting and analysis. The
product line has grown to include a substantial business in integration products and
customization services. It spans applications from single-user analysis on Windows
workstations to enterprisewide web-based OLAP deployments for hundreds of users.

Birdstep Technology (www.birdstep.com)
Birdstep Technology is a Norwegian software company focused on wirelessly
connected systems and embedded solutions. Birdstep entered the database business



with its September 2001 acquisition of Raima Corporation. Raima, founded in 1982,
was an early database vendor focused on the IBM PC database market. Its initial
db_VISTA product was first released in 1984. It has been steadily enhanced over the
years and combined with an object manager to create the Raima Database Manager
(RDM) product, now marketed by Birdstep.

A newer Raima product, the Velocis Database Server, was first shipped in 1993.
Velocis is a SQL-based relational database system with an ODBC interface. It is designed
as an embeddable database, and the company targets it to professional application
developers—independent software vendors (ISVs) and value-added resellers (VARs)
who use it as a bundled database foundation. Velocis runs on Windows, Windows NT,
OS/2, and many UNIX-based operating system variants.

A distinctive feature of the Velocis server is its explicit support for network data
model’s embedded pointers within a SQL-based database. A CREATE JOIN statement
specifies an explicit relationship, implemented with network database-style pointers,
which are stored within the database structure. These can then be exploited with SQL
syntax, delivering very fast performance. Velocis supports C/C++, Java, Visual Basic,
Delphi, and Perl language interfaces as well as the industry-standard ODBC interface.

Birdstep sells the Velocis product as a server edition of the Raima Data Engine.
A complementary Mobile Edition is tuned for use in mobile devices with wireless
connectivity. A third edition is focused on embedded applications.

Computer Associates (www.cai.com)
Computer Associates (CA) is one of the world’s largest independent software companies.
Initially focused on mainframe software, the company has steadily expanded its focus
to provide an extensive line of software products and services for enterprise data
processing. Computer Associates has been built largely through acquisition, taking
advantage of its large direct sales force and well-established relationships with senior
Fortune 500 information systems executives. Through its acquisitions, it has steadily
added more products to its portfolio.

Ingres, one of the earliest relational database systems to appear on the market, is
now a product of Computer Associates. It was originally developed at the University
of California at Berkeley as a research project under the direction of Professor Michael
Stonebreaker. The research project became the foundation of an independent company,
which eventually changed its name to Ingres Corporation in the 1980s. Ingres and its
native QUEL query language were an early competitor to SQL, which was backed by
rival Oracle Corporation. Although most analysts gave Ingres clear claim to technical
leadership, Oracle’s aggressive marketing and sales efforts, coupled with IBM’s
backing of SQL, eventually led to SQL dominance in the market. Eventually, Ingres
was adapted to support SQL, which emerged as the dominant standard. In the 1990s,
Ingres was sold to the ASK Group, and eventually to Computer Associates.
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The current version of the product, Advantage Ingres Enterprise Relational Database,
is a comprehensive relational database management product suite. The core Ingres/DBMS
is augmented by a capability that links the DBMS to the Web. The product includes
standards-based ODBC access, a sophisticated distributed data manager, and built-in
XML support. It runs on major UNIX server platforms and Windows server versions.

Computer Associates also offers Jasmine Object Database, a new object-oriented
DBMS. Although touted as a complete DBMS solution with a modern object-oriented
architecture, two major areas of focus for Jasmine are multimedia and Internet applications.
The core DBMS is heavily object-oriented, featuring multiple inheritance, instance
and class methods and properties, and set-level methods. Methods for the Jasmine
object-oriented DBMS can be written in C, C++, or Java. Jasmine includes an extensive
class library with support for multimedia data types (images, animation sequences,
audio, video, rich text, page layouts). CA is clearly positioning Jasmine as a new-
generation, pure object-oriented database. It is not positioned as having object/relational
capabilities, and it does not offer any SQL access to its own data management capabilities.
CA does tout Jasmine’s integration with back-end relational databases (Oracle, Sybase,
Informix, SQL Server, DB2) and mainframe files (VSAM and CA-IDMS). The linkage to
an Ingres back-end is especially close, with tightly integrated transaction management,
security, and replication management capabilities.

Computer Corporation of America

(www.cca-int.com)
Computer Corporation of America (CCA) is one of the pioneering software companies,
and has been involved in data management since its founding in 1965. It develops and
sells one of the earliest DBMS systems: Model 204. The product has been substantially
enhanced over the years, but the focus continues to be on mainframe systems.

Model 204 features an ANSI-compliant SQL interface, even though the underlying
structure is a network database architecture. The network structure is manifested in
Model 204’s embedded table capability—essentially a table-within-a-table structure.
Although network databases fell out of favor with the advent of SQL and the relational
model, some of the same capabilities provided by the network systems are now
appearing in highly touted new object-relational systems. The nested table structure
offered by Model 204 is an example of such a capability, which appears in object-relational
systems from Informix and in Oracle’s flagship Oracle8 object-oriented extensions.

The current version of Model 204 includes multiprocessing and parallel query
options for data warehousing applications. Over the years, its indexing structures have
become quite sophisticated and now include bitmap, hashing, B-tree, and record list
schemes. Another unique feature of Model 204 is support for iterative queries—queries
that are carried out against the results of previous queries. SQL-based access to
mainframe Model 204 databases is available through CCA’s Connect* product, which
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offers ODBC and OLE-DB APIs for remote database access from Windows and
UNIX-based client workstations.

CCA also provides System 1032, a high-performance database product for the
OpenVMS operating system (the successor to Digital Equipment’s popular VAX/VMS
from the 1980s and 1990s). System 1032 focuses on high-performance query applications.
Although not originally a relational database, it now offers access via ODBC and SQL.

Empress Software (www.empress.com)
Empress Software produces an ANSI SQL relational database system for embedded
applications. The company was founded in 1979 in Toronto, Canada, and currently is
headquartered outside Washington, DC. The Empress DBMS offers both an ODBC
callable API and Embedded SQL interfaces. It also offers a low-level set of database
access calls that come in below the SQL access layer. These calls provide direct access
to the Empress storage manager layer for very high performance record insert, update,
delete, and retrieve operations.

The Empress DBMS runs on many different UNIX-based systems, including several
UNIX operating system variants that run on Intel processor-based systems. It also
supports Windows, Windows NT, and a range of real-time operating systems typically
used for embedded applications. It offers a rich collection of data types, plus user-
definable functions and procedures. For Internet-based applications, Empress also
offers script language interfaces for the popular Perl and Tcl/Tk scripting languages.

eXcelon (www.exln.com)
eXcelon was founded as Object Design, one of the early object database vendors in 1988
in Burlington, Massachusetts. The initial version of its ObjectStore object database
system was shipped in 1990. The ObjectStore database can be used either as a stand-
alone object-oriented database (OODB) or as a caching solution, providing fast,
object-oriented access to data that has been pulled forward from a back-end relational
database such as Oracle or DB2.

In the late 1990s, as the market momentum of the object-oriented databases stalled,
Object Design invested in an XML database product, named eXcelon, and eventually
renamed itself after this product in February 2000. After roughly a year, the company
moved to reassure its installed base of ObjectStore customers by re-creating an Object
Design division, responsible for the ObjectStore product line, which remains a major
product of the company today. In May 2001, eXcelon again moved to broaden its
offerings through a merger with C-bridge, a professional services company. Today,
its products include the original ObjectStore OODB; an XML database named XIS; a
caching product focused on application server data caching named Javlin; and professional
services for solutions development and deployment based on these technologies.
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Gupta Technologies

(www.guptaworldwide.com)
Gupta Technologies was founded by a former manager of Oracle’s microcomputer
division, Umang Gupta. The company’s initial focus was a DBMS and database
development tools for PCs and PC local area networks. Renamed Centura Software in
the late 1990s, the company has returned to its original name, and now focuses on
embedded database software and development tools, primarily targeting independent
software vendors and value-added resellers.

SQLBase, the company’s flagship DBMS product, has evolved considerably since
its origins as a stand-alone and client/server database for IBM PCs under MS-DOS. It
has grown to support Windows NT and NetWare as database servers. Centura currently
targets SQLBase for applications on PCs and sub-PC devices such as handheld PCs,
RISC-based information appliances (e.g., smart phones), and even smart cards. It
features a small footprint, zero-maintenance operation, and a scalable architecture.
ODBC 3.0 and JDBC interfaces are provided. Companion products complement the
core SQLBase offering with software development tools, report writing, mainframe
database connectivity, and similar capabilities.

Hewlett Packard (www.hp.com)
Hewlett-Packard’s NonStop SQL database products are a result of its merger with
Compaq in 2002. Several years earlier, in 1997, Compaq (at the time a vendor of
Intel-architecture PCs and servers) acquired Tandem Computers, an early leader in the
market for fault-tolerant minicomputer systems. Many Tandem systems are used by
financial services and transportation companies for use in online transaction processing
applications that demand 24/7 nonstop operation. For example, Tandem systems run
many of the major banks’ ATM networks and many of the leading stock exchanges.
Tandem’s older systems ran the proprietary TXP operating system, and fault-tolerant
applications are generally written in the proprietary Tandem Application Language
(TAL). More recent Tandem systems are based on UNIX operating systems.

Database management for nonstop applications on Tandem systems has been
provided for many years by a SQL-based Tandem-developed RDBMS, called NonStop
SQL. Because of Tandem’s heavy OLTP emphasis, NonStop SQL has pioneered several
special techniques, such as disk mirroring. It also takes advantage of the inherent
Tandem multiprocessor architecture and provides distributed database capabilities.
The programmatic interface to NonStop SQL is through embedded SQL.

During the 1980s and early 1990s, virtually every minicomputer vendor had its own
proprietary SQL-based implementation (Digital with Rdb/VMS, Hewlett-Packard with
Allbase/SQL, Data General with DG-SQL, and so on). Over the years, all of the other
systems vendors have concluded that the high cost of maintaining their own RDBMS with



competitive features was prohibitive. They also had difficulty managing the dual roles
of competing with the independent DBMS vendors (such as Oracle) and also working
with them as ISV partners on their platforms. As a result, Hewlett-Packard (via its
acquisition of the former Tandem product line) is the only remaining major system
vendor (except for IBM) with its own proprietary SQL-based RDBMS.

NonStop SQL is still an important product for the Tandem customer base. It ships
in two versions. NonStop SQL MP is a distributed, highly parallel database system,
designed to run on systems with 2 to over 4000 processors. NonStop SQL MX is a
version of NonStop SQL extended with object-relational capabilities.

IBM Corporation (www.ibm.com)
IBM, the largest computer company in the world, is also among the largest software
vendors in the world. IBM researchers pioneered the relational database concept,
invented the SQL language, and produced the first relational database prototype—
System/R—in the 1970s. Over the next two decades, IBM’s flagship relational
database—DB2—for its mainframe systems, pioneered several relational capabilities
that have since found their way into mainstream RDBMS products and into generations
of SQL standards. During this same time, relational database technology proliferated
onto other IBM computer system platforms, including time-sharing mainframes,
minicomputers, UNIX-based workstations and servers, and personal computers. In
the late 1990s, IBM moved aggressively to bring all of these IBM data management
products under a single umbrella (using the DB2-Universal Database name), and to
offer its DB2 relational database technology on non-IBM platforms from other leading
UNIX system vendors.

In addition to its own database development, IBM expanded its database reach
substantially with its 2001 acquisition of the database-related businesses of Informix
Software. Informix had been a UNIX-based DBMS pioneer, with its internally developed
flagship Informix product. Informix had also been an aggressive acquirer of other
database companies and technologies, including object-relational database pioneer
Illustra (1996), data warehousing pioneer Red Brick (1998), database vendor Ardent
Software (1999), and Java database pioneer Cloudscape (1999). Many of these database
products survive as part of IBM’s data management software product line.

Today, DB2-Universal Database is a comprehensive, enterprise-class, SQL-based
relational database system. DB2 implementations run on a very broad range of platforms,
from desktop personal computers to the largest IBM mainframe clusters. DB2 can be
characterized as a quite complete and comprehensive SQL implementation, especially
in areas that have been traditional IBM strongholds, such as high availability, reliability,
maintainability, and worldwide support (international character set). Adjunct products
and tools support software development, distributed database capabilities, data
warehousing, data replication and distribution, and most other major areas of database
activity. Although IBM has made its products available on non-IBM platforms, the
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vast majority of IBM DB2 installations are on IBM computer systems and are sold as
part of integrated IBM-based enterprise systems, and the core strength of DB2 is on
IBM mainframe systems.

The pioneering object-relational DBMS, Illustra, survives in IBM’s product line as
the Informix Dynamic Server, and retains a significant market share on UNIX-based
systems. The Cloudscape product is available from IBM, distinguished as a 100 percent
Java database especially tuned for mobile computing applications. Red Brick data
warehouse provides a specialized business intelligence server, but its functions overlap
considerably with BI and OLAP tools in the DB2 product line. UniVerse is focused on
client/server and web-based data management, with low management overhead, but
also has considerable overlap with other IBM products. Finally, it’s worth noting that
IMS (a non-SQL, hierarchical database whose origins predate the relational model)
remains a very significant IBM data management product, with ongoing development.

Informix Software (See IBM Corporation)
Informix was one of the original leaders in the UNIX-based relational database market.
The company’s first relational DBMS was implemented on UNIX-based microcomputer
systems in the early 1980s, and was known for its efficiency and compactness. In 1985,
Informix was rewritten as a SQL-based DBMS and introduced as Informix-SQL. It was
subsequently ported to a wide range of systems, from IBM PCs under MS-DOS to
Amdahl mainframes running UNIX. Informix was also one of the first database vendors
to expand its product offerings beyond the core database engine to include development
tools. Its Informix-4GL product family supports the development of forms-based
interactive applications.

In the early 1990s, Informix expanded its product line into the office automation
area, including among other products, a database-integrated spreadsheet named
Wingz. This effort was not very successful against Microsoft’s office suite juggernaut,
and Informix refocused on its core database capabilities. One of its flagship products
during the mid-1990s was Informix Parallel Server, the technology leader in so-called
parallel query technology. Parallel Server splits the processing of a single complex
query into multiple, parallel operations, which can take advantage of symmetric
multiprocessing (SMP) servers. Later, Informix established a leadership position in
object-relational technology through the acquisition of Illustra. Illustra was a venture-
backed database software firm, led by Michael Stonebreaker (the same Berkeley
professor who had led the development of Ingres years before). A side-effect of the
Illustra acquisition was a proliferation of product lines and development teams within
Informix, adding to some confusion among Informix customers.

As the enterprise database market turned into a three-horse race in the late 1990s,
Informix found itself a much smaller competitor than the “Big 3” (Oracle, IBM, and
Microsoft). Informix resources were also split between its original data management
business and an emerging and faster-growing business in enterprise data integration
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tools. Informix sold the database part of its business to IBM in April 2001, for more
than $1 billion. The data integration part of the business was renamed Ascential
Software, and continues with a focus in that market.

Microsoft Corporation (www.microsoft.com)
Microsoft Corporation, the world’s largest personal computer software company, is also
a major vendor in the SQL-based database market. Microsoft’s first foray into database
products came in 1987 and began as a defensive move. With the announcement of
OS/2 Extended Edition, IBM tried to establish built-in database management and data
communications as key components of an enterprise-class PC operating system. In
1988, Microsoft responded with SQL Server, a version of the Sybase DBMS ported to
OS/2. Although Microsoft later abandoned OS/2 in favor of its own Windows NT
operating system, SQL Server continued as its flagship DBMS. Today, SQL Server is
a major product in the workgroup database segment, and Microsoft is aggressively
moving to establish it as an enterprise-class DBMS competing with Oracle and DB2.

Expanding on its early experience with SQL Server, Microsoft moved on several
other fronts to expand its role as a database vendor. In the early 1990s, Microsoft
acquired Foxbase Corporation, developer of the Foxbase DBMS. Foxbase had established
itself as a very successful clone of dBASE, the most popular and widely used PC
database product. Through the acquisition, Microsoft moved to challenge Borland
International, which had acquired the rights to dBASE shortly before.

While the Foxbase acquisition was focused more on the PC-installed base and the
relatively mature market for character-based, flat file PC databases, Microsoft’s internal
development focused on the new, growing market for graphical lightweight relational
PC databases. After several false starts and abandoned development prototypes, the
result product, Microsoft Access, was introduced. Microsoft Access continues today as
both a stand-alone lightweight database product and a front-end for SQL-based
production databases.

Microsoft also moved aggressively to enable Windows as a database access and
database development platform. Its first major move in this area was the introduction
of Open Database Connectivity (ODBC), a SQL-based API for database access.
Microsoft built ODBC capability into Windows and successfully lobbied the SQL Access
Group, a database vendor association, to adopt it as a callable database API standard.
This early version of ODBC eventually made its way into the formal ISO standards
as the SQL Call-Level Interface (CLI). Microsoft has continued to evolve ODBC and
expand its capabilities.

Microsoft has also layered other database access APIs on top of ODBC. The first
such step was to incorporate database access into Microsoft’s Object Linking and
Embedding (OLE) framework for linking applications together. The OLE/DB portion
of the OLE suite provided source-independent data access, and relied on ODBC as
its underlying architecture for working with relational databases. Later, with the
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recasting of OLE into the ActiveX component framework, another layer was added
to the database access hierarchy. The Active Data Objects (ADO) set of components
provide data access within Microsoft’s Component Object Model (COM) architecture.
Again, the ADO capabilities are layered on top of ODBC for relational database access.

Paralleling the evolution of the Windows database access capability, Microsoft
has steadily expanded and enhanced the capabilities of SQL Server. SQL Server 7,
introduced in 1998, represented a major step forward. SQL Server 2000 continued this
trend, and came with a parallel marketing push to establish it as an enterprise-class
database product. SQL Server features have grown to include an integrated OLAP
server and business intelligence capabilities, putting Microsoft squarely into competition
with the data warehousing vendors and the warehouse-oriented database capabilities
of Oracle and DB2. The high-end Enterprise Edition package provides failover
clustering, multiprocessing support for up to 32-way SMP systems, and much more
extensive replication services for both online and offline distributed databases, and
more recently, XML support as part of Microsoft’s .NET web services initiative. The
debate continues over SQL Server’s readiness for enterprise-class data management,
but Microsoft continues to work, release by release, toward that goal.

MySQL AB (www.mysql.com)
MySQL AB is the Swedish company that publishes and distributes the most popular
open source SQL database, MySQL. Founded by two Swedes and a Finn (David Axmark,
Allan Larsson, and Monty Widenius), the company’s mission is to “make superior
data management affordable to all.” The company is owned primarily by its founding
partners, and is firmly devoted to the open source model. The MySQL software, including
source code, is free for noncommercial use under the GNU license.

The partners have grown MySQL into a virtual company, with employees distributed
around the world. The company earns its revenues from support, training, and other
services associated with MySQL, and from revenue-bearing commercial licenses.
Several million free copies have been downloaded. The MySQL product is distinguished
by being fairly compact in size, and delivering high performance. The capabilities of
the product continue to grow, with an active user base that contributes enhancements.
Monty Widenius, the principal author of the original MySQL product, acts as moderator
for the contributions and orchestrates the formal releases from MySQL AB.

Objectivity (www.objectivity.com)
Objectivity was one of the early object-oriented database vendors, and has steadily
enhanced its Objectivity/DB OODBMS over the years. It has added fault-tolerant and
data-replication capabilities to its core object database engine. Access to Objectivity/DB
is provided from C++, Java, and SmallTalk.
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Although Objectivity remains firmly focused on an object-oriented architecture, it
has moved to provide SQL-based access to its object database engine, through both
ODBC and proprietary APIs. The SQL language used through these interfaces contains
many extensions to accommodate access to object database structures. Unique object-ids
within the Objectivity/DB database are automatically mapped to row-ids available via
the SQL interface. Object associations within the OODB are available for use as SQL
join criteria. Stored procedures and triggers are presented via extended SQL features.
Extended SQL syntax is also provided to access elements of arrays and nested object
structures, which appear as complex columns to the SQL user. These capabilities
provide the advantages of SQL-based access to many of Objectivity/DB’s object-oriented
capabilities, but at the expense of very nonstandard SQL syntax.

The Objectivity/DB product is focused on managing complex data across a broad
range of operating environments. It is deployed in large enterprise databases providing
access for hundreds of users to terabytes of data. At the other extreme, Objectivity/DB is
positioned as an embeddable component for data management within real-time systems.

Oracle Corporation (www.oracle.com)
Oracle Corporation was the first DBMS vendor to offer a commercial SQL product,
preceding IBM’s own announcement by almost two years. During the 1980s, Oracle
grew to become the largest independent DBMS vendor. Today, it is the dominant
enterprise DBMS competitor, selling its products through an aggressive direct sales
force and through a variety of other channels.

The Oracle DBMS was originally implemented on Digital minicomputers, but the
center of gravity of Oracle system sales shifted firmly to UNIX-based minicomputers
and servers in the 1990s. One of the major advantages of Oracle is its portability. It
is available on dozens of different computer systems, from Windows-based laptop
computers through Sun, HP, and IBM UNIX-based systems to IBM mainframes. Using
Oracle’s networking software, many of these Oracle implementations can participate
in a distributed network of Oracle systems. With these capabilities, Oracle has targeted
enterprisewide database deployments and has been effective in leveraging its market
leadership into a position as an IS-imposed corporatewide database standard in many
organizations.

The Oracle DBMS was originally based on IBM’s System/R prototype, and has
remained generally compatible with IBM’s SQL-based products. In recent years,
Oracle has been aggressively marketing the OLTP performance of its DBMS, using
benchmark results from multiprocessor systems to substantiate its claim as the OLTP
performance leader. One round of advertisements in computer industry publications
touted a breakthrough level of 100,000 TPC-C transactions per minute on a high-end
cluster of SMP 64-bit Digital Alpha servers.

Oracle has consistently combined good technology with an aggressive sales force
and high-profile marketing campaigns (including the high-profile presence of its
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flamboyant CEO and founder, Larry Ellison). It has expanded its product line to include
not only DBMS software and database development and management tools, but also
enterprise applications software for financial and business management applications.
Oracle’s core server products also include an application server for implementing
multitier Internet applications.

Oracle also acquired the Rdb relational database from Digital Equipment Corporation,
picking up a large installed base of Digital users that it is converting to its Oracle
products. Consulting services and recurring maintenance revenues have also become a
major part of its revenue. It has also announced that it will make several of its products
available on an outsourced basis, effectively allowing customers to use them on a fee-
for-services basis. Today, DBMS licensing revenues account for less than half of Oracle’s
annual revenues, but enterprise-class data management remains at the heart of the
company’s business.

Oracle8 and Oracle8i, introduced in 1998 and 1999, respectively, and Oracle 9i,
introduced in late 2000, represented major steps forward in the evolution of the Oracle
DBMS. They feature extensive object-relational capabilities, including abstract data
types, object structures (such as nested tables, arrays, and sequences), Java APIs (both
embedded SQL for Java and a JDBC callable API), and specialized capabilities for
high-performance OLTP on SMP systems and data warehousing. To accommodate a
broad range of systems, low-end DBMS capability continues to be provided by an
Oracle Light product for notebook systems. Oracle 9i is specifically focused on integration
of the Oracle DBMS with Internet technologies, such as web and application servers. In
addition, marketing for Oracle9i has placed a strong focus on reliability and scalability,
with claims of being unbreakable.

Oracle considers its major competitor to be Microsoft, and it embraces a network-
centric enterprise computing architecture to combat Microsoft’s PC-centric view. In the
Oracle view, a centralized database system is the critical data store for all information
within an organization, which should be accessible anytime and anywhere via the
Internet. Easier central control and administration provided by this architecture are key
selling points for Oracle to enterprise IS organizations.

Oracle is also aggressively pursuing a one-vendor approach to enterprise IT shops.
With the introduction of the Oracle applications suites in the 1990s, Oracle became a
competitor to enterprise application vendors like SAP, BAAN, and PeopleSoft. The
addition of the Oracle application server put Oracle into competition with BEA and Sun’s
application server, as well as IBM’s WebSphere. With its suite of application, database,
and middleware products, Oracle’s message to corporate IT organizations is that the
best way to deliver applications to their company is with an all-Oracle approach.

Persistence Software (www.persistence.com)
Persistence Software was initially focused on software that bridged the gap between
object-oriented development and messaging technologies (including object request
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brokers) and relational database technology. Its middleware products supported
object-based data management structures and requests, and mapped them into relational
databases stored in the major RDBMS systems. One of the primary target markets for
Persistence products has been the financial services market.

Over time, Persistence enhanced its products and repositioned them as a transactional
application server. The company’s PowerTier server family includes versions designed
to support C++ development or Java (via Enterprise JavaBeans). One of the major
features of the PowerTier servers is in-memory caching of objects. Other capabilities of
the servers include object transaction isolation and object triggers. The servers continue
to offer database independence, integrating with the mainstream enterprise database
engines of Oracle, Informix, Sybase, and Microsoft. Application development in C++,
Java, and Visual Basic is supported.

More recently, Persistence has repurposed its caching technology and packaged it
into two different products. Persistence Dynamai is a dynamic caching product designed
to speed web browsing by caching dynamically generated web pages. Persistence
EdgeXtend is a data cache for application servers, designed to speed their operation in
database-intensive applications. It works with BEA WebLogic and IBM WebSphere.

Pervasive Software (www.pervasive.com)
Pervasive Software traces its roots back to the earliest days of personal computer
databases. The storage manager that underlies the Pervasive products, Btrieve, was
initially developed as a PC-based database for MS-DOS systems in the early 1980s.
SoftCraft, the company that developed Btrieve, was acquired in 1987 by Novell, the
vendor of the leading network operating system at the time (NetWare). As a result,
Btrieve became a more tightly integrated part of the NetWare OS. Layered capabilities,
including NetWare SQL, were developed as layers on top of the Btrieve storage manager.

In 1994, Novell decided to refocus on its core network operating system capabilities,
and its database technologies were spun out into a new company, which was renamed
Pervasive Software in 1996. Pervasive’s focus is on cost-effective SQL-based databases
for use by ISVs and VARs. Packaged software for accounting, inventory control, order
processing, and similar functions use it as an underlying bundled database manager.
These products are typically sold to small and medium-sized businesses, and to
departments of big companies.

Pervasive’s current product, Pervasive SQL, combines their Scalable SQL and
Btrieve products. The emphasis is on features important to the small/medium business
market. These include low database administration, scalability to support business
volumes, a small DBMS footprint, and the capability to handle reasonable data volumes
at low cost. Overwhelmingly, Pervasive SQL is used by an ISV or VAR and delivered
as a bundled component of their software product, often invisible to the end-user.

954 S Q L : T h e C o m p l e t e R e f e r e n c e



A p p e n d i x B : D a t a b a s e V e n d o r P r o f i l e s 955
A

P
P

E
N

D
IX

E
S

PointBase (www.pointbase.com)
PointBase is the developer and marketer of the PointBase DBMS, a 100 percent Java
SQL-based database. The company was founded in 1998 by Bruce Scott, who had
already had a very successful career in the database business. In 1997, Scott was one
of the founders of Oracle Corporation, involved in creating the first several major
releases of Oracle. In 1984, he cofounded his second successful database company,
Gupta Technologies, with its SQLBase product.

The PointBase products are focused on enabling mobile computing, with its
special requirements—replication and synchronization of data and providing database
capabilities in a very small memory footprint on the client side (e.g., in handheld devices).
To serve this market, PointBase comes in three versions. A micro version provides
the smallest footprint, and is appropriate for very constrained environments, such as
battery-powered handheld devices. An embedded version increases the footprint
for systems with a larger memory budget, but where the database is still invisibly
embedded in the application. A server version provides the back-end.

PostgreSQL (www.postgresql.org)
The Postgres object-relational database traces its roots to the University of California
at Berkeley, home of the pioneering Ingres relational database. From the late 1980s
to the early 1990s, Professor Michael Stonebreaker and his colleagues worked on
extending the relational model to include object-oriented capabilities, resulting in the
Postgres prototypes. In the mid-1990s, Stonebreaker used the Postgres foundation as
the basis for Illustra, a commercial object-relational product that eventually became the
flagship Informix product after Illustra was sold to Informix. In parallel, a group of
database experts at Berkeley continued to work on Postgres itself, adding SQL capabilities
and distributing it to the research community as PostgreSQL.

With its university roots, Postgres was a natural fit for the open source movement,
and began to build its own following as an open source database. PostgreSQL.org is
the organization that was eventually formed to organize and coordinate PostgreSQL
development. Today, it acts as distributor, support mechanism, and clearinghouse for
PostgreSQL distributions, with contributions from a growing user community.

Quadbase Systems (www.quadbase.com)
Quadbase-SQL is a SQL-based client/server database system for IBM-compatible
PCs. It was originally offered in the early 1990s as a DOS/Windows database with
a fileserver architecture. It has since evolved into a client/server database, with
support for NetWare, Windows, and Windows NT–based servers. The Quadbase



SQL implementation is ANSI SQL-92 compliant at the Entry level. It provides both
Embedded SQL interfaces (for C, C++, and SmallTalk) and an ODBC callable API.

Quadbase supports a number of advanced SQL features including updateable scroll
cursors and views. Its multiuser concurrency control offers the flexibility of multiple
isolation levels for balancing database integrity requirements with performance
concerns. Quadbase also supports read-only schemas that allow it to be used to create
and access read-only databases on CD-ROMs. In recent years, the company has placed
increased emphasis on its charting and reporting tools, and deemphasized its database
management products.

Red Brick Systems (See IBM Corporation)
Red Brick (named after the red brick building where the company was founded in
Los Gatos, California) was an early pioneer in the data warehousing market. Its
founder, Ralph Kimball, remains a recognized expert in data warehousing. The
company’s core offering is a SQL-based DBMS that is heavily optimized for data
warehousing applications.

Optimizations in the Red Brick system include high-performance data loading,
with a parallel loader capability for exploiting SMP systems and high-performance
data transformation, cleansing, and integrity checking. The Red Brick software also
allows automatic precalculation of aggregate data values (sums, averages, minimum,
and maximum values) during the table loading process.

The Red Brick DBMS also focused on a high-performance implementation of the
star-schema structure often found in data warehousing applications. Its STARindex
technology and associated STARjoin capability implement support for star schemas
within the database structure itself. The DBMS also features adaptive bitmap indexing
for rapid data selection from very large tables. SQL extensions within the RISQL language
handle typical decision support query structures, such as selecting the top three or the
95th percentile of rows based on some numerical measure.

Despite its early lead in the data warehousing market and several early customer
successes, Red Brick found its early momentum hard to sustain. Other, much larger
database vendors, including Oracle Corporation, Sybase, IBM, and eventually Microsoft,
saw data warehousing as a major market opportunity and announced (sometimes
with much-delayed shipment) data warehousing capabilities for their product lines.
Although its products retained acknowledged technical advantages, Red Brick saw
customers decide to wait for their current DBMS vendor. The company was sold to
Informix Corporation in 1998, and the Informix database management products were
subsequently sold to IBM.
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Sybase, Inc. (www.sybase.com)
Sybase was a hot mid-1980s DBMS startup company, funded by tens of millions of dollars
in venture capital. The company’s founding team and many of its early employees
were alumni of other DBMS vendors, and for most of them, Sybase represented the
second or third relational DBMS they had built. Sybase quite effectively positioned
its product as the relational DBMS for online applications, and stressed the technical
and architectural features that distinguished it from contemporary SQL-based DBMS
products. These features included the following:

� A client/server architecture, with client software running on Sun and VAX
workstations and IBM PCs and the server running on VAX/VMS or Sun systems

� A multithreaded server that handled its own task management and input/output
for maximum efficiency

� A programmatic API, instead of the embedded SQL interface used by most
other DBMS vendors at the time

� Stored procedures, triggers, and a Transact-SQL dialect that extended SQL
into a complete programming language for building substantial parts of an
application within the database itself

Aggressive marketing and a first-class roster of venture capital backers gained Sybase
the attention of industry analysts, but it was a subsequent OEM deal with Microsoft
(the leading PC software vendor) and Ashton-Tate (the leading PC database vendor)
that positioned the company as an up-and-coming DBMS vendor. Renamed SQL
Server, the Sybase DBMS was ported to OS/2 (at the time, both IBM’s and Microsoft’s
strategic future PC operating system) to be marketed to computer systems vendors
by Microsoft and through retail computer channels by Ashton-Tate. Sales from the
alliance never met early expectations, but it propelled Sybase into the DBMS market
as a serious player. Today, SQL Server (several generations later) continues to be
Microsoft’s strategic DBMS for Windows NT; Microsoft has split from Sybase, pursuing
its own development path. Sybase remains a major DBMS vendor, but the positive
impact of its formative alliance with Microsoft has long since passed.

The innovations that made the Sybase product unique in the late 1980s were eventually
copied by the other DBMS vendors. Sybase’s early lead cemented its leadership position
in market segments that demanded high-performance OLTP, including especially
financial services applications. These niches remain Sybase strongholds today. During
the 1990s, Sybase expanded its product line to include development tools through a
merger with PowerSoft, one of the leading DBMS tools vendors. Other mergers and
acquisitions brought consulting services and other data management technologies.
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Sybase’s current product line has three distinct database engines, focused on three
different segments of the database market:

� Sybase Adaptive Server IQ is focused on data warehousing. It features
complex query optimization techniques that are claimed to improve
performance by 100 times over conventional RDBMS’s.

� SQL Anywhere is focused on mobile computing. It features a small footprint
and integrated support for Java classes and objects as well as Java stored
procedures.

� Sybase Adaptive Server Enterprise is the successor to the Sybase SQL Server
products, optimized for OLTP workloads. It features flexible locking strategies
and query performance improvements.

Together with the Sybase application server, other middleware products, database
development tools, messaging products, and consulting services, these product lines
make Sybase a multihundred-million-dollar database supplier.

TimesTen Performance Software

(www.timesten.com)
TimesTen is a venture-backed database company focused on delivering ultra-high-
performance in-memory database systems. The company was formed as a spinoff of a
main-memory database project at Hewlett-Packard, and its underlying technology has
been shipping as an embedded component of HP telecommunications systems since
1996. TimesTen’s version of the technology began shipments in 1998. It features an
ODBC and JDBC APIs and industry-standard SQL, and runs on Windows server operating
systems, Linux, and UNIX-based servers from HP, Sun Microsystems, and IBM.

The TimesTen in-memory database is targeted at applications with high-performance
requirements in telecomm/datacomm systems, high-volume Internet applications, and
financial services applications. It has been deployed as a stand-alone data manager
within cellular networks and datacomm applications. It has also been used as a high-
performance data cache front-ending conventional disk-based RDBMS systems in
Internet applications, and as a stand-alone database for stock trading and market data
distribution applications

For typical OLTP applications, the TimesTen engine delivers at least ten times
(1000 percent) the performance of a fully cached conventional RDBMS. TimesTen 4,
the current version, supports 64-bit database addressing, allowing in-memory databases
of tens of gigabytes. In addition to its RDBMS features, TimesTen offers N-way data
replication capabilities for high-availability and load-sharing configurations and an
event-publishing capability. The company’s main-memory database products have
been measured at transaction rates exceeding 10 million SQL read operations (read
based on primary key) per minute.
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Versant Corporation (www.versant.com)
Versant was one of the early object database vendors. Its first OODBMS product shipped
in September 1990. The current version of its database product offers Java, C++, and
SmallTalk interfaces. The object database engine is multisession and multithreaded, and
it runs on Windows NT and UNIX platforms. One of its distinguishing characteristics
is fault-tolerant capability with automatic failover.

Like all of the pure object database vendors, Versant initially presented itself as a
next-generation DBMS system, rejecting the relational vendors and their systems as
yesterday’s technology. More recently, the company has opened its OODBMS to the
relational world through the Versant SQL suite, providing SQL access and an ODBC
API. The SQL facility, and a corresponding Interactive SQL utility, are available for
Versant servers on Solaris, AIX, HP-UX, and Windows platforms. A caching version of
the Versant product, named Versant enJin, provides an object-oriented data cache for
use in conjunction with J2EE-based application servers.

The philosophy of the Versant SQL suite is to automatically present as much of
the OODBMS capabilities in a relational model as possible. It automatically maps the
Versant database’s object schema to a corresponding SQL schema: for example, it
transforms two object classes with many-to-many relationships into two base tables
and an intersection table to represent relationships. SQL schema information is available
through virtual SYSTABLES, SYSCOLUMNS, and SYSINDEXES catalog views. Embedded
pointers within the object schema are exploited transparently to enhance query
performance. In addition to the programmatic (ODBC) and interactive SQL interfaces,
the SQL suite includes data loading and extraction tools to move information between
the Versant OODBMS and conventional RDBMS systems.
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T
he ANSI/ISO SQL standard specifies the syntax of the SQL language using
a formal BNF notation. Unfortunately, the standard is difficult to read and
understand for several reasons. First, the standard specifies the language

bottom-up rather than top-down, making it difficult to get the "big picture" of a SQL
statement. Second, the standard uses unfamiliar terms (such as table-expression and
predicate). Finally, the BNF in the standard is many layers deep, providing a very
precise specification but masking the relatively simple structure of the SQL language.

This appendix presents a complete, simplified BNF for "standard" SQL as it is
commonly implemented in the products of most DBMS vendors. Specifically:

� The language described generally conforms to that required for entry-level
conformance to the SQL2 standard, plus those intermediate-level and full-level
conformance features that are commonly found in the major DBMS products.

� The module language is omitted because it is replaced in virtually all SQL
implementations by embedded SQL or a SQL API.

� Components of the language are referred to by the common names generally
used in DBMS vendor documentation, rather than by the technical names used
in the standard.

The BNF in this appendix uses the following conventions:

� SQL keywords appear in all UPPERCASE MONOSPACE characters.

� Syntax elements are specified in italics.

� The notation element-list indicates an element or a list of elements separated
by commas.

� Vertical bars (|) indicate a choice between two or more alternative
syntax elements.

� Square brackets ([ ]) indicate an optional syntax element enclosed within them.

� Braces ({ }) indicate a choice among required syntax elements enclosed
within them.

Data Definition Statements
These statements define the structure of a database, including its tables and views and
the DBMS-specific "objects" that it contains:

CREATE TABLE table ( table-def-item-list )

DROP TABLE table [ drop-options ]



A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 963
A

P
P

E
N

D
IX

E
S

ALTER TABLE table alter-action

CREATE VIEW view [ ( column-list ) ]

AS query-spec

[ WITH CHECK OPTION ]

DROP VIEW view [ drop-options ]

CREATE db-object-type db-object-name [ db-object-spec ]

DROP db-object-type [ drop-options ]

ALTER db-object-type alter-action

GRANT { ALL PRIVILEGES | privilege-list }

ON { table | db-object-type db-object-name }

TO { PUBLIC | user-list }

[ WITH GRANT OPTION ]

REVOKE { ALL PRIVILEGES | privilege-list }

ON { table | db-object-type db-object-name }

FROM { PUBLIC | user-list }

[ WITH GRANT OPTION ]

The keywords used to specify database objects (db-object-type) depend on the
specific DBMS. Typical "database objects" with associated privileges include TABLE,
VIEW, SCHEMA, PROCEDURE, DOMAIN, INDEX, and the named storage areas maintained
by the DBMS. The SQL syntax used to specify these objects is specific to the DBMS that
supports them. The specific set of alter-actions that are supported are also DBMS-specific
and object type-specific.

The language elements used in the CREATE, DROP, ALTER, GRANT, and REVOKE
statements are:

Language Element Syntax

table-def-item column-definition | table-constraint

column-definition column data-type
[ DEFAULT { literal | USER | NULL } ]
[ column-constraint-list ]



964 S Q L : T h e C o m p l e t e R e f e r e n c e

Language Element Syntax

column-constraint [ CONSTRAINT constraint-name ]
{ NOT NULL | uniqueness | foreign-key-ref | check-constr }
[ constraint-timing ]

table-constraint [ CONSTRAINT constraint-name ]
{ uniqueness | foreign-key-constr | check-constr }
[ constraint-timing ]

uniqueness UNIQUE ( col-list ) | PRIMARY KEY ( col-list )

foreign-key-constr FOREIGN KEY ( col-list ) foreign-key-ref

foreign-key-ref REFERENCES table [ ( col-list ) ]
[ MATCH FULL | PARTIAL ]
[ ON DELETE ref-action ]

ref-action CASCADE | SET NULL | SET DEFAULT | NO ACTION

check-constr CHECK ( search-condition )

constraint-timing [ INITIALLY IMMEDIATE | INITIALLY DEFERRED ]
[ [ NOT ] DEFERRABLE ]

Privilege SELECT |
DELETE |
UPDATE [ ( colmn-list ) ]
INSERT [ ( colmn-list ) ]

drop-options CASCADE | RESTRICT

Basic Data Manipulation Statements
The "singleton SELECT" statement retrieves a single row of data into a set of host
variables (embedded SQL) or stored procedure variables:

SELECT [ ALL | DISTINCT ] { select-item-list | * }

INTO variable-list

FROM table-ref-list

[ WHERE search-condition ]

The "interactive SELECT" statement retrieves any number of rows of data in an
interactive SQL session (multirow retrieval from embedded SQL or stored procedures
requires cursor-based statements):

SELECT [ ALL | DISTINCT ] { select-item-list | * }

INTO host-variable-list
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FROM table-ref-list

[ WHERE search-condition ]

[ GROUP BY column-ref-list ]

[ HAVING search-condition ]

[ ORDER BY sort-item-list ]

These statements modify the data in the database:

INSERT INTO table [ ( column-list ) ]

{ VALUES ( insert-item-list ) | query-expr }

DELETE FROM table [ WHERE search-condition ]

UPDATE table SET set-assignment-list [ WHERE search-condition ]

Transaction Processing Statements
These statements signal the end of a SQL transaction:

COMMIT [ WORK ]

ROLLBACK [ WORK ]

Cursor-Based Statements
These programmatic SQL statements support data retrieval and positioned update
of data:

DECLARE cursor [ SCROLL ] CURSOR FOR query-expr

[ ORDER BY sort-item-list ]

[ FOR { READ ONLY | UPDATE [ OF column-list ] } ]

OPEN cursor

CLOSE cursor

FETCH [ [ fetch-dir ] FROM ] cursor INTO variable-list

DELETE FROM table WHERE CURRENT OF cursor

UPDATE table SET set-assignment-list WHERE CURRENT OF cursor
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The optional fetch direction (fetch-dir) is specified as the following; and row-nr can
be specified as a variable or a literal.

NEXT | PRIOR | FIRST | LAST | ABSOLUTE row-nr | RELATIVE row-nr

Query Expressions
The SQL2 standard provides a rich set of expressions for specifying queries, from
simple queries to more complex query expressions that use relational database
operations to combine the results of simpler queries.

The basic query specification has the form:

SELECT [ ALL | DISTINCT ] { select-item-list | * }

FROM table-ref-list

[ WHERE search-condition ]

[ GROUP BY column-ref-list ]

[ HAVING search-condition ]

The table references (tbl-ref ) in the FROM clause can be:

� A simple table reference, consisting of a (possibly qualified) table name.

� A derived table reference, consisting of a subquery (see the text that follows)
that produces a table-valued result. Not all DBMS brands allow table-valued
subqueries to appear in the FROM clause.

� A joined table reference (see the text that follows) that combines data from two
or more tables using relational OUTER JOIN, INNER JOIN, or other join
operators. Not all DBMS brands allow join specifications to appear in the
FROM clause.

Joined tables are specified according to the SQL2 standard as follows; in practice,
there is wide variation in the specific types of joins supported by individual DBMS
brands and the syntax used to specify various join types:

Join Type Syntax

joined-table inner-join | outer-join | union-join | cross-join |
( joined-table )



A p p e n d i x C : S Q L S y n t a x R e f e r e n c e 967
A

P
P

E
N

D
IX

E
S

Join Type Syntax

inner-join table-ref [ NATURAL ] [ INNER ] JOIN table-ref |
table-ref [ INNER ] JOIN table-ref [ join-spec ]

outer-join table-ref [ NATURAL ] [LEFT|RIGHT|FULL]
OUTER JOIN table-ref |

table-ref [LEFT|RIGHT|FULL] OUTER JOIN
table-ref [ join-spec ]

union-join table-ref UNION JOIN table-ref

cross-join table-ref CROSS JOIN table-ref

join-spec ON search-condition |
USING ( col-list )

The SQL2 standard allows basic query specifications to be combined with one
another using the set-oriented relational operations UNION, EXCEPT, and INTERSECT.
The resulting query-expression provides the full relational set-processing power of the
standard. Enclosed in parentheses, a query-expression becomes a subquery that can
appear in various positions within SQL statements (for example, within certain search
conditions in the WHERE clause).

Not all DBMS brands support all of these operations. A simplified form of the SQL2
syntax for the operations (without the details of operator precedence) is given by:

Expression Syntax

query-expr Simple-table | joined-table | union-expr | except-expr |
intersect-expr | ( query-expr )

union-expr query-expr UNION [ ALL ] [ corresponding-spec ]
query-expr

except-expr query-expr EXCEPT [ ALL ] [ corresponding-spec ]
query-expr

Intersect-expr query-expr INTERSECT [ ALL ] [ corresponding-spec ]
query-expr

corresponding-spec CORRESPONDING [ BY ( col-list ) ]

subquery ( query-expr )
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Search Conditions
These expressions select rows from the database for processing:

Language Element Syntax

search-condition search-item | search-item { AND | OR } search-item

search-item [ NOT ] { search-test | ( search-condition ) }

search-test comparison-test | between-test | like-test | null-test |
set-test | quantified-test | existence-test

comparison-test expr { = | <> | < | <= | > | >= } { expr |
subquery }

between-test expr [ NOT ] BETWEEN expr AND expr

like-test column-ref [ NOT ] LIKE value [ ESCAPE value ]

null-test column-ref IS [ NOT ] NULL

set-test expr [ NOT ] IN { value-list | subquery }

quantified-test expr { = | <> | < | <= | > | >= }
[ ALL | ANY | SOME ] subquery

existence-test EXISTS subquery

Expressions
These expressions are used in SQL select lists and search conditions:

Language Element Syntax

expr expr-item | expr-item { + | - | * | / } expr-item

expr-item [ + | - ] [ value | column-ref | function | ( expr )}

value literal | USER | host-variable | stored-proc-variable

host-variable variable [ [ INDICATOR ] variable ]

function COUNT(*) | distinct-fcn | all-fcn

distinct-function { AVG | MAX | MIN | SUM | COUNT }
( DISTINCT column-ref )

all-function { AVG | MAX | MIN | SUM | COUNT }
( [ ALL ] expr )



Statement Elements
These elements appear in various SQL statements:

Language Element Syntax

set-assignment column = { expr | NULL | DEFAULT }

sort-item { column-ref | integer } [ ASC | DESC ]

insert-item { value | NULL }

select-item expr

table-ref table [ table-alias ]

column-ref [ { table | alias } . ] column

Simple Elements
The following are the basic names and constants that appear in SQL statements:

Language Element Description

table Table name

column Column name

user Database user name

variable Host language or stored procedure variable name

literal Number or a string literal enclosed in quotes

integer Integer number

data-type SQL data type

alias SQL identifier

cursor SQL identifier
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F
or clarity, the routines are presented here with two differences from the standard.
The names of the parameters of the routines are abbreviated in this appendix to
make the routine headers easier to read and, in some cases, to clarify their function.

In actual calls to the routines from an application program, you use the names of the
application program variables to be used as input and output parameters instead of the
parameter names. Also for clarity, the data types of the parameters are stated here in
terms of the actual C-language data types (e.g., long, short, *char). The standard
defines the parameters using defined symbolic constants (#define’s in the C language)
to represent these data types.

Appendix A.1 of the standard (ISO/IEC 9075-3:1995) is a C-language header file that
defines symbolic constants for all of the constants and codes specified in the standard,
and uses the full parameter variable names specified in the standard. The following is
a summary of the routines, organized by function:

AllocHandle() Allocates resources for environment, connection,
descriptor, or statement

FreeHandle() Frees previously allocated resources

AllocConnect() Allocates resources for a database connection

FreeConnect() Frees resources for a database connection

Connect() Establishes a database connection

Disconnect() Ends an established database connection

DataSources() Gets a list of available SQL servers to which connection
may be made

AllocEnv() Allocates resources for a SQL environment

FreeEnv() Frees resources for a SQL environment

SetEnvAttr() Sets attribute value for a SQL environment

GetEnvAttr() Retrieves attribute value for a SQL environment

AllocStmt() Allocates resources for a SQL statement

FreeStmt() Frees resources for a SQL statement

SetStmtAttr() Sets descriptor area to be used for a SQL statement

GetStmtAttr() Gets descriptor area for a SQL statement

ExecDirect() Directly executes a SQL statement

Prepare() Prepares a SQL statement for subsequent execution

Execute() Executes a previously prepared SQL statement



EndTran() Ends a SQL transaction

Cancel() Cancels execution of a SQL statement

GetDescField() Gets value of a descriptor field

SetDescField() Sets value of a descriptor field

GetDescRec() Gets values from a descriptor record

SetDescRec() Sets values in a descriptor record

CopyDesc() Copies descriptor area values

NumResultCols() Determines the number of query results columns

DescribeCol() Describes one column of query results

ColAttribute() Gets attribute of a query results column

BindParam() Binds program location to a parameter value

ParamData() Processes deferred parameter values

PutData() Provides deferred parameter value or portion of a
character string value

SetCursorName() Sets the name of a cursor

GetCursorName() Obtains the name of a cursor

Fetch() Fetches a row of query results

FetchScroll() Fetches a row of query results with scrolling

GetData() Obtains the value of a query results column

CloseCursor() Closes an open cursor

Error() Obtains error information

GetDiagField() Gets value of a diagnostic record field

GetDiagRec() Gets value of the diagnostic record

RowCount() Gets number of rows affected by last SQL statement

GetFunctions() Gets information about supported features of a SQL
implementation

GetInfo() Gets information about supported features of a SQL
implementation

GetTypeInfo() Gets information about supported data types
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CLI Return Values
Every Call-Level Interface (CLI) routine returns a short value with one of the following
values and meanings:

CLI Return

Value Meaning

0 Statement completed successfully

1 Successful completion with warning

No data found (when retrieving query results)

99 Data needed (required dynamic parameter missing)

–1 Error during SQL statement execution

–2 Error—invalid handle supplied in call

General Handle Management Routines
These routines are used to allocate a handle for use by the CLI, and to free a previously
allocated handle that is no longer needed. The allocation routine accepts an argument
indicating which type of handle is to be allocated. In general, it may be preferable to
use the routines that create and free the specific types of handles, described in their
respective sections. These routines must be used to allocate and free application
program descriptor handles.

/* Allocate a handle for use in subsequent CLI calls */

short SQLAllocHandle (

short    hdlType,    /* IN:  integer handle type code */

long     inHdl,      /* IN:  env or conn handle */

long     *rtnHdl)    /* OUT: returned handle */

/* Free a handle previously allocated by SQLAllocHandle() */

short SQLFreeHandle (

short    hdlType,    /* IN:  integer handle type code */

long     inHdl)      /* IN:  handle to be freed */
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SQL Environment Management Routines
These routines are used to allocate a handle for a new SQL environment, to free an
environment handle when it is no longer needed, and to retrieve and set the value of
attributes associated with the SQL environment.

/* Allocate a handle for a new SQL-environment */

short SQLAllocEnv (

long    *envHdl)    /* OUT: returned env handle */

/* Free an environment handle previously allocated */

short SQLFreeEnv (

long    envHdl)    /* IN:  environment handle */

/* Obtain the value of a SQL-environment attribute */

short SQLGetEnvAttr(

long    envHdl,      /* IN:  environment handle */

long    AttrCode,    /* IN:  integer attribute code*/

void    *rtnVal,     /* OUT: return value */

long    bufLen,      /* IN:  length of rtnVal buffer */

long    *strLen)     /* OUT: length of actual data */

/* Set the value of a SQL-environment attribute */

short SQLSetEnvAttr(

long    envHdl,     /* IN:  environment handle */

long    AttrCode,   /* IN:  integer attribute code*/

void    *attrVal,   /* IN:  new attribute value */

long    *strLen)    /* IN:  length of data */

SQL Connection Management Routines
These routines are used to create, terminate, and manage a connection to a SQL server.
They allocate and free the handles used to maintain connection status, set up and
terminate connections, manage the attributes associated with a connection, and obtain
a list of the SQL servers available for connection.

/* Allocate a handle for a new SQL-connection */

short SQLAllocConnect (

long    envHdl,     /* IN:  environment handle */

long    *connHdl)   /* OUT: returned connection handle */



/* Free a connection handle previously allocated */

short SQLFreeConnect (

long    connHdl)    /* IN:  connection handle */

/* Initiate a connection to a SQL-server */

short SQLConnect(

long    connHdl,     /* IN:  connection handle */

char    *svrName,    /* IN:  name of target SQL-server */

short    svrnamlen,  /* IN:  length of SQL-server name */

char    *userName,   /* IN:  user name for connection */

short    usrnamlen,  /* IN:  length of user name */

char    *passwd,     /* IN:  connection password */

short    pswlen)     /* IN:  password length */

/* Disconnect from a SQL-server */

short SQLDisconnect(

long    connHdl)    /* IN:  connection handle */

/* Get the name(s) of accessible SQL-servers for connection */

short SQLDataSources (

long envHdl, /* IN: environment handle */

short direction, /* IN: indicates first/next rqst */

char *svrname, /* OUT: buffer for server name */

short buflen, /* IN: length of server name buffer */

short *namlen, /* OUT: actual length of server name */

char *descrip, /* OUT: buffer for description */

short buf2len, /* IN: length of description buffer */

short *dsclen) /* OUT: actual length of description */

/* Obtain the value of a SQL-connection attribute */

short SQLGetConnectAttr(

long    connHdl,    /* IN:  connection handle */

long    AttrCode,   /* IN:  integer attribute code*/

void    *rtnVal,    /* OUT: return value */

long    bufLen,     /* IN:  length of rtnVal buffer */

long    *strLen)    /* OUT: length of actual data */

/* Set the value of a SQL-connection attribute */

short SQLSetConnectAttr(

long    connHdl,     /* IN:  connection handle */

long    AttrCode,    /* IN:  integer attribute code*/

void    *attrVal,    /* IN:  new attribute value */

long    *strLen)     /* IN:  length of data */
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SQL Statement Management Routines
These routines are used to allocate and free the handle associated with a SQL
statement, to pass SQL statement text for execution, and to request preparation and
actual execution of the statement via the CLI.

/* Allocate a handle to manage processing of SQL statement(s) */

short SQLAllocStmt (

long    envHdl,    /* IN:  environment handle */

long    *stmtHdl)  /* OUT: statement handle */

/* Free a statement handle previously allocated */

short SQLFreeStmt (

long stmtHdl, /* IN: statement handle */

long option) /* IN: cursor & unbind options */

/* Bind a SQL statement parameter to a program data area */

short SQLBindParam (

long stmtHdl, /* IN: statement handle */

short parmnr, /* IN: parameter number (1,2,3...) */

short valtype, /* IN: data type of value supplied */

short parmtype, /* IN: data type of parameter */

short colsize, /* IN: column size */

short decdigits, /* IN: number of decimal digits */

void *value, /* IN: pointer to parm value buffer */

long *lenind) /* IN: ptr to length/indicator buffer */

/* Obtain the value of a SQL-statement attribute */

short SQLGetStmtAttr(

long stmtHdl, /* IN: statement handle */

long AttrCode, /* IN: integer attribute code*/

void *rtnVal, /* OUT: return value */

long bufLen, /* IN: length of rtnVal buffer */

long *strLen) /* OUT: length of actual data */

/* Set the value of a SQL-statement attribute */

short SQLSetStmtAttr(

long    stmtHdl,     /* IN:  statement handle */

long    AttrCode,    /* IN:  integer attribute code*/

void    *attrVal,    /* IN:  new attribute value */

long    *strLen)     /* IN:  length of data */
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SQL Statement Execution Routines
These routines are used to pass SQL statement text to the CLI and to request SQL
statement execution, either immediately or after being prepared. They also control the
execution of SQL transactions and the cancellation of currently operating statements.

/* Pass SQL statement text and request its execution */

short SQLExecDirect (

long    stmtHdl,       /* IN:  statement handle */

char    *stmttext,    /* IN:  SQL statement text */

short   textlen)      /* IN:  statement text length */

/* Prepare a SQL statement, passing it in SQL text form */

short SQLPrepare (

long    stmtHdl,      /* IN:  statement handle */

char    *stmttext,    /* IN:  SQL statement text */

short   textlen)      /* IN:  statement text length */

/* Execute a previously prepared SQL statement */

short SQLExecute (

long    stmtHdl)    /* IN:  statement handle */

/* COMMIT or ROLLBACK a SQL transaction */

short SQLEndTran (

short    hdltype,     /* IN:  type of handle */

long     txnHdl,      /* IN:  env, conn or stmt handle */

short    compltype)   /* IN:  txn type (commit/rollback) */

/* Cancel a currently executing SQL statement */

short SQLCancel (

short    stmtHdl)    /* IN:  statement handle */

Query Results Processing Routines
These routines are used to retrieve rows of query results and to specify the application
program data areas that are to receive the returned query results.

/* Advance the cursor to the next row of query results */

short SQLFetch (

long    stmtHdl)    /* IN:  statement handle */
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/* Scroll the cursor up or down through the query results */

short SQLFetchScroll (

long    stmtHdl,     /* IN:  statement handle */

short   fetchdir,    /* IN:  direction (first/next/prev) */

long    offset)      /* IN:  offset (number of rows) */

/* Get the data for a single column of query results */

short SQLGetData (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: column number to be retrieved */

short tgttype, /* IN: data type to return to program */

void *value, /* IN: ptr to buffer for column data */

long buflen, /* IN: length of program buffer */

long *lenind) /* OUT: actual length and/or NULL ind */

/* Close a cursor to end access to query results */

short SQLCloseCursor (

long    stmtHdl)    /* IN:  statement handle */

/* Establish a cursor name for an open cursor */

short SQLSetCursorName (

long    stmtHdl,     /* IN:  statement handle */

char    cursname,    /* IN:  name for cursor */

short   namelen)     /* IN:  length of cursor name */

/* Retrieve the name of an open cursor */

short SQLGetCursorName (

long stmtHdl, /* IN: statement handle */

char cursname, /* OUT: buffer for returned name */

short buflen, /* IN: length of buffer */

short *namlen) /* OUT: actual length of returned name */

/* Bind a query results column to a program data area */

short SQLBindCol (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: column number to be bound */

short tgttype, /* IN: data type of program data area */

void value, /* IN: pointer to program data area */

long buflen, /* IN: length of program buffer */

long lenind) /* IN: ptr to length/indicator buffer */
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Query Results Description Routines
These routines are used to obtain a description of the results of a query, including the
number of columns of query results, the data type, and other attributes of each column.

/* Determine the number of result columns in a query */

short SQLNumResultCols (

long    stmtHdl,      /* IN:  statement handle */

short   *colcount)    /* OUT: returned number of columns */

/* Determine the characteristics of a column of query results */

short SQLDescribeCol (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: number of column to describe */

char *colname, /* OUT: name of query results column */

short buflen, /* IN: length of column name buffer */

short *namlen, /* OUT: actual column name length */

short *coltype, /* OUT: returned column data type code */

short *colsize, /* OUT: returned column data length */

short *decdigits, /* OUT: returned # digits in column */

short *nullable) /* OUT: can column have NULL values */

/* Obtain detailed info about a column of query results */

short SQLColAttribute (

long stmtHdl, /* IN: statement handle */

short colnr, /* IN: number of column to describe */

short attrcode, /* IN: code of attribute to retrieve */

char *attrinfo, /* OUT: buffer for attribute info */

short buflen, /* IN: length of col attribute buffer */

short *actlen) /* OUT: actual attribute info length */

Query Results Descriptor Management Routines
These routines are used to obtain a description of the results of a query using the CLI
descriptor mechanism, and to manipulate the descriptors to manage the return of
query results into application program data areas.

/* Retrieve frequently used info from a CLI descriptor */

short SQLGetDescRec (

long descHdl, /* IN: descriptor handle */

short recnr, /* IN: descriptor record number */

char *name, /* OUT: name of item being described */

short buflen, /* IN: length of name buffer */
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short *namlen, /* OUT: actual length of returned name */

short *datatype, /* OUT: data type code for item*/

short *subtype, /* OUT: data type subcode for item */

short *length, /* OUT: length of item */

short *precis, /* OUT: precision of item, if numeric */

short *scale, /* OUT: scale of item, if numeric */

short *nullable) /* OUT: can item have NULL values */

/* Obtain detailed info for an item described by a CLI descriptor */

short SQLColAttribute (

long descHdl, /* IN: descriptor handle */

short recnr, /* IN: descriptor record number */

short attrcode, /* IN: code of attribute to describe */

void *attrinfo, /* OUT: buffer for attribute info */

short buflen, /* IN: length of col attribute buffer */

short *actlen) /* OUT: actual attribute info length */

/* Set frequently used info in a CLI descriptor */

short SQLSetDescRec (

long    descHdl,    /* IN:  descriptor handle */

short   recnr,      /* IN:  descriptor record number */

short   datatype,   /* IN: data type code for item*/

short   subtype,    /* IN: data type subcode for item */

short   length,     /* IN: length of item */

short   precis,     /* IN: precision of item, if numeric */

short   scale,      /* IN: scale of item, if numeric */

void    *databuf,   /* IN: data buffer address for item */

short   buflen,     /* IN: data buffer length */

short   *indbuf)    /* IN: indicator buffer addr for item */

/* Set detailed info about an item described by a CLI descriptor */

short SQLColAttribute (

long    descHdl,    /* IN:  descriptor handle */

short   recnr,      /* IN:  descriptor record number */

short   attrcode,   /* IN:  code of attribute to describe */

void    *attrinfo,  /* IN:  buffer with attribute info */

short   buflen)     /* IN:  length of attribute info */

/* Copy a CLI descriptor contents into another descriptor */

short SQLCopyDesc (

long indscHdl, /* IN: source descriptor handle */

long outdscHdl) /* IN: destination descriptor handle */
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Deferred Dynamic Parameter Processing Routines
These routines are used to process deferred parameters when their values are
requested by the CLI during execution of a SQL statement containing them.

/* Get param-tag for next required dynamic parameter */

short SQLParamData (

long stmtHdl, /* IN: stmt handle w/ dynamic params */

void *prmtag) /* OUT: buffer for rtn param-tag value */

/* Obtain detailed info for an item described by a CLI descriptor */

short SQLPutData (

long stmtHdl, /* IN: stmt handle w/ dynamic params */

void *prmdata, /* IN: buffer with data for param */

short prmlenind) /* IN: param length or NULL ind */

Error, Status, and Diagnostic Routines
These routines are used to determine the reason for an error condition returned by the
CLI, to determine the number of rows affected by successful statement execution, and
to obtain detailed diagnostic information about error conditions.

/* Retrieve error information associated with a previous CLI call */

short SQLError (

long envHdl, /* IN: environment handle */

long connHdl, /* IN: connection handle */

long stmtHdl, /* IN: statement handle */

char *sqlstate, /* OUT: five-character SQLSTATE value */

long *nativeerr, /* OUT: returned native error code */

char *msgbuf, /* OUT: buffer for err message text */

short buflen, /* IN: length of err msg text buffer */

short *msglen) /* OUT: returned actual msg length */

/* Determine number of rows affected by previous SQL statement */

short SQLRowCount (

long    stmtHdl,    /* IN:  statement handle */

long    *rowcnt)    /* OUT: number of rows */

/* Retrieve info from one of the CLI diagnostic error records */

short SQLGetDiagRec (

short   hdltype,    /* IN:  handle type code */

long    inHdl,      /* IN:  CLI handle */



short   recnr,      /* IN:  requested err record number */

char    *sqlstate,  /* OUT: returned 5-char SQLSTATE code */

long    *nativeerr, /* OUT: returned native error code */

char    *msgbuf,    /* OUT: buffer for err message text */

short   buflen,     /* IN:  length of err msg text buffer */

short   *msglen)    /* OUT: returned actual msg length */

/* Retrieve a field from one of the CLI diagnostic error records */

short SQLGetDiagField (

short    hdltype,    /* IN:  handle type code */

long     inHdl,      /* IN:  CLI handle */

short    recnr,      /* IN:  requested err record number */

short    diagid,     /* IN:  diagnostic field id */

void     *diaginfo,  /* OUT: returned diagnostic info */

short    buflen,     /* IN:  length of diag info buffer */

short    *actlen)    /* OUT: returned actual info length */

CLI Implementation Information Routines
These routines return information about the specific CLI implementation, including the
CLI calls, statements, and data types it supports.

/* Retrieve info about capabilities of a CLI implementation */

short SQLGetInfo (

long    connHdl,     /* IN:  connection handle */

short   infotype,    /* IN:  type of info requested */

void    *infoval,    /* OUT: buffer for retrieved info */

short    buflen,     /* IN:  length of info buffer */

short   *infolen)    /* OUT: returned info actual length */

/* Determine number of rows affected by previous SQL statement */

short SQLGetFunctions (

long     connHdl,     /* IN:  connection handle */

short    functid,     /* IN:  function id code */

short    *supported)  /* OUT: whether function supported */

/* Determine information about supported data types */

short SQLGetTypeInfo (

long     stmtHdl,     /* IN:  statement handle */

short    datatype)    /* IN:  ALL TYPES or type requested */
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CLI Parameter Value Codes
These codes are passed to or returned by the CLI as parameter values, to indicate
handle types, data types, statement types, and so on.

Code Value

Handle type codes

SQL-environment handle 1

SQL-connection handle 2

SQL-statement handle 3

SQL-descriptor handle 4

SQL implementation data type codes

CHARACTER 1

NUMERIC 2

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

REAL 7

DOUBLE 8

DATETIME 9

INTERVAL 10

VARCHAR 12

BIT 14

Implementation-defined < 0

Application program language
data type codes

CHARACTER 1

NUMERIC 2

DECIMAL 3

INTEGER 4

SMALLINT 5
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Code Value

FLOAT 6

REAL 7

DOUBLE 8

Implementation-defined < 0

DateTime subcodes for SQL
data types

DATE 1

TIME 2

TIMESTAMP 3

TIME w/ ZONE 4

TIMESTAMP w/ ZONE 5

DateTime interval codes for SQL
DateTime types

YEAR 1

MONTH 2

DAY 3

HOUR 4

MINUTE 5

SECOND 6

YEAR TO MONTH 7

DAY TO HOUR 8

DAY TO MINUTE 9

DAY TO SECOND 10

HOUR TO MINUTE 11

HOUR TO SECOND 12

MINUTE TO SECOND 13

Transaction termination codes

COMMIT 0

ROLLBACK 1
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Code Value

FreeStmt() processing
option codes

CLOSE CURSOR 0

FREE HANDLE 1

UNBIND COLUMNS 2

UNBIND PARAMS 3

Fetch orientation codes

NEXT 1

FIRST 2

LAST 3

PRIOR 4

ABSOLUTE 5

RELATIVE 6

GetData() data type codes

CHARACTER 1

INTEGER 4

SMALLINT 5

REAL 7

DOUBLE 8

CLI routine codes for
GetFunction() call

AllocConnect 1

AllocEnv 2

AllocHandle 1001

AllocStmt 3

BindCol 4

BindParam 1002

Cancel 5

CloseCursor 1003

986 S Q L : T h e C o m p l e t e R e f e r e n c e



Code Value

ColAttribute 6

Connect 7

CopyDesc 1004

DataSources 57

DescribeCol 8

Disconnect 9

EndTran 1005

Error 10

ExecDirect 11

Execute 12

Fetch 13

FetchScroll 1021

FreeConnect 14

FreeEnv 15

FreeHandle 1005

FreeStmt 16

GetConnectAttr 1007

GetCursorName 17

GetData 43

GetDescField 1008

GetDescRec 1009

GetDiagField 1010

GetDiagRec 1011

GetEnvAttr 1012

GetFunctions 44

GetInfo 45

GetStmtAttr 1014

GetTypeInfo 47
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Code Value

NumResultCols 18

ParamData 48

Prepare 19

PutData 49

RowCount 20

SetConnectAttr 1016

SetCursorName 21

SetDescField 1017

SetDescRec 1018

SetEnvAttr 1019

SetStmtAttr 1020

Concise data type codes

CHARACTER 1

NUMERIC 2

DECIMAL 3

INTEGER 4

SMALLINT 5

FLOAT 6

REAL 7

DOUBLE 8

VARCHAR 12

BIT 14

VARBIT 15

DATE 91

TIME 92

TIMESTAMP 93

TIME W/ ZONE 94

TIMESTAMP W/ ZONE 95
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Code Value

INTERVAL YEAR 101

INTERVAL MONTH 102

INTERVAL DAY 103

INTERVAL HOUR 104

INTERVAL MINUTE 105

INTERVAL SECOND 106

INTERVAL YEAR TO MONTH 107

INTERFAL DAY TO HOUR 108

INTERVAL DAY TO MINUTE 109

INTERVAL DAY TO SECOND 110

INTERVAL HOUR TO MINUTE 111

INTERVAL HOUR TO SECOND 112

INTERVAL MINUTE TO SECOND 113
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Appendix E
SQL Information
Schema Standard
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T
his appendix describes the Information Schema views specified by the SQL2
(SQL-92) standard. These views must be supported by any database system
claiming Intermediate or Full conformance to the standard; they are not required

for the Entry conformance level. In practice, support for the full Information Schema
views is slowly making its way into enterprise DBMS products. The views make a
SQL2-compliant database self-describing. By querying them, a user can determine
relevant information about all of the database objects (schemas, tables, columns, views,
constraints, domains, character sets, etc.) accessible to him or her.

The following table provides information about schemas, tables, and columns:

SCHEMATA Describes all schemas owned by the current user

TABLES Describes all tables accessible to the current user

COLUMNS Describes all columns of those tables owned/ accessible
to the current user

This table provides information about views:

VIEWS Describes all views accessible to the current user

VIEW_TABLE_USAGE Describes tables on which those views depend

VIEW_COLUMN_USAGE Describes columns on which those views depend

This table provides information about constraints (unique, primary keys, foreign
keys, check constraints, assertions):

TABLE_CONSTRAINTS Describes all constraints on tables owned
by the user

REFERENTIAL_CONSTRAINTS Describes all foreign key constraints owned
by the user

CHECK_CONSTRAINTS Describes all check constraints owned by
the user

KEY_COLUMN_USAGE Describes keys defined by the current user

ASSERTIONS Describes all assertions owned by the
current user

CONSTRAINT_TABLE_USAGE Describes all tables used by constraints

CONSTRAINT_COLUMN_USAGE Describes columns used by constraints
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This table provides information about privileges:

TABLE_PRIVILEGES Describes privileges on tables

COLUMN_PRIVILEGES Describes privileges on columns

USAGE_PRIVILEGES Describes privileges on other database objects

This table provides information about domains:

DOMAINS Describes domains accessible to the user

DOMAIN_CONSTRAINTS Describes constraints that define those domains

DOMAIN_COLUMN_USAGE Describes columns based on those domains

This table provides information about character sets:

CHARACTER_SETS Describes character sets

COLLATIONS Describes collating sequences

TRANSLATIONS Describes translations between character sets

And here’s information about supported programming languages:

SQL_LANGUAGES Describes supported languages and SQL APIs

The specific contents of each Information Schema view are described on the
following pages.

The SCHEMATA View
The SCHEMATA view contains one row for each schema that is owned by the current

user. Its structure is shown in the following table:

Column Name Data Type Description

CATALOG_NAME VARCHAR(len) Name of catalog containing
this schema

SCHEMA_NAME VARCHAR(len) Name of schema described by
this row

SCHEMA_OWNER VARCHAR(len) Name of schema’s creator



Column Name Data Type Description

DEFAULT_CHARACTER_
SET_CATALOG

VARCHAR(len) Catalog of default character
set for this schema

DEFAULT_CHARACTER_
SET_SCHEMA

VARCHAR(len) Schema of default character
set for this schema

DEFAULT_CHARACTER_
SET_NAME

VARCHAR(len) Name of default character set
for this schema

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The TABLES View
The TABLES view contains one row for each table defined in the current catalog that is
accessible to the current user. Its structure is shown in the following table:

Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing
this table definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing
this table definition

TABLE_NAME VARCHAR(len) Name of table

TABLE_TYPE VARCHAR(maxlen) Type of table (BASE TABLE/
VIEW/GLOBAL TEMPORARY/
LOCAL TEMPORARY)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The COLUMNS View
The COLUMNS view contains one row for each column of each table defined in the current
catalog that is accessible to the current user. Its structure is shown in the following table:

Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the table definition containing
this column
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Column Name Data Type Description

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the table definition containing
this column

TABLE_NAME VARCHAR(len) Name of table containing this
column

COLUMN_NAME VARCHAR(len) Name of column

ORDINAL_POSITION INTEGER > 0 Position of column within
this table

COLUMN_DEFAULT VARCHAR(maxlen) Text representation of default
value for column

IS_NULLABLE VARCHAR(maxlen) Whether the column may contain
NULL values (YES/NO)

DATA_TYPE VARCHAR(maxlen) SQL2 data type of column
(text representation)

CHARACTER_MAXIMUM_
LENGTH

INTEGER > 0 Maximum length, in characters,
for variable-length columns

CHARACTER_OCTET_
LENGTH

INTEGER > 0 Maximum length, in bytes, for
variable-length columns

NUMERIC_PRECISION INTEGER > 0 Precision for numeric data
type columns

NUMERIC_PRECISION_
RADIX

INTEGER > 0 Radix of the precision

NUMERIC_SCALE INTEGER > 0 Scale for numeric data type
columns

DATETIME_PRECISION INTEGER > 0 Precision for DateTime data
type columns

CHARACTER_SET_
CATALOG

VARCHAR(len) Catalog containing character
set definition for this column

CHARACTER_SET_
SCHEMA

VARCHAR(len) Schema containing character set
definition for this column

CHARACTER_SET_NAME VARCHAR(len) Name of character set for this
column, if any

COLLATION_CATALOG VARCHAR(len) Catalog containing collation
definition for this column
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Column Name Data Type Description

COLLATION_SCHEMA VARCHAR(len) Schema containing collation
definition for this column

COLLATION_NAME VARCHAR(len) Name of collation for this
column, if any

DOMAIN_CATALOG VARCHAR(len) Catalog containing domain
definition for this column

DOMAIN_SCHEMA VARCHAR(len) Schema containing domain
definition for this column

DOMAIN_NAME VARCHAR(len) Name of domain for this column,
if any

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The VIEWS View
The VIEWS view contains one row for each view defined in the current catalog that is
accessible to the current user. Its structure is shown in the following table:

Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing this
view definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing this
view definition

TABLE_NAME VARCHAR(len) Name of view

VIEW_DEFINITION VARCHAR(maxlen) Text of SQL SELECT statement
defining the view

CHECK_OPTION VARCHAR(maxlen) Check option for this view
(CASCADED/LOCAL/NONE)

IS_UPDATABLE VARCHAR(maxlen) Whether the view can be updated
(YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.
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The VIEW_TABLE_USAGE View
The VIEW_TABLE_USAGE view contains one row for each table on which a view
defined in the current catalog by the current user depends. Its structure is shown in
the following table:

Column Name Data Type Description

VIEW_CATALOG VARCHAR(len) Name of catalog containing the view
definition

VIEW_SCHEMA VARCHAR(len) Name of schema containing the view
definition

VIEW_NAME VARCHAR(len) Name of view

TABLE_CATALOG VARCHAR(len) Catalog containing the definition of
the table on which the view depends

TABLE_SCHEMA VARCHAR(len) Schema containing the definition of
the table on which the view depends

TABLE_NAME VARCHAR(len) Name of table on which the view
depends

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The VIEW_COLUMN_USAGE View
The VIEW_COLUMN_USAGE view contains one row for each column on which a view
defined in the current catalog by the current user depends. Its structure is shown in
the following table:

Column Name Data Type Description

VIEW_CATALOG VARCHAR(len) Name of catalog containing the view
definition

VIEW_SCHEMA VARCHAR(len) Name of schema containing the view
definition

VIEW_NAME VARCHAR(len) Name of view

TABLE_CATALOG VARCHAR(len) Catalog containing the definition of
the column on which the view depends

TABLE_SCHEMA VARCHAR(len) Schema containing the definition of the
column on which the view depends



Column Name Data Type Description

TABLE_NAME VARCHAR(len) Name of table containing the column
on which the view depends

COLUMN_NAME VARCHAR(len) Name of column on which the view
depends

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The TABLE_CONSTRAINTS View
The TABLE_CONSTRAINTS view contains one row for each table constraint defined for
tables in the current catalog owned by the current user. Its structure is shown in the
following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
the constraint definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
the constraint definition

CONSTRAINT_NAME VARCHAR(len) Name of constraint

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the table definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the table definition

TABLE_NAME VARCHAR(len) Name of table being constrained

CONSTRAINT_TYPE VARCHAR(maxlen) Type of constraint
(UNIQUE/PRIMARY KEY/
FOREIGN KEY/CHECK)

IS_DEFERRABLE VARCHAR(maxlen) Whether the constraint is
deferrable (YES/NO)

INITIALLY_DEFERRED VARCHAR(maxlen) Whether the constraint is
initially deferred (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.
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The REFERENTIAL_CONSTRAINTS View
The REFERENTIAL_CONSTRAINTS view contains one row for each referential
constraint (foreign key/primary key relationship) defined for tables in the current
catalog owned by the current user. Its structure is shown in the following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
the constraint definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
the constraint definition

CONSTRAINT_NAME VARCHAR(len) Name of constraint

UNIQUE_CONSTRAINT_
CATALOG

VARCHAR(len) Name of catalog containing
the unique or primary key
constraint definition for the
parent table

UNIQUE_CONSTRAINT_
SCHEMA

VARCHAR(len) Name of schema containing
the unique or primary key
constraint definition for the
parent table

UNIQUE_CONSTRAINT_
NAME

VARCHAR(len) Name of unique or primary
key constraint definition for
the parent table

MATCH_OPTION VARCHAR(maxlen) Type of partial foreign
key matching (NONE/
PARTIAL/FULL)

UPDATE_RULE VARCHAR(maxlen) Update rule for the referential
constraint (CASCADE/
SET NULL/SET DEFAULT/
NO ACTION)

DELETE_RULE VARCHAR(maxlen) Delete rule for referential
constraint (CASCADE/
SET NULL/SET DEFAULT/
NO ACTION)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.
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The CHECK_CONSTRAINTS View
The CHECK_CONSTRAINTS view contains one row for each check constraint (check
constraint, domain check constraint, or assertion definition) defined in the current
catalog that is owned by the current user. Its structure is shown in the following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
the constraint definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
the constraint definition

CONSTRAINT_NAME VARCHAR(len) Name of constraint

CHECK_CLAUSE VARCHAR(maxlen) Text of SQL search condition
that defines the check constraint

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The KEY_COLUMN_USAGE View
The KEY_COLUMN_USAGE view contains one row for each column that participates in
a key defined in the current catalog by the current user. Its structure is shown in the
following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
the key constraint definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
the key constraint definition

CONSTRAINT_NAME VARCHAR(len) Name of key constraint

TABLE_CATALOG VARCHAR(len) Name of catalog containing the
definition of the table containing
the key

TABLE_SCHEMA VARCHAR(len) Name of schema containing the
definition of the table containing
the key

TABLE_NAME VARCHAR(len) Name of table containing the
key column
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Column Name Data Type Description

COLUMN_NAME VARCHAR(len) Name of column

ORDINAL_POSITION INTEGER > 0 Position of column within
the key

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The ASSERTIONS View
The ASSERTIONS view contains one row for each assertion defined in the current
catalog that is owned by the current user. Its structure is shown in the following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
the assertion definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
the assertion definition

CONSTRAINT_NAME VARCHAR(len) Name of assertion

IS_DEFERRABLE VARCHAR(maxlen) Whether assertion is deferrable
(YES/NO)

INITIALLY_DEFERRED VARCHAR(maxlen) Whether assertion is initially
deferred (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The CONSTRAINT_TABLE_USAGE View
The CONSTRAINT_TABLE_USAGE view contains one row for each table used by a
constraint (referential constraint, unique constraint, check constraint, or assertion)
defined in the current catalog by the current user. Its structure is shown in the
following table:

Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the table definition
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Column Name Data Type Description

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the table definition

TABLE_NAME VARCHAR(len) Name of table

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing the
definition of the constraint

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing the
definition of the constraint

CONSTRAINT_NAME VARCHAR(len) Name of constraint

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The CONSTRAINT_COLUMN_USAGE View
The CONSTRAINT_COLUMN_USAGE view contains one row for each column used by
a constraint (referential constraint, unique constraint, check constraint, or assertion)
defined in the current catalog by the current user. Its structure is shown in the
following table:

Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the column definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the column definition

TABLE_NAME VARCHAR(len) Name of table containing the
column

COLUMN_NAME VARCHAR(len) Name of column

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing the
definition of the constraint

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing the
definition of the constraint

CONSTRAINT_NAME VARCHAR(len) Name of constraint

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.
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The TABLE_PRIVILEGES View
The TABLE_PRIVILEGES view contains one row for each privilege on tables defined
in the current catalog that has been granted to the current user, granted to all users,
or granted by the current user. Its structure is shown in the following table:

Column Name Data Type Description

GRANTOR VARCHAR(len) Authorization-id of user granting
the privilege

GRANTEE VARCHAR(len) Authorization-id of user being
granted the privilege

TABLE_CATALOG VARCHAR(len) Name of catalog containing this
view definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing this
view definition

TABLE_NAME VARCHAR(len) Name of view

PRIVILEGE_TYPE VARCHAR(maxlen) Type of privilege
(SELECT/INSERT/DELETE/
UPDATE/ REFERENCES)

IS_GRANTABLE VARCHAR(maxlen) Whether privilege is granted
with GRANT option (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The COLUMN_PRIVILEGES View
The COLUMN_PRIVILEGES view contains one row for each privilege on columns
defined in the current catalog that has been granted to the current user, granted to all
users, or granted by the current user. Its structure is shown in the following table:

Column Name Data Type Description

GRANTOR VARCHAR(len) Authorization-id of user granting
the privilege

GRANTEE VARCHAR(len) Authorization-id of user being
granted the privilege
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Column Name Data Type Description

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the table definition containing
this column

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the table definition containing
this column

TABLE_NAME VARCHAR(len) Name of table containing this
column

COLUMN_NAME VARCHAR(len) Name of column

PRIVILEGE_TYPE VARCHAR(maxlen) Type of privilege
(SELECT/INSERT/DELETE/
UPDATE/REFERENCES)

IS_GRANTABLE VARCHAR(maxlen) Whether privilege is granted
with GRANT option (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The USAGE_PRIVILEGES View
The USAGE_PRIVILEGES view contains one row for each privilege on objects defined
in the current catalog that has been granted to the current user, granted to all users, or
granted by the current user. Its structure is shown in the following table:

Column Name Data Type Description

GRANTOR VARCHAR(len) Authorization-id of user granting
the privilege

GRANTEE VARCHAR(len) Authorization-id of user being
granted the privilege

OBJECT_CATALOG VARCHAR(len) Name of catalog containing the
object definition

OBJECT_SCHEMA VARCHAR(len) Name of schema containing the
object definition

OBJECT_NAME VARCHAR(len) Name of object
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Column Name Data Type Description

OBJECT_TYPE VARCHAR(maxlen) Type of object (DOMAIN/
CHARACTER SET/ COLLATION/
TRANSLATION)

PRIVILEGE_TYPE VARCHAR(maxlen) Type of privilege (always the
literal USAGE)

IS_GRANTABLE VARCHAR(maxlen) Whether privilege is granted
with GRANT option (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The DOMAINS View
The DOMAINS view contains one row for each domain defined in the current catalog
that is accessible to the current user. Its structure is shown in the following table:

Column Name Data Type Description

DOMAIN_CATALOG VARCHAR(len) Name of catalog containing
this domain definition

DOMAIN_SCHEMA VARCHAR(len) Name of schema containing
this domain definition

DOMAIN_NAME VARCHAR(len) Name of domain

DATA_TYPE VARCHAR(maxlen) SQL2 data type on which the
domain definition is based (text
representation)

CHARACTER_MAXIMUM_
LENGTH

INTEGER > 0 Maximum length, in characters, for
variable-length character types

CHARACTER_OCTET_
LENGTH

INTEGER > 0 Maximum length of variable-length
data type, in bytes

COLLATION_CATALOG VARCHAR(len) Name of catalog containing the
definition of the collation for
this domain

COLLATION_SCHEMA VARCHAR(len) Name of schema containing the
collation for this domain
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Column Name Data Type Description

COLLATION_NAME VARCHAR(len) Name of collation for this domain

CHARACTER_SET_
CATALOG

VARCHAR(len) Name of catalog containing the
definition of the character set for
this domain

CHARACTER_SET_
SCHEMA

VARCHAR(len) Name of schema containing the
definition of the character set for
this domain

CHARACTER_SET_NAME VARCHAR(len) Name of character set for this
domain

NUMERIC_PRECISION INTEGER > 0 Precision if this domain is based
on a numeric data type

NUMERIC_PRECISION_
RADIX

INTEGER > 0 Radix of the precision

NUMERIC_SCALE INTEGER > 0 Scale if this domain is based on a
numeric type

DATATIME_PRECISION INTEGER > 0 Precision if this domain is based
on a DateTime data type

DOMAIN_DEFAULT VARCHAR(maxlen) Text representation of the default
value for the domain

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The DOMAIN_CONSTRAINTS View
The DOMAIN_CONSTRAINTS view contains one row for each domain constraint for a
domain defined in the current catalog that is accessible to the current user. Its structure
is shown in the following table:

Column Name Data Type Description

CONSTRAINT_CATALOG VARCHAR(len) Name of catalog containing
this constraint definition

CONSTRAINT_SCHEMA VARCHAR(len) Name of schema containing
this constraint definition
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Column Name Data Type Description

CONSTRAINT_NAME VARCHAR(len) Name of constraint

DOMAIN_CATALOG VARCHAR(len) Name of catalog containing the
domain definition to which
constraint applies

DOMAIN_SCHEMA VARCHAR(len) Name of schema containing the
domain definition to which
constraint applies

DOMAIN_NAME VARCHAR(len) Maximum length of variable-length
data type, in octets

IS_DEFERRABLE VARCHAR(maxlen) Whether constraint is deferrable
(YES/NO)

INITIALLY_DEFERRED VARCHAR(maxlen) Whether constraint is initially
deferred (YES/NO)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The DOMAIN_COLUMN_USAGE View
The DOMAIN_COLUMN_USAGE view contains one row for each column used by a
domain defined in the current catalog by the current user. Its structure is shown in
the following table:

Column Name Data Type Description

DOMAIN_CATALOG VARCHAR(len) Name of catalog containing
the definition of the domain

DOMAIN_SCHEMA VARCHAR(len) Name of schema containing
the definition of the domain

DOMAIN_NAME VARCHAR(len) Name of domain

TABLE_CATALOG VARCHAR(len) Name of catalog containing
the column definition

TABLE_SCHEMA VARCHAR(len) Name of schema containing
the column definition
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Column Name Data Type Description

TABLE_NAME VARCHAR(len) Name of table containing
the column

COLUMN_NAME VARCHAR(len) Name of column

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The CHARACTER_SETS View
The CHARACTER_SETS view contains one row for each character set defined in the
current catalog that is accessible to the current user. Its structure is shown in the
following table:

Column Name Data Type Description

CHARACTER_SET_
CATALOG

VARCHAR(len) Name of catalog containing
the character set definition

CHARACTER_SET_
SCHEMA

VARCHAR(len) Name of schema containing
the character set definition

CHARACTER_SET_ NAME VARCHAR(len) Name of character set

FORM_OF_USE VARCHAR(len) Form-of-use of the character set

NUMBER_OF_
CHARACTERS

INTEGER > 0 Number of characters in the
character set

DEFAULT_COLLATE_
CATALOG

VARCHAR(len) Name of catalog containing the
default collation definition for
this character set

DEFAULT_COLLATE_
SCHEMA

VARCHAR(len) Name of schema containing the
default collation definition for
this character set

DEFAULT_COLLATE_
NAME

VARCHAR(len) Name of default collation for
this character set

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.
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The COLLATIONS View
The COLLATIONS view contains one row for each collation (sorting sequence) defined
in the current catalog that is accessible to the current user. Its structure is shown in the
following table:

Column Name Data Type Description

COLLATION_CATALOG VARCHAR(len) Name of catalog containing the
collation definition

COLLATION_SCHEMA VARCHAR(len) Name of schema containing the
collation definition

COLLATION_NAME VARCHAR(len) Name of collation

CHARACTER_SET_
CATALOG

VARCHAR(len) Name of catalog containing the
character set definition on which
the collating sequence is defined

CHARACTER_SET_
SCHEMA

VARCHAR(len) Name of schema containing the
character set definition on which
the collating sequence is defined

CHARACTER_SET_NAME VARCHAR(len) Name of character set on which
the collating sequence is defined

PAD_ATTRIBUTE VARCHAR(maxlen) Character padding (PAD
SPACE/NO PAD)

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

VARCHAR(maxlen) is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.

The TRANSLATIONS View
The TRANSLATIONS view contains one row for each translation (conversion from one
character set to another) defined in the current catalog that is accessible to the current
user. Its structure is shown in the following table:

Column Name Data Type Description

TRANSLATION_CATALOG VARCHAR(len) Name of catalog containing
the translation definition

TRANSLATION_SCHEMA VARCHAR(len) Name of schema containing
the translation definition
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Column Name Data Type Description

TRANSLATION_NAME VARCHAR(len) Name of translation

SOURCE_CHARACTER_
SET_CATALOG

VARCHAR(len) Name of catalog containing the
character set definition from
which the translation occurs

SOURCE_CHARACTER_
SET_SCHEMA

VARCHAR(len) Name of schema containing the
character set definition from
which the translation occurs

CHARACTER_SET_NAME VARCHAR(len) Name of character set from which
the translation occurs

TARGET_CHARACTER_
SET_CATALOG

VARCHAR(len) Name of catalog containing the
character set definition to which
the translation occurs

TARGET_CHARACTER_
SET_ SCHEMA

VARCHAR(len) Name of schema containing the
character set definition to which
the translation occurs

TARGET_CHARACTER_
SET_ NAME

VARCHAR(len) Name of character set to which
the translation occurs

VARCHAR(len) is the data type for SQL identifiers; len is the maximum length defined by the SQL

implementation.

The SQL_LANGUAGES View
The SQL_LANGUAGES view contains one row for each ANSI-standard language
supported by this SQL implementation. Its structure is shown in the following table:

Column Name Data Type Description

SQL_LANGUAGE_SOURCE VARCHAR(maxlen) Text identifying source of
language standard (e.g.,
ISO 9075)

SQL_LANGUAGE_YEAR VARCHAR(maxlen) Year in which standard was
approved (e.g., 1987)

SQL_LANGUAGE_
CONFORMANCE

VARCHAR(maxlen) Conformance level (1/2)

SQL_LANGUAGE_
INTEGRITY

VARCHAR(maxlen) Integrity (YES/NO) or NULL
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Column Name Data Type Description

SQL_LANGUAGE_
IMPLEMENTATION

VARCHAR(maxlen) Implementation-defined
character string or NULL

SQL_LANGUAGE_
BINDING_STYLE

VARCHAR(maxlen) Binding style (e.g., EMBEDDED/
MODULE/DIRECT)

SQL_LANGUAGE_
PROGRAMMING_
LANGUAGE

VARCHAR(maxlen) Name of the supported
programming language (e.g.,
ADA/C/COBOL/FORTRAN/
PASCAL/PLI)

VARCHAR(maxlen)is a VARCHAR data type with the largest maximum length permitted by the SQL

implementation.
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T
he bonus CD-ROM that accompanies this book includes full-function Windows
NT/2000 versions of these three leading brands of SQL-based DBMS:

� Microsoft SQL Server 2000

� IBM DB2

� MySQL

In addition, the last section of this appendix contains instructions on how to download
a trial version of the Oracle DBMS.

These are not incomplete “demo” versions of the DBMS products. Rather, they are
full-capability evaluation versions of the latest software from these leading database
vendors, allowing you to learn SQL using a live DBMS, test out and compare each
product, and find a SQL DBMS that best suits your specific needs.

The CD-ROM also includes data files that you can use to populate the DBMS
products with the five tables of the sample database so that you can easily run the
example queries in the book. The files reside in the root directory of the CD-ROM
and are named:

� CUSTOMERS.DAT

� OFFICES.DAT

� ORDERS.DAT

� PRODUCTS.DAT

� SALESREPS.DAT

Enjoy this unique CD-ROM, which is available only with SQL: The Complete Reference,
the most comprehensive book on SQL with the most comprehensive collection of valuable
SQL DBMS software from the leading DBMS vendors.

These products are subject to restricted use licenses, are for evaluation purposes only,
and, in some cases, include expiration mechanisms that cause the software to cease
operation 90 or 120 days after installation. See the tables in the sections that follow
for specific details on each product.

Installing the SQL DBMS Software
When you insert the bonus CD-ROM into your CD-ROM drive, Windows automatically
launches the DBMS installation program on the CD-ROM. The program prompts you



to accept the McGraw-Hill/Osborne license agreement and then allows you to select a
DBMS for installation, as shown here:

The sections that follow contain detailed instructions for installing each brand of
SQL DBMS.

Microsoft SQL Server 2000
The following table lists details and facts about the product and the company:

Product name SQL Server 2000 Enterprise Edition

First shipment 1988

Platform Windows NT/2000

Software limitations Expires 120 days after installation

Vendor Microsoft Corporation

Founded 1975

Annual sales $27.7 billion
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Hardware and Software Requirements
Microsoft SQL Server 2000 Enterprise Edition requires the following hardware and
software:

Category Requirements

Computer Intel or compatible Pentium 166MHz or higher

Operating system Microsoft Windows NT Workstation 4.0 with SP5 or later,
Windows NT Server 4.0 with SP5 or later, Windows NT
Server 4.0 Enterprise Edition with SP5 or later, Windows
2000 Professional, Windows 2000 Server, Windows 2000
Advanced Server, or Windows 2000 Datacenter Server
operating system

Memory (RAM) 128MB or more recommended

Hard disk space Approx. 250MB for typical installation

Internet software Microsoft Internet Explorer version 5.0 or later

Network software Windows 95, Windows 98, Windows Millennium Edition,
Windows NT 4.0, or Windows 2000 built-in network
software (additional network software is not required
unless you are using Banyan VINES or AppleTalk ADSP;
Novell NetWare IPX/SPX client support is provided by
the NWLink protocol of Windows networking)

Installation Notes
The official Microsoft SQL Server 2000 evaluation CD-ROM has been pruned somewhat
in order for the SQL Server 2000 software to fit onto the bonus CD-ROM. Therefore,
you must choose precisely the selections indicated in the instructions in the next
section or the installation may not proceed smoothly. In addition, do not attempt to
install OLAP Analysis Services.

If you have any further questions about SQL Server 2000 installation, please refer
to the SQL Server Installation Guide on the bonus CD-ROM. The file is located at
\MSSQL\books\instsql.chm.

Finally, if you are installing SQL Server 2000 on the same computer alongside a
previous version of SQL Server, back up your previous Microsoft SQL Server installation,
and do not install SQL Server 2000 in the same directory as the previous installation.
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SQL Server 2000 Installation
Perform the following steps to install SQL Server 2000:

1. Log on to the system as a member of the Administrators group.

2. Insert the bonus CD-ROM into your CD-ROM drive.

3. Windows automatically launches the DBMS installation program on the
CD-ROM. If the installation program does not launch automatically, double-click
SQLINSTALL.EXE in the root directory of the CD-ROM to launch it manually.

4. The installation program displays a dialog prompting you to accept the
McGraw-Hill/Osborne license agreement. Indicate your acceptance of the
agreement and click Next.

5. The installation program displays the DBMS selection dialog. Select Microsoft
SQL Server 2000 Enterprise Edition from the list of DBMS choices and click Next.

6. The SQL Server installation Welcome dialog appears. Click Next to continue.

7. The Computer Name dialog appears. Click Next to accept the Local Computer
selection.

8. The Installation Selection dialog appears. Click Next to accept the Create A New
Instance Of SQL Server, or Install Client Tools selection.

9. The User Information dialog appears. Enter your name and company if they
are different than the default values indicated and click Next.

10. The Software License Agreement dialog appears. Click Yes to accept the
agreement.

11. The Installation Definition dialog appears. Click Next to accept the Server and
Client Tools selection.

12. The Instance Name dialog appears. Click Next to accept the Default check box,
or enter an Instance Name if you already have a previous SQL Server
installation.

13. The Setup Type dialog appears. Leave the Typical choice selected. The dialog
also indicates the default directories into which the SQL Server files will be
copied. Accept the defaults or click Browse to specify different directories
and click Next.

14. The Services Accounts dialog appears. Leave the Use The Same Account For
Each Service. Auto Start SQL Server Service choice selected. Enter an existing
user name and password to use for the SQL Server service, or select Use the
Local System Account, and click Next.
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15. The Authentication Mode dialog appears. Select Mixed Mode and enter a
password for the sa login.

16. The Start Copying Files dialog appears. Click Next to continue.

17. If you are prompted to shut down running tasks, click Next to continue and
click Finish to begin installation.

18. The installation program installs SQL Server on your hard disk. This may take
several minutes.

19. When installation is complete, the Setup Complete dialog appears. Click Finish
to return to Windows.

Starting SQL Server 2000
After you install SQL Server 2000, you must reboot your computer before you can begin
to use the software. SQL server is started automatically after you reboot and each time
you start your computer after that. Alternatively, to start SQL Server without rebooting,
go into the SQL Server Service Manager and select Start/Continue.

Uninstalling SQL Server 2000
Perform the following steps to uninstall SQL Server 2000:

1. Choose Start | Settings | Control Panel from the Windows taskbar.

2. Double-click on the Add/Remove Programs application.

3. Select Microsoft SQL Server 2000 from the list of currently installed programs
and click Change/Remove.

4. The Confirm File Deletion dialog appears. Click Yes to continue.

5. The Remove Shared File? dialog appears and asks you to confirm that you
want to remove shared files that are no longer being used. Click Yes to All to
remove these files and click Yes when the second confirmation dialog appears.

6. Windows removes all SQL Server 2000 programs from your system.

IBM DB2
The following table provides a variety of miscellaneous details about the product and
the company:

Product name DB2 Universal Database 7.2 Enterprise Edition

First shipment 1985

Platform Windows NT/2000
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Software limitations Expires 90 days after installation

Vendor IBM Corporation

Founded 1911

Annual sales $83.4 billion

Hardware and Software Requirements
IBM DB2 Enterprise Edition requires the following hardware and software:

Category Requirements

Computer Pentium-based personal computer

Operating system Microsoft Windows NT Version 4.0 SP5 or later, or
Microsoft Windows 2000

Memory (RAM) 128MB or more recommended

Hard disk space Approx. 245MB for typical installation

Network software TCP/IP, IPX/SPX, Named Pipes, NetBios, and MPTN
(APPC over TCP/IP)

Other If you have the IBM Antivirus program installed on your
computer, it must be disabled or uninstalled to perform
the DB2 installation

Installation Notes
The official IBM DB2 evaluation CD-ROM has been pruned somewhat in order for the
DB2 software to fit onto the bonus CD-ROM. Therefore, you must choose precisely
the selections indicated in the instructions in the next section or the installation may
not proceed smoothly. In addition, do not attempt to install OLAP Starter Kit.

If you have any further questions about DB2 installation, please refer to the DB2
Installation Guide on the bonus CD-ROM. The file is located at \IBMDB2\doc\en\
db2i6\db2i6.htm.

DB2 Enterprise Edition Installation
Perform the following steps to install DB2 Universal Database Enterprise Edition:

1. Log on to the system as a user that meets the requirements for installing DB2.
The account you are logged in as must (a) be defined locally, (b) belong to the
Local Administrator’s group, and (c) have the following advanced user rights:

� Act as part of the operating system

� Create token object
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� Increase quotas

� Replace a process level token

2. Insert the bonus CD-ROM into your CD-ROM drive.

3. Windows automatically launches the DBMS installation program on the
CD-ROM. If the installation program does not launch automatically, double-click
SQLINSTALL.EXE in the root directory of the CD-ROM to launch it manually.

4. The installation program displays a dialog prompting you to accept the
McGraw-Hill/Osborne license agreement. Indicate your acceptance of the
agreement and click Next.

5. The installation program displays the DBMS selection dialog. Select IBM DB2
Universal Database 7.2 Enterprise Edition from the list of DBMS choices and
click Next.

6. The installation program displays a dialog prompting you to accept the IBM
Corporation license agreement. Indicate your acceptance of the agreement
and click Next.

7. The Select Products dialog appears. Click Next to accept the DB2 Enterprise
Edition selection.

8. The Select Installation Type dialog appears. Click Next to accept the Typical
selection.

9. The Select Destination Location dialog appears and indicates the default
directory into which the IBM DB2 files will be copied. Accept the default
or click Browse to specify a different directory and click Next.

10. The Enter Username and Password dialog appears. Accept the default db2admin
user name, enter a password, and click Next. If the db2admin user name already
existed from a previous DB2 installation, you must enter the existing db2admin
password; otherwise you will be prompted to confirm that you want to create
the new user name.

11. The Start Copying Files dialog appears. Click Next to continue.

12. The installation program installs DB2 on your hard disk. This may take several
minutes.

13. The Install OLAP Start Kit dialog appears. Select Do Not Install The OLAP
Starter Kit and click Continue.

14. When installation is complete, the Setup Complete dialog appears. Click Finish
to exit the DB2 installation program.

15. The DB2 First Steps program executes automatically for you to begin working
immediately with DB2.
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Starting DB2 Enterprise Edition
After you install DB2 Enterprise Edition, you can use the DB2 First Steps program to
begin working with DB2 immediately. After that, DB2 is started automatically each
time you start your computer.

Uninstalling DB2 Enterprise Edition
Perform the following steps to uninstall DB2 Enterprise Edition:

1. Choose Start | Settings | Control Panel from the Windows taskbar

2. Double-click on the Add/Remove Programs application.

3. Select IBM DB2 from the list of currently installed programs and click
Change/Remove.

4. The Confirm DB2 Deletion dialog appears. Click Yes to continue.

5. If DB2 is running, the INFORMATION dialog appears and asks you to confirm
that you want to shut down the running DB2 processes. Click Yes to continue.

6. Windows removes all DB2 programs from your system.

MySQL
The following table lists details and facts about the product and the company:

Product name MySQL 3.23.51

First shipment 1995

Platform Windows 9x/Me, Windows NT4/2000/XP

Software limitations None

Vendor MySQL AB

Founded 1995

Annual sales Privately held

Hardware and Software Requirements
MySQL 3.23 requires the following hardware and software:

Category Requirements

Computer Intel or compatible Pentium

Operating system Windows 9x/Me, Windows NT4 SP3 or later,
Windows 2000/Windows XP
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Category Requirements

Memory (RAM) 128MB or more recommended

Hard disk space Approx. 50MB

Network software TCP/IP

Installation Notes
If you have any further questions about MySQL installation, please refer to the
MySQL Installation Instructions on the MySQL web site. At the time this book went
to publication, the installation instructions were located at: http://www.mysql.com/
doc/W/i/Windows_installation.html

If this MySQL-maintained web link becomes outdated or is no longer accurate in
the future, you may want to check MySQL’s main web site (www.mysql.com) to
locate the installation instructions.

You can also go to the MySQL web site to download the most recent version of the
MySQL DBMS.

MySQL Installation
Perform the following steps to install MySQL:

1. Log on to the system as a member of the Administrators group.

2. Insert the bonus CD-ROM into your CD-ROM drive.

3. Windows automatically launches the DBMS installation program on the
CD-ROM. If the installation program does not launch automatically, double-click
SQLINSTALL.EXE in the root directory of the CD-ROM to launch it manually.

4. The installation program displays a dialog prompting you to accept the
McGraw-Hill/Osborne license agreement. Indicate your acceptance of the
agreement and click Next.

5. The installation program displays the DBMS selection dialog. Select MySQL 3.23
from the list of DBMS choices and click Next.

6. The MySQL installation Welcome dialog appears. Click Next to continue.

7. The Information dialog appears. Click Next to continue.

8. The Choose Destination Location dialog appears and indicates the default
directory into which the MySQL files will be copied. Accept the default or
click Browse to specify a different directory and click Next.

9. The Setup Type dialog appears. Click Next to accept the Typical selection.



10. The installation program installs MySQL on your hard disk. This may take
several minutes.

11. When installation is complete, the Setup Complete dialog appears. Click Finish
to exit the MySQL installation program.

Starting MySQL
After you install MySQL, you can run the command lines client program mysql.exe
(located in c:\mysql\bin) to begin working with MySQL immediately.

Uninstalling MySQL
Perform the following steps to uninstall MySQL:

1. Choose Start | Settings | Control Panel from the Windows taskbar.

2. Double-click on the Add/Remove Programs application.

3. Select MySQL Servers And Clients from the list of currently installed programs
and click Change/Remove.

4. The Confirm File Deletion dialog appears. Click Yes to continue.

5. Windows removes all MySQL programs from your system.

Downloading the Oracle DBMS Software
The latest version of the Oracle DBMS takes up to three CD-ROMs, so in this second
edition of SQL: The Complete Reference, we were not able to fit it onto the bonus
CD-ROM along with the other brands of DBMS.

However, you can download the latest version of Oracle’s DBMS directly from
the Oracle web site. At the time this book went to publication, the latest version
was available for download at http://otn.oracle.com/software/products/
oracle9i/content.html.

McGraw-Hill/Osborne and the authors cannot be held responsible if this
Oracle-maintained web link becomes outdated or is no longer accurate in the future,
so if the link is not working, you may want to check Oracle’s main web site
(www.oracle.com) to download the most recent version of the Oracle DBMS.
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Symbols
$ (dollar sign), 909
* (asterisk), 106–107
@ (at sign), 804–806
@@@ERROR, 730
@@@SQLSTATUS, 730
[ ] (square brackets), 962
{ } (braces), 962
| (vertical bars), 962
<> (inequality) operator, 232, 235
< (less-than), 230, 878, 880
> (greater-than), 230, 878, 880

A

A2i, database vendor profile, 943
abstract (structured) data types, 846–851

defining, 848–850
manipulating, 850–851
object-relational databases and, 840
overview of, 846–847

access control, 22–23

access, distributed databases, 818–824
distributed requests, 822–824
distributed transactions, 821–822
overview of, 818–819
remote requests, 819
remote transactions, 820–821

access, remote, 802–806
accessor methods, EJB 2.0, 790
Active X Data Objects (ADO), 10
ad hoc queries, 10
ADO (Active X Data Objects), 10
advanced constraints

assertions, 314–315
constraints, 313–319
deferred checking, 316–319
SQL2, 315–316
types of, 313–314

advanced locking techniques, 351
advanced queries, 244–265

overview of, 244–247
query expressions, 261–265
row-valued expressions, 253–257
scalar-valued expressions, 247–253

1025

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



SQL2 specification, 259–260
table-valued expressions, 257–260

aggregate values, data warehousing, 770
aliases, 386–387

CREATE ALIAS statement, 386
DROP ALIAS statement, 386
remote data transparency, 806–807
table aliases, 159–161, 322

all-columns
multitable queries and, 156–157
simple queries and, 106–107

ALL test, 234–236
ALTER statements, 367, 391
ALTER TABLE statements, 380–384

adding columns, 381–382
changing primary and foreign keys, 383–384
dropping columns, 382–383
Informix, 860
overview of, 380–381

AND keyword, 124–127
ANSI (American National Standards Institute), 9
ANSI/ISO standards, 32–34

arithmetic operations, 89
database structure, 401–407
foreign keys and null values, 312
referential integrity features, 301–302
REVOKE statements, 456–457
SQL compliance with, 921
SQL data types, 81–82
SQL keywords, 74–77
SQL names, 78
SQL1, SQL2, and SQL3, 32
system catalog, 461–462
view updates, 424–425
wildcard characters, 122

any-content element, 898
any content element, 904
ANY test, subqueries, 231–234
APIs (application program interfaces)

as alternative to programmatic SQL, 600
basic operation of, 600
client/server architecture and, 602
concepts, 600–602
DBMS access with, 601
JDBC. See JDBC (Java Database Connectivity)
ODBC. See CLI (Call-Level Interface); ODBC

(Open Database Connectivity)
Oracle. See OCI (Oracle Call Interface)
SQL/application integration, 493
SQL Server. See dblib API

Apple, 35
application plans

optimizing, 501–502, 550
statements and, 494

application program interfaces. See APIs (application
program interfaces)

application servers
caching, 790–793
database access and, 779–780
earliest Web sites and, 776–777
EJB 2.0 enhancements, 789–790
EJB types, 780–781
entity bean database access, 785–789
function of, 41
overview of, 776
session bean database access, 781–784
three-tier Web site architectures and, 777–779

application-specific integrated circuits (ASICs), 919
applications

business rules and, 319–320
packaged enterprise, 917–918
portability, 35–37
SQL, 914

Arbor Software, 943
architecture. See also database structure

network applications and databases, 827–832
replication, 814–818
three-tier Web sites, 777–779

arithmetic operations, 89, 183
arrays, 858–868. See also varying arrays, Oracle

defining, 859–863
manipulating, 864–865
object-relational databases and, 841
querying, 863–864
stored procedures and, 865–868

AS/400, 42
ASCII character set, 192–193
ASICs (application-specific integrated circuits), 919
assertions

advanced constraints, 314–315
defining, 384–385
table constraints and, 313

ASSERTIONS view, SQL Information Schema, 1001
asterisk (*), 106–107
asynchronous execution, ODBC, 660
at sign (@), 804–806
attribute node, XQuery, 907
attributes

CLI (Call-Level Interface), 651–654
object-oriented database, 837
Oracle abstract data type, 849–850

attributes, XML
documents and, 878–879
elements vs., 882–885
SQL and, 881
XML Schema, 904–905

auditing, 737
authentication, 437–438
authorization-ids, 402–403, 437. See also user-ids
AVG( ), column function, 191
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B-tree indexes, 391
Backus Naur Form (BNF) notation, 898, 962
bandwidth, 828, 830
batch operations, JDBC, 671
bean caching, 791
bean-managed persistence

container-managed vs., 788–789
defined, 786
using, 788

BEGIN DECLARE SECTION, 518–519
BEGIN TRANSACTION statement, 334
BEGIN...END sequence, 713–714
benchmark wars, database vendors, 920–921
BETWEEN tests, 115–117
BI (business intelligence) database, 760
bill-of-materials database, 53–54
binary large objects. See BLOBs (binary large objects)
BIND program, 501–502, 550
binding offset feature, ODBC, 661
Birdstep Technology, 943–944
bit-map indexes, 391
BLOBs (binary large objects)

relational model and, 2478–2479
specialized processing, 843–846
XML storage and, 891

block cursors, ODBC, 662
block structures, 703, 749–751
BNF (Backus Naur Form) notation, 898, 962
bookmarks, ODBC, 662
braces ({ }), 962
built-in functions, SQL language structures, 89–91
bulk load, 271, 278–279
bulk operations, ODBC, 662
business data integrity rules, 319–325

overview of, 319–320
triggers, 320–325

business intelligence (BI) database, 760
business rules

defined, 293
stored procedures and, 734

C

C language
declaring host variables, 518
embedded SQL and, 502–505
error checking and, 509, 512
GET DIAGNOSTICS error checking, 514

caching
application servers and, 790–793
enterprise applications and, 830–831

CAE (Common Application Environment), 623
calculated columns, 103–106

Call-Level Interface. See CLI (Call-Level Interface)
call-level interfaces, 6. See also CLI (Call-Level

Interface)
Callable API, ODBC, 656
CallableStatement object, JDBC, 689–692
callbacks, 892
calling stored procedures, 708–710
Cartesian product of two tables, 163, 180
CASCADE rules

ALTER TABLE statement, 383
delete rules, 302–303, 305–308
domains, 385
DROP TABLE statement, 380
referential cycles, 311
update rules, 305–308

CASE expression, 249–251
case-sensitivity

SQL keywords, 962
XML element/attribute names, 878–879

CAST expression, 248–249
catalogs. See also system catalog

OCI (Oracle Call Interface), 669
ODBC, 658
SQL2 standard, 404

CENTRALHOST database link, 804–805
centralized networking architecture, 37–38
character large objects. See CLOBs (character

large objects)
character sets

ASCII vs. EBCDIC, 192–193
international, 193

CHARACTER_SETS view, SQL Information
Schema, 1008

check constraints
advanced constraints and, 315
columns and, 295–296
compared with triggers, 324
CREATE TABLE statements and, 376–377
domains and, 296–297

CHECK_CONSTRAINTS view, SQL Information
Schema, 1000

child. See parent/child relationship
classes, object-oriented databases, 837
clauses

FROM. See FROM clause
INTO. See INTO clause
GROUP BY. See GROUP BY clause
HAVING. See HAVING clause
ORDER BY. See ORDER BY clause
SELECT. See SELECT clause
SET. See SET clause
SQL statements and, 72
summary of, 265
VALUES. See VALUES clause
WHERE. See WHERE clause
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CLI (Call-Level Interface), 622–655, 971–990
attributes, 651–654
connection management, 975–976
data structures, 628–630
deferred dynamic parameters, 982
dynamic queries, 642–651
environment management, 975
errors and diagnostics, 651–652, 982–983
functions of, 624–625
handle management, 974
information calls, 653–655, 983
named cursors, 642
parameter values, 984–989
queries, 637–641, 978–981
return values, 627, 974
sample program, 626–627
scroll cursors, 642
sequence of steps in, 623
specification, 34–35
standardization of, 622–623
statement execution, 631–636, 977–978
summary of routines, 972–973
transaction processing, 636–637

client/server architecture, 39–40
APIs and, 602
applications, 828
SQL features for, 11
SQL implementation as, 6–7
stored procedures and, 829–830

CLOBs (character large objects)
parsers and, 891–892
vendor support of, 842–843
XML storage with, 891

CLOSE statements
dynamic queries and, 578–579
multirow queries and, 532, 538
SQL2 standard, 596

Cloudscape, 916
clustered databases, 917
COALESCE expression, 251–252
COBOL language

embedded SQL and, 502–505
error checking and, 510

CODASYL model, 55
Codd, Dr. E. F. (“Ted”)

12 rules, 65–67
history of SQL and, 27
relational model of, 57

collating sequences, application portability, 37
COLLATIONS view, SQL Information Schema, 1009
collection data types, 859–865

defining, 859–863
manipulating data, 864–865
querying data, 863–864
stored procedures and, 865–868

column constraints, 295–296, 313

column functions
AVG( ), 191
COUNT( ), 193–195
MIN( ) and MAX( ), 191–193
NULL values and, 197–199
overview of, 188–190
processing, 195–197
SUM( ), 190–191

column queries
all columns, 106–107
calculated columns, 103–106
selection, 102–103

COLUMN_PRIVILEGES view, SQL Information
Schema, 1003–1004

columns
adding, 381–382
data values, 59–60
defining, 369–372
dropping, 382–383
granting privileges, 448
matching (joins), 143
names, 79
system catalog and, 463, 468–471

COLUMNS view, SQL Information Schema, 994–996
COMMENT statement, DB2, 475
COMMIT statements

ANSI/ISO transaction model, 332
CLI transaction management, 636–637
cursors and, 544
deferred constraint checking and, 316
interactive SQL and, 333
transaction processing and, 329–332
two-phase commit protocol, 825–827

COMMIT TRANSACTION statement, Sybase, 334
Common Application Environment (CAE), 623
comparison operators. See also comparison tests

<> (inequality), 232, 235
< (less-than), 230, 878, 880
> (greater-than), 230, 878, 880
ALL test, 234
ANY test, 231

comparison tests, 111–115
joins and, 153–154
NULL values and, 114–115, 122–124
overview of, 111, 111–113
pattern matching, 120–122
ranges, 115–117
row-value comparisons, 257
set membership, 118–120
single-row retrieval, 113
subqueries and, 223–226

compile-time
errors, 507
vs. runtime, 495

compound searches, 124–128
Computer Associates, 944–945

1028 S Q L : T h e C o m p l e t e R e f e r e n c e



Computer Corporation of America, 945–946
computer industry infrastructure, SQL and, 13
concurrent transactions

locking and, 346, 359
transaction processing and, 342–345
versioning and, 358

condition handlers, SQL/PSM, 751–752
conditional execution, 703, 721–723
CONNECT TO statements, 803–804
connection browsing, ODBC, 660
connection management, OCI, 666
connection objects, JDBC, 678, 680, 681
connection pooling

JDBC, 672
ODBC, 660

consistency rules, data integrity, 293
constants

date and time, 86–87
numeric, 85
overview of, 84–85
string, 85–86
symbolic, 88

CONSTRAINT_COLUMN_USAGE view,
SQL Information Schema, 1002

constraints
advanced, 313–319
assertions, 313–315, 384–385
CHECK constraints, 295–297, 315
column constraints, 295–296, 313
deferred checking, 316–319
defining, 384–386
domain constraints, 296–297, 313, 385
list of, 292–293
NOT NULL constraints, 293–294, 315
PRIMARY KEY constraint, 315
referential (FOREIGN KEY) constraint,

300, 315
table constraints, 312–313
UNIQUE constraints, 298–299, 315

CONSTRAINT_TABLE_USAGE view, SQL
Information Schema, 1001–1002

constructor method, Oracle, 865
container-managed persistence

applying, 787–788
defined, 786
limitations of, 788–789

content element, XML Schema, 903
CONTINUE statements, 725
correlated queries, 242
correlated references, 240
correlated subqueries, 239–241
COUNT( ), 189, 193–195
CREATE ALIAS statements, 386
CREATE ASSERTION statements, 314, 384–385
CREATE DOMAIN statements, 385
CREATE INDEX statements, 390–391

CREATE PROCEDURE statements
DBMS dialect variations, 707–708
functions of, 706
input/output parameters, 707

CREATE ROW TYPE statements, 848
CREATE SCHEMA statements, 405–407
CREATE SNAPSHOT statements

slave replicas and, 812–813
table replication and, 809–811

CREATE statements, 367, 391
CREATE TABLE statements, 369–379

check constraints, 376–377
column definitions, 369–372
database creation, 23–24
MATCH FULL option, 312–313
MATCH PARTIAL option, 313
missing and default values, 372–373
Oracle, 862–863
physical storage, 378–379
primary and foreign key definitions, 373–375
table definitions, 369, 934–936
uniqueness constraints, 376

CREATE TABLE statements, Informix
inheritance, 854–857
row data types, 846–847

CREATE TRIGGER statements, 736–737
CREATE TYPE statements, Oracle, 849–851, 862–863
CREATE VIEW statement, 413–414
cross joins, SQL2, 180–182
cursors

CLI and, 642
cursor-based statements, 965–966
cursor-based stored procedure repetition,

726–730
cursor-based updates and deletes, 539–544
DECLARE CURSOR statement and, 534–535
multirow queries and, 531, 534
positioning with OPEN, FETCH, and

CLOSE, 537
scroll cursors, 538–539, 642
SQL/PSM and, 748–749
transaction processing and, 544

CUSTOMERS table
contents of, 937
structure of, 934–936

D

data
adding. See databases, adding to
compatibility, 800–801
deleting. See databases, deleting from
modifying. See databases, modifying
multiple views, 11
ordering in data warehouses, 770
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protecting, 22–23
storing, 843
summarizing, 19–20

data analysis tools, 762
data definition

dynamic, 11
SQL statement syntax, 962–964

Data Definition Language. See DDL (Data Definition
Language)

data exchange, XML, 885, 890
data integrity

advanced constraints, 313–319
business rules, 319–325
constraints, 292–293
entity integrity, 298–299
loss of, 292
referential integrity. See referential integrity
required data, 293–294
validity checking, 294–297
views and, 413

data manipulation language. See DML (data
manipulation language)

data marts, 763
data models. See also relational data model

file management systems, 52–53
hierarchical, 53–55
network databases, 55–57

data retrieval, 17–19, 69. See also queries
data sources, JDBC, 696
data structures

CLI, 628–630
ODBC, 656
single-row queries and, 529–531

data types. See also abstract (structured) data types
ANSI/ISO SQL, 81–82
application portability and, 36
conversion from integers to decimals, 89
DBMS, 80–81
dynamic dialects and, 583
host variables and, 519–522
Oracle vs. DB2, 583
portability problems and, 82–84
SQL2, 589–590
SQLDA codes for DB2, 573
user-defined, 840, 868–869
XML Schema, 900–903

data warehousing, 760–774
components, 762–763
concepts, 760–762
evolution of, 763–764
fact cubes, 764–766
future of, 925–926
growing market for, 916
load performance and, 771–772
multilevel dimensions, 768–770
query performance and, 773–774

SQL extensions for, 770–771
SQL standard for, 46–48, 914
star schemas, 766–768

Database 2. See DB2 (Database 2)
database access. See also access, distributed

databases
Internet based, 12
SQL and, 10

database access, from application servers, 779–790
EJB 2.0 enhancements, 789–790
EJB types, 780–781
entity bean database access, 785–789
overview of, 779–780
session bean database access, 781–784

database administration language, SQL, 6
database engines, 6
database gateway language, SQL, 7
database interoperability, 34–35
database languages, 11
database library. See dblib API
database management system. See DBMS (database

management system)
database programming language, SQL, 6, 10
database, sample, 933–940

contents of tables in, 937–939
overview of, 934
structure of, 934–936

database schema, 401–402
database server appliances, 919–920
database, simple example

adding data, 20–21
creating, 23–24
data retrieval, 17–19
data summarization, 19–20
deleting data, 21
overview of, 16–17
protecting data, 22–23
updating data, 21–22

database structure, 395–407
ANSI/ISO standards, 401–407
application portability and, 37
multidatabase architecture, 397–399
multilocation architecture, 399–401
multiple servers, 401
overview of, 395–396
single-database architecture, 396–397

database vendors, 941–960
A2i, 943
Arbor Software, 943
Birdstep Technology, 943–944
Computer Associates, 944–945
Computer Corporation of America, 945–946
Empress Software, 946
eXcelon, 946
Gupta Technologies, 947
Hewlett Packard, 947–948

1030 S Q L : T h e C o m p l e t e R e f e r e n c e



IBM Corporation, 948–949
Informix Software, 949–950
list of, 942
Microsoft Corporation, 950–951
MySQL AB, 951
Objectivity, 951–952
Oracle Corporation, 952–953
Persistence Software, 953–954
Pervasive Software, 954
PointBase, 955
PostgreSQL, 955
Quadbase Systems, 955–956
Red Brick Systems, 956
Sybase, Inc., 957–958
TimesTen Performance Software, 958
Versant Corporation, 959

databases. See also distributed databases
BI (business intelligence) database, 760
commercializing native XML, 911–912
data integrity and, 292
data processing trends and, 702
market in next decade. See market in next

decade
market trends. See market trends
OLTP, 760–761
stored procedures and triggers and, 702

databases, adding to, 270–279
bulk load, 278–279
multirow INSERT, 275–278
overview of, 270–271
simple Database example, 20–21
single-row INSERT, 271–275

databases, creating. See also database structure
aliases and synonyms, 386–387
constraint definitions, 384–386
DDL (Data Definition Language) and,

366–367
indexes, 387–391
managed objects, 391–395
simple Database example, 23–24
table definitions. See table definition
vendor differences in database structures,

367–369
databases, deleting from

DELETE statement, 279–281
DELETE with subquery, 282–284
deleting all rows, 281–282
overview of, 279
simple Database example, 21

databases, modifying
overview of, 284–285
UPDATE statement, 285–287
UPDATE with subquery*, 288–289
updating all rows, 287–288

databases, updating, 21–22

databases, XML, 885–895
data exchange, 890
input, 888–890
output, 886–888
overview of, 885
storage and integration, 890–895

date constants, 86–87
DB2 (Database 2)

COMMENT statement syntax, 475
delete rules, 303–304
dynamic SQL dialects and, 580–583
dynamic SQL queries and, 596–597
IBM’s release of, 29–30
multiple locks, 348
permissions information, 480
physical storage, 379
single-database architecture and, 397
SQL support in, 9
SQLDA data type codes, 573
SYSCAT.COLUMNS view, 469–470
SYSCAT.KEYCOLUSE view, 477
SYSCAT.REFERENCES view, 476
SYSCAT.TABLES view, 464–466
SYSCAT.VIEWS, 471
trigger support, 321–322
update rules, 304–305
user groups, 439
view updates and, 425

dBASE, 43
dbbind( ), 612
dbdata( ), 613–615
dbgetrow( ), 615–616
dblib API, 602–622

compared with embedded SQL, 605
dynamic queries, 617–622
error handling, 607–610
functions, 603
overview of, 602
positioned updates, 616–617
program/SQL server interaction, 605
statement batches, 606–607

dblib API, query processing
overview of, 610–612
random row retrieval, 615–616
retrieval using pointers, 613–615
retrieving NULL values, 612–613

DBMS (database management system)
APIs and, 493–494
centralized architecture, 38
client/server architecture, 39–40
column information, 470
components of, 7
CREATE/DROP/ALTER conventions,

392–395
CREATE PROCEDURE statements, 707–708
data models, 52
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data types, 519–522
database engine as heart of, 6
defined, 4
drivers, 579
dynamic SQL and, 549, 580–583
early products, 29–30
file server architecture, 38–39
functions of, 5
history of, 26–27
index support, 390
locking parameters, 356
multitier architecture, 40–41
packaged enterprise applications and, 917
permissions information, 480
primary and foreign key information, 475–478
privileges, 443
role of SQL in, 26–27
stored procedures, 704, 710–713, 734–735
system catalog information, 487
system tables, 463–464
table information, 466–467
user groups, 439
vendors, 8
view information, 471–473
views, dropping, 428
views, handling, 412
views, updating, 425

dbnextrow( ), 612, 613
dbresults( ), 607
DDL (Data Definition Language)

CREATE, DROP, and ALTER, 367
functions of, 366
object management with, 391–395

deadlocks
distributed databases and, 800–801
transaction processing and, 348–351

DEALLOCATE PREPARE statement, 585
Debit/Credit benchmark, 920
decision making constructs, 721
DECLARE CURSOR statement, 532, 534–535, 543,

574–575
DECLARE TABLE statement, 505–506
DEFERRABLE constraint, 317
deferred constraint checking, 316–319
deferred dynamic parameters, 982
deferred parameter passing, 636
definition schema, 481
DELETE privilege, 440
delete rules, 302–308

cascaded deletes, 305–308
referential cycles and, 310
SQL1 standard, 302
SQL2 standard, 302–303

DELETE statements
DELETE with subquery, 282–284
deleting all rows, 281–282

overview of, 279–281
removing data, 21
table inheritance and, 856
WHERE clause problems and, 889

deletes, cursor-based, 539–544
DESCRIBE statements

dynamic queries and, 572–574
Oracle vs. DB2, 580–581
SQL2 standard, 594

descriptors
CLI, 650–651
OCI, 668

descriptors, dynamic SQL, 587–593
management statements, 588–589
SET DESCRIPTOR statement, 591–592
structure of, 587

diagnostic information, CLI, 651, 982–983
DIFFERENCE operations, SQL2 queries, 261–264
dirty read problems, 340
DISCONNECT statement, SQL, 804
DISTINCT data types, Informix, 868–869
DISTINCT keyword

duplicate rows and, 107–108
summary queries and, 199–200

distributed databases, 801–818
accessing, 818–824
challenges of, 796–801
network applications/database architecture,

827–832
overview of, 801–802
remote access, 802–806
remote data transparency, 806–807
replication architectures, 814–818
replication trade-offs, 813–814
SQL language and, 7
table extracts, 807–809
table replication, 809–811
two-phase commit protocol, 824–827
updateable replicas, 812

distributed Internet applications, 48–49
distributed requests, distributed databases, 822–824
distributed transactions, distributed databases, 821–822
DML (data manipulation language)

functions of, 366
SQL as, 270
statement syntax and, 964–965

document node, XQuery, 907
Document Object Model (DOM) parsers, 892
Document Type Definitions. See DTDs (Document

Type Definitions)
documents

comparing SQL with XML, 882
well-formed XML, 878–879
XML and SQL types, 881

dollar sign ($), 909
DOM (Document Object Model) parsers, 892
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domain constraints
defining, 385
overview of, 296–297
table constraints and, 313

DOMAIN_COLUMN_USAGE view, SQL
Information Schema, 1007–1008

DOMAIN_CONSTRAINTS view, SQL Information
Schema, 1006–1007

domains, SQL2, 486
DOMAINS view, SQL Information Schema,

1005–1006
dot notation, 850
driver manager

JDBC, 678–680
ODBC, 656–657

drivers
DBMS support, 579
ODBC, 656

drivers, JDBC, 672–678
Type 1 drivers, 673–675
Type 2 drivers, 675–676
Type 3 drivers, 676–677
Type 4 drivers, 677–678

DROP ALIAS statements, 386
DROP ASSERTION statements, 385
DROP INDEX statements, 391
drop rules, 383
DROP SCHEMA statements, 406–407
DROP statements, 367, 391
DROP TABLE statements, 24, 379–380
DROP VIEW statements, 428–429
DTDs (Document Type Definitions)

comparing XML Schema with, 897, 899
defined, 896
overview of, 897–899

dual-mode languages, SQL, 492
duplicate rows

column functions and, 199–200
simple queries, 107–108

dynamic data definition, 11
dynamic queries, 566–579

CLI, 642–651
CLOSE statement, 578–579
dblib API, 617–622
DECLARE CURSOR statement, 574–575
DESCRIBE statement, 572–574
FETCH statement, 578
OPEN statement, 575–577
overview of, 566–567
sample program, 568–571
SQL2, 593–597
steps in, 567

dynamic SQL
application portability and, 36
concepts, 550–551
EXECUTE IMMEDIATE statement, 551–554

EXECUTE statement, 558
EXECUTE with host variables, 559
EXECUTE with SQLDA, 559–566
limitations of static SQL and, 548–549
PREPARE statement, 558
two-step statement execution, 554–557

dynamic SQL dialects, 579–583
comparing Oracle and DB2, 580–583
data type conversion and, 583
overview of, 579

dynamic SQL2, 584–597
data types, 589–590
overview of, 584
queries, 593–597
SQLDA and, 586–593
statements, 584–586

dynamic web content, 776–777

E

EAI (Enterprise Application Software), 809
EBCDIC character set, 192–193
ejbCreate( ) method, 787, 788
ejbLoad( ) callback method, 787, 788
ejbPostCreate( ) method, 788
ejbRemove( ) method, 787, 788
EJBs (Enterprise Java Beans)

application server standardization and,
778–779

enhancements to, 789–790
overview of, 780–781

ejbStore( ) callback method, 787, 788
!ELEMENT, DTD, 897
element-list, SQL, 962
element node, XQuery, 907
element-only content, XML Schema, 903
element-only element, DTD, 897–898
elements

vs. attributes, 882–885
DTD hierarchy, 897–898
SQL names and constants, 969
in SQL statements, 969
XML, 878–879
XML and SQL, 882–885
XML Schema, 903–905

Ellison, Larry, 919
embedded databases, 916, 928
embedded SQL

concepts, 496
cursor-based updates and deletes, 539–544
cursors and transaction processing, 544
dblib API and, 605
error handling, 507–510, 510–512, 610
error types, 506–507
limitations of, 548–549
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overview of, 5–6, 492–493
program development, 496–500
program implementation, 500–502
query processing, 612
simple statements, 502–505
table declarations, 505–506
WHENEVER statement, 512–515

embedded SQL, host variables
data types and, 519–522
declaring, 517–519
NULL values and, 520–523
overview, 515–517

embedded SQL, multirow queries, 531–539
CLOSE statement, 538
cursors and, 534
DECLARE CURSOR statement, 534–535
FETCH statement, 536–537
OPEN statement, 535–536
overview of, 531–533
scroll cursors, 538–539

embedded SQL, single-row queries, 524–531
input/output host variables and, 531
NOT FOUND condition, 527
overview of, 524–527
retrieval with data structures, 529–531
retrieving NULL values, 527–529

Empress Software, 946
empty-content element

DTD, 897–898
XML Schema, 904

empty tables, 61
encapsulation

object-oriented databases and, 837
stored procedures and, 733

END DECLARE SECTION, 518–519
English-like structure, SQL, 10
Enterprise Application Software (EAI), 809
enterprise application support, 11–12
enterprise databases, 917

applications, 914
data caching and, 830–831
market maturity, 915–916
packaged applications, 917–918

Enterprise Java Beans. See EJBs (Enterprise
Java Beans)

entity bean, EJB, 781–782, 785–789
entity integrity

defined, 292
uniqueness and NULL values and, 298–299

equi-joins. See simple joins (equi-joins)
error codes, application portability and, 36
error handling

CLI, 651–652, 982–983
dblib API, 607–610
dblib vs. embedded SQL, 610
JDBC, 692

OCI, 669
SQL/PSM, 751–752
stored procedures, 730–732

error handling, embedded SQL
error types, 506–507
SQLCODE and, 507–510
SQLSTATE and, 510–512
WHENEVER statement and, 512–515

escalation, locks, 356
escape characters, 122
European X/Open consortium, 623
eXcelon, 946
exceptions. See error handling
exclusive locks, 348
EXECUTE IMMEDIATE statements, 551–554, 584
EXECUTE statements

EXECUTE with host variables, 559
EXECUTE with SQLDA, 559–566
SQL2, 584, 595
two-step execution, 555–558

EXISTS/NOT EXISTS tests, 228–230
EXIT statements, 725
explicit locking, 351, 352
expressions, SQL, 88–89, 966–967, 968
extensibility, 12
eXtensible Markup Language. See XML (eXtensible

Markup Language)
eXtensible Stylesheet Language Transformation

(XSLT), 906–907
external stored procedures, 735–736, 754

F

fact cubes, 764–766
FALSE keyword, 124
Federal Information Processing Standard (FIPS),

9, 32
FETCH statements

dynamic queries and, 578
multirow queries and, 532, 536–537
SQL2 standard, 596

file management systems, 52–53
file server architecture, 38–39
finder methods, EJB, 790
FIPS (Federal Information Processing Standard),

9, 32
flow-of-control statements, 725, 747–748
FOR loops, 723–725, 726–727
FOREACH loops, 727–728
FOREIGN KEY clause, 373–375
foreign keys

catalog support for, 475–478
changing, 383–384
defining, 373–375
NULL values and, 312–313
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parent/child queries and, 144–146
referential integrity and, 300–301
relational data model and, 63–65

FORTRAN language, 502–505
FROM clause

multitable queries and, 161
query expressions and, 264–265
SELECT statements and, 97, 99

G

get ( ) accessor method, EJB, 790
GET DESCRIPTOR statements, 594
GET DIAGNOSTICS statements, 511, 513–514
GET READY message, 825–826
GOTO statements, 725
GRANT OPTION clause, 449–451, 454–455
GRANT statements, 446–451

column privileges, 448
overview of, 446–447
passing privileges with GRANT OPTION

clause, 449–451
permissions and, 22

graphical user interfaces (GUIs), 828
greater-than (>) operators, 230, 878, 880
GROUP BY clause. See also grouped queries;

HAVING clause
multiple grouped columns, 204–207
SELECT statement and, 98
views and, 418

group search conditions. See HAVING clause
grouped queries, 200–210

grouping columns, 202
multiple grouped columns, 204–207
NULL values in grouping columns, 209–210
processing, 203–204
restrictions on, 207–209

grouped views, 418–421
grouping columns

grouped queries and, 202
multiple, 204–207
NULL values and, 209–210

groups, users, 438–439
GUIs (graphical user interfaces), 828
Gupta Technologies, 947

H

handheld devices, 797
handles

CLI, 628–629
descriptor, 650–651
management routines for, 974
object, 838

object-relational databases and, 841
OCI, 663–665

hardware performance, 918–919
hash indexes, 391
HAVING clause, 211–216

correlated queries and, 242
NULL values and, 215
overview of, 211–214
restrictions on, 214–215
SELECT statement and, 98
subqueries and, 218–219, 241–244
using without GROUP BY, 215

<header> tag, XML, 878–879
Hewlett Packard, 947–948
hierarchical data model, 53–55

accessing, 54
bill-of-materials databases and, 53
disadvantages of, 57
IMS as example of, 54–55
XML, 882

high-level structures, SQL, 10
horizontal table subsets, replication architecture,

814–815
horizontal views, 414–416, 444
host variables

data structure as, 529–531
data types, 519–522
declaring, 517–519
EXECUTE and, 559
input and output, 531
NULL values and, 520–523
overview, 515–517

HTML (HyperText Markup Language), 876–877

I

IBM Corporation
BLOB data support, 842
commitment to SQL, 9
database structures and, 368
distributed database access and, 818–824
enterprise database market and, 916
LOCK TABLE statement, 352
product line of, 914
release of DB2, 29–30
SAA (Systems Application Architecture), 34
unified database strategy, 42
vendor profile, 948–949

IBM mainframes, 42
IF...THEN...ELSE, 713, 721, 747–748
Illustra Software, 916

object-oriented capabilities, 840
IMS (Information Management System), 54–55
in-memory databases, 917
IN tests, 118–120. See also set membership (IN) tests
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inconsistent data problems, 341–342
indexes

advantages of, 389
CREATE INDEX statement, 390–391
DROP INDEX statement, 391
as storage structure, 387
support for, 390
types of, 391

inequality (<>) operator, 232, 235
information calls, CLI, 653–655
Information Management System (IMS), 54–55
Information Schema, SQL

ASSERTIONS view, 1001
CHARACTER_SETS view, 1008
CHECK_CONSTRAINTS view, 1000
COLLATIONS view, 1009
COLUMN_PRIVILEGES view, 1003–1004
COLUMNS view, 994–996
CONSTRAINT_COLUMN_USAGE view,

1002
CONSTRAINT_TABLE_USAGE view,

1001–1002
DOMAIN_COLUMN_USAGE view,

1007–1008
DOMAIN_CONSTRAINTS view, 1006–1007
DOMAINS view, 1005–1006
KEY_COLUMN_USAGE view, 1000–1001
overview of, 992–993
REFERENTIAL_CONSTRAINTS view, 999
SCHEMATA view, 993–994
SQL_LANGUAGES view, 1010–1011
system catalog and, 483
TABLE_CONSTRAINTS view, 998
TABLE_PRIVILEGES view, 1003
TABLES view, 994
TRANSLATIONS view, 1009–1010
USAGE_PRIVILEGES view, 1004–1005
VIEW_COLUMN_USAGE view, 997–998
VIEWS view, 996
VIEW_TABLE_USAGE view, 997

Informix Software
database structure, 368
enterprise database market and, 916
object-oriented capabilities, 840
primary and foreign key information, 478
remote database access, 805–806
SYSCOLUMNS, 471
table information, 467
vendor profile, 949–950

Informix SPL, 740–742
Informix Universal Server

abstract data types, 850
collection data types, 859–865
collections and stored procedures and,

865–867
data type conversion, 850

inheritance, 852–854
large objects support, 843
manipulating collection data, 864–865
methods and stored procedures, 870–872
named row type, 848–849
object-oriented capabilities, 840
querying collection data, 863–864
row data types, 846–847
table inheritance, 854–857

Ingres
Ingres project, 29–30
LOCK TABLE statement, 352
multiple storage locations, 378

inheritance, 851–858
defined, 851
object-oriented database, 837
overview of, 851–854
table, 854–857

initialization, OCI, 665–666
inner joins

defined, 167
multitable queries and, 165–169
SQL2 and, 175–178

input host variables, 531
input parameters, 634–635, 707
input, XML, 885, 888–890
INSERT operations, XML, 890
INSERT privilege, 440
INSERT statements

adding data, 20–21
CREATE TABLE statements and, 369
inserting all columns, 275
inserting NULL values, 274–275
multirow INSERT, 275–278
replicated tables and, 809
single-row INSERT, 271–275
XML input and, 889

integrity
distributed databases and, 800
distributed transactions and, 827
updateable replicas and, 812

interactive query language, 6, 10
interactive SQL

application portability and, 36
COMMIT and ROLLBACK statements

and, 333
INSERT statements and, 274
multirow queries and, 524, 531
single-row queries and, 524

international character sets, 193
International Standards Organization (ISO), 9
Internet

connections, 797
database access, 7, 12
high-volume data management, 832
network services integration and, 927–928
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Internet application servers, 914
interoperability, 34–35
INTERSECT operations, SQL2, 261–264
INTO clause, INSERT statements, 271
IS NULL tests, 122–124
ISO (International Standards Organization), 9
isolation levels, 351–356
italics, SQL syntax elements specified in, 962

J

J2EE (Java2 Enterprise Edition)
application server standardization, 778–779
SQL integration in, 12–13
web services, 49

Java. See also JDBC (Java Database Connectivity)
API, 671
Internet and network services integration,

927–928
object integration and, 929
object orientation of, 678
SQL integration with, 12–13
web services, 49

Java Database Connectivity. See JDBC (Java
Database Connectivity)

Java Naming & Directory Interface (JNDI), 672
Java Transaction Protocol (JTP), 824
Java2 Enterprise Edition. See J2EE (Java2 Enterprise

Edition)
JDBC (Java Database Connectivity), 671–697

advanced capabilities, 696–697
API-based approach, 493
API objects and methods, 678–680
callable statements, 689–692
driver types, 672–678
error handling, 692
history and versions, 671–672
prepared statements, 686–689
query processing, 683–686
retrieving metadata, 695–696
scroll cursors and update cursors, 692–694
SQL integration in, 12–13
statement processing, 680–683

JDBC/ODBC bridges, 673–675
JNDI (Java Naming & Directory Interface), 672
JOIN operations, SQL2, 261
joined views, 421–423
joins. See also multitable queries; simple joins

(equi-joins)
defined, 142
subqueries and, 236–237

JTP (Java Transaction Protocol), 824

K

KEY_COLUMN_USAGE view, SQL Information
Schema, 1000–1001

keywords, SQL, 962

L

LAN servers, 797
language, SQL

built-in functions, 89–91
constants, 84–88
data types, 79–84
DDL and DML and, 366–367
expressions, 88–89
names, 78–79
NULL values, 91–92
overview of, 4–6
statements, 72–77

laptop databases, 797, 914
large objects. See BLOBs (binary large objects);

CLOBs (character large objects); LOBs (large
objects)

left outer joins, 169–173
less-than (<) operator, 230, 878, 880
libraries. See APIs (application program interfaces)
LIKE tests, 120–122
LIST collection data, 859, 864–865
load balancing, 816–818
load performance, 771–772
LOB-processing, Oracle, 844–846
LOBs (large objects). See also BLOBs (binary large

objects); CLOBs (character large objects)
OCI manipulation of, 670–671
parsers and, 891–892
support for, 840, 841
XML storage with, 891

LOCK TABLE statement, 352–353
locking parameters, 351
locks

advanced techniques, 351
deadlocks, 348–351
explicit locking, 352
isolation levels and, 352–356
levels, 345–347
locking parameters, 356
shared and exclusive, 348

logical database devices, Sybase, 378
logs, transaction, 336–338, 844
loops

conditional execution and, 703
cursor-controlled, 726–730, 749
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repeated execution with, 723–725
SQL/PSM, 747–748

lost update problem, 338–339

M

mainframes, 797
managed objects, 391–395
market in next decade, 924–930

data warehousing, 925–926
distributed databases, 925
embedded databases, 928
Internet/network services integration,

927–928
object integration, 928–930
ultra-high performance databases, 926–927

market trends, 915–924
benchmark wars, 920–921
database server appliances, 919–920
diversity and segmentation, 916–917
enterprise market maturity, 915–916
hardware performance gains, 918–919
importance of SQL, 914–915
packaged enterprise applications, 917–918
standardization, 921–924

markup languages, XML, 876
marshalling, XML, 892–895
master replicas, 812–813
MATCH FULL option, CREATE TABLE statements,

312–313
MATCH PARTIAL option, CREATE TABLE

statements, 313
matching columns (joins), 143, 147–148
materialized views, 429–431
mathematical operations. See arithmetic operations
MAX( ), 189, 191–193
MetaData objects, JDBC, 678, 695–696
metadata, retrieving, 695–696
metadata, XML

defined, 895
DTDs and, 897–899
overview of, 895–896
XML Schema and, 899–905

methods
object-oriented, 837
stored procedures and, 869–872

microcomputers, 42–43
microdatabases, 916
Microsoft Corporation

.NET framework, 49
enterprise database market and, 915
ODBC support, 35
SQL Server. See SQL Server

SQL support, 9–10
vendor profile, 950–951
Windows. See Windows operating systems

MIN( ), 189, 191–193
mirrored tables, replication architecture, 815–816
mixed content element, 897–898, 903
mobile databases, 916
msg_rtn( ), 609
multitable joins, 182–185
multitable queries

all-column selection and, 156–157
applying to three or more tables, 148–151
equi-joins and, 142
joins and, 142–144
left/right outer joins, 169–173
non-equi joins, 153–154
outer/inner joins, 165–169
outer join notation, 173–175
performance issues with, 162
qualified column names and, 154–156
rules for processing, 164–165
self-joins and, 157–160
simple joins (equi-joins). See simple joins

(equi-joins)
table aliases and, 160–161
table multiplication and, 163–164
two-table example, 140–142

multidatabase architecture, 397–399
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cross-database queries and, 399
DBMSs applying, 397

multilevel dimensions, data warehousing, 768–770
multilocation architecture, 399–401

advantages/disadvantages of, 399–400
DBMSs applying, 399

multiple data views, 11
multiple matching columns, 147:10
multiple servers, 401
multiple unions, 135–137
multiprocessor architecture, 918
multirow INSERT, 271, 275–278
multirow queries, embedded SQL, 531–539

CLOSE statement, 538
cursors, 534
DECLARE CURSOR statement, 534–535
FETCH statement, 536–537
OPEN statement, 535–536
overview of, 531–533
scroll cursors, 538–539

MULTISET collection data, 859, 864–865
multitier architecture, 40–41
multiuser processing, 338
MySQL AB, 951
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named cursors, CLI, 642
named parameters, Oracle vs. DB2, 580
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named row types, Informix, 848–849, 851
named variables, 703
Native API drivers, JDBC, 675–676
native XML databases, 911–912
navigation, XQuery, 908
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nested tables, Oracle

manipulating, 865
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within SQL queries, 864
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foreign keys and, 312–313
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BLOB support, 842–843
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object-oriented databases, 836–840
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security and, 434
storage with large, 891
support in SQL:1999, 872
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defining, 859–863
manipulating, 864–865
overview of, 858–859
querying, 863–864
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overview of, 663
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statement execution, 666–667
transaction processing, 669–671
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data warehousing and, 46–47, 760–761
multitable queries and, 162
SQL proliferation and, 45

OnLine Analytical Processing (OLAP), 48, 916
online transaction processing. See OLTP (online

transaction processing)
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object-oriented capabilities, 840
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defined, 167
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pattern matching tests

escape characters and, 122
overview of, 111, 120
simple queries, 120–122
wildcard characters and, 120–122

PCs (personal computers)
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summary. See summary queries
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processing in XQuery, 909–911
XQuery concepts, 907–909
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FROM clause and, 264–265
overview of, 261
UNION, INTERSECT, and DIFFERENCE

operations, 261–264
query processing

JDBC, 683–686
OCI, 667–668
ODBC, 662
rules, 245
SQL2 statements, 593

query processing, dblib
compared with SQL, 612
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random row retrieval, 615–616
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retrieving NULL values, 612–613
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R

random row retrieval, 615–616
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RDBMS (relational database management s
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READ COMMITTED, isolation level, 354
read-only access, 818
READ UNCOMMITTED, isolation level, 354
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Red Brick Intelligent SQL (RISQL) language, 771
Red Brick Systems, 916, 956
REFERENCES privilege, SQL2, 440–442
referential cycles, 308–311
referential (FOREIGN KEY) constraint, 315
referential integrity, 299–313

cascaded deletes and updates, 305–308
corruption problems, 300–302
data integrity. See referential integrity
defined, 293
delete rules and, 302–305
foreign keys and null values and, 312–313
overview of, 299–300
referential cycles, 308–311

triggers and, 322–323
update rules and, 303–305

REFERENTIAL_CONSTRAINTS view, SQL
Information Schema, 999

relational data model, 57–65
Codd’s 12 rules, 65–67
foreign keys, 63–65
order-processing and, 58
overview of, 57
primary keys, 61–62
relationships, 62–63
sample database, 58–59
SQL features and, 10
tables, 59–61

relational database management system
(RDBMS), 27

relational databases
simple example, 16–17
SQL as, 4
tables representing sets of objects, 858–859

Relational OnLine Analytic Processing (ROLAP),
48, 916

relationship information, system catalog, 475–478
relative path expression, XQuery, 907–908
remarks, system catalog, 474–475
remote database access

table extracts, 807–809
table replication, 809–811
transparency and, 806–807

Remote Database Access (RDA), 34–35
remote requests, 819
remote transactions, 820–821
REPEATABLE READ, isolation level, 353–354
replication

architectures, 814–818
enterprise databases, 831
load balancing and, 816–818
remote database access, 809–811
table extracts, 807–809
tables, 809–811
trade-offs, 813–814
updateable replicas, 812–813

required data, 292, 293–294
RESTRICT delete rule

ALTER TABLE statement and, 383
CASCADE rules, 302–303, 310
DROP TABLE statement, 380

RESTRICT rules, 385
ResultSet objects, JDBC, 678, 684–686
return status codes, CLI, 627
return values

CLI, 974
stored procedures, 715–717, 720–721

REVOKE statements, 451–457
ANSI/ISO standards, 456–457
GRANT OPTION clause and, 454–455
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right outer joins, 169–173
RISQL (Red Brick Intelligent SQL) language, 771
ROLAP (Relational OnLine Analytic Processing),

48, 916
ROLLBACK statements

ANSI/ISO transaction model and, 332
CLI transaction management and, 636–637
cursors and, 544
deferred constraint checking and, 316
interactive SQL and, 333
transaction processing and, 329–332
two-phase commit protocol, 825–827

ROLLBACK TRANSACTION statement, Sybase, 334
rooted path expression, XQuery, 907–908
routines, CLI. See CLI (Call-Level Interface)
routines, SQL, 975–977

connection management, 975–976
creating, 746–747
environment management, 975
statement execution, 977
statement management, 977

row/column data values, 59–60
row/column subset views, 418
row data types, Informix, 846–847
row expressions, SQL1, 246
row-level locking, 347
row selection criteria, equi-joins, 146–147
row-valued expressions, 253–257

row-value constructor, 254–255
row-valued comparisons, 257
row-valued subqueries, 255–257

rows
adding to databases, 270
data values and, 59–60
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duplicate rows, 107–108
selection, 109–110

rowsets, JDBC, 697
run-time performance, 733
runtime errors, 507
runtime security, 500–501
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SAA (Systems Application Architecture), 34
SALESREP table, 934–937
SAVE TRANSACTION statement, Sybase, 334
savepoints, 334, 672
SAX (Simple XPI for XML) parsers, 892
scalablility, centralized architectures and, 38
scalar-valued expressions, 247–253

CASE expression, 249–251
CAST expression, 248–249

COALESCE expression, 251–252
NULLIF expression, 252–253

schemas. See also SQL Information Schema
data warehousing, 764
database, 401
snowflake schemas, 770
SQL1, 401–402
SQL2, 404–407

SCHEMATA view, SQL Information Schema,
993–994

scripting languages, 776–777
scroll cursors

CLI, 642
FETCH statement and, 540
JDBC, 671, 692–694
multirow queries and, 538–539

search conditions
compound searches, 124–128
multitable queries, 146–147
simple queries, 110
SQL syntax, 968

search conditions, subqueries, 223–236
ALL test, 234–236
ANY test, 231–234
comparison tests, 223–226
existence tests, 228–230
quantified tests, 230
set membership tests, 226–228

searched DELETE statement, 280–281
security

concepts, 434–436
GRANT statements, 446–451
privileges, 440–443
REVOKE statements, 451–457
security objects, 439–440
stored procedures and, 733
user-ids, 436–439
views and, 412, 443–446

security objects, 439–440
SELECT clause, 97, 99
select methods, EJB, 790
SELECT privilege, 440
SELECT statements, 96–99

all-columns selection, 106–107, 156–157
FROM clause, 99
clauses of, 97–98
column functions in, 195–197
data manipulation statements, 964–965
data retrieval, 17
grouped queries and, 203–204
HAVING clause, 213–214
multitable queries and, 164–165
query results from, 131
replicated tables, 809
SELECT clause, 99
single-row queries and, 524–525
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subqueries compared with, 219–220
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self-joins, 157–160
sequences, object-relational databases, 841
serializability of transactions, 344
SERIALIZABLE, isolation level, 353
servers. See also client/server architecture

multiple server structures, 401
Oracle server connection, 665–666
performance gains in, 918–919

session bean, EJB, 781–784, 781–782
set ( ) accessor method, EJB, 790
SET clause, 287, 889
SET collection data, 859, 864–865
SET DEFAULT delete rule, 303–304
SET DESCRIPTOR statement, 591–592, 594
SET LOCK statement, 356
set membership (IN) tests

overview of, 111
simple queries, 118–120
subqueries, 226–228

SET NULL delete rule, 303–304
SET TRANSACTION statements, 345, 355
sets, 858–868

defining, 859–863
manipulating, 864–865
object-relational databases and, 841
querying, 863–864
stored procedures and, 865–868

SGML (Standard General Markup Language),
876–877

shared locks, 348
simple joins (equi-joins), 142–153

applying to three or more tables, 148–151
multiple matching columns, 147
overview of, 142–144
parent/child queries, 144–146
primary and foreign keys and, 144–146,

152–153
row selection criteria and, 146–147

simple queries
all columns, 106–107
calculated columns, 103–106
column selection, 102–103
comparison tests, 111–115
compound searches, 124–128
duplicate rows, 107–108
multiple unions, 135–137
NULL value tests, 122–124
pattern matching tests, 120–122
range tests, 115–117
row selection, 109–110
search conditions, 110
set membership tests, 118–120
single-table queries, 130–131

sorting results, 128–130
UNION operations, 131–135

Simple XPI for XML (SAX) parsers, 892
single-database architecture, 396–397
single-row INSERT, 271–275

inserting all columns, 275
inserting NULL values, 274–275
overview of, 271–274

single-row queries, embedded SQL, 524–531
input and output host variables, 531
NOT FOUND condition, 527
overview of, 524–527
retrieval with data structures, 529–531
retrieving NULL values, 527–529

single-row retrieval, 113
single-table queries, 130–131
slave replicas, 812–813
SMP (symmetric multiprocessing)

horizontal scaling with, 791
performance benefits of, 918–919
versioning and, 360

snapshot data, 809–811
snowflake schemas, 770
sorting data. See ORDER BY clause
source tables, 410–411
spaddserver ( ) system stored procedure, 804
spdropserver ( ) system stored procedure, 804
SPL (stored procedure language), 703, 865–867
SQL Access Group, 34–35, 622–623
SQL Call-Level Interface. See CLI (Call-Level

Interface)
SQL Communications Area (SQLCA), 507–508
SQL-connections, CLI data structures, 628, 630–631
SQL Data Area. See SQLDA (SQL Data Area)
SQL-environment, CLI data structures, 628, 630
SQL extensions, data warehousing, 770–771
SQL Information Schema Standard. See Information

Schema, SQL
SQL/PSM (SQL/Persistent Stored Modules),

745–755
block structure, 749–751
core features of, 745–746
creating SQL routines, 746–747
cursor operations, 748–749
error handling, 751–752
flow-of-control statements, 747–748
routine name overloading, 752–754
stored procedure capabilities, 754–755

SQL Server. See also dblib API
database structure, 368
market trends and, 914
outer join notation, 173
primary and foreign key information, 478
program interaction, 605
SYSOBJECTS table, 467
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SYSPROTECTS table, 481
SYSUSERS table, 479
table information, 467
Windows operating systems and, 44–45

SQL (Structured Query Language), 27–32
commercial acceptance, 30–32
as dual-mode language, 492
as early DBMS products, 29–30
features and benefits, 8–13
language. See language, SQL
milestones in development of, 27–28
networking. See distributed databases
roles of, 6–7
routines. See routines, SQL
standardization and, 921–924
standards. See standards, SQL
statements. See statements
syntax. See syntax reference, SQL
System/R project and, 29
XML similarities to, 881–882

SQL (Structured Query Language), proliferation of,
42–49

data warehousing and, 46–48
distributed Internet applications, 48–49
IBM’s unified database strategy, 42
microcomputers, 42–43
PCs, 43–45
transaction processing and, 45
UNIX-based systems, 43
workgroup databases, 45–46

SQL:1999, 755–756, 872
SQLCA (SQL Communications Area), 507–508
SQLCODE

error handling with, 507–510
NOT FOUND condition, 527

SQLDA (SQL Data Area), 559–566
data type codes for DB2, 573
EXECUTE statement and, 561–566, 561–566
fixed and variable parts of, 560
OPEN statement and, 576
Oracle vs. DB2, 581–583
passing data to EXECUTE statement, 560–561

SQLError( ), 651
SQLException methods, JDBC, 692
SQL_LANGUAGES view, SQL Information Schema,

1010–1011
SQLSTATE

error handling with, 510–512
NOT FOUND condition, 527

SQLVAR, 571–573
square brackets ([ ]), 962
Standard General Markup Language (SGML),

876–877
standards. See also ANSI/ISO standards; SQL/PSM

(SQL/Persistent Stored Modules)
application portability, 35–37

application servers, 778–779
database interoperability, 34–35
Internet and network services integration,

927–928
object capabilities, 840
object-oriented databases, 839
other standards, 34
SQL, 9, 921–924
SQL:1999, 872
stored procedures, 744–745
triggers, 324–325, 744–745, 755–756
X/OPEN standards, 32
XML, 896
XQuery, 907

standards, SQL1
database structure, 395
delete rules, 302
restrictions on multirow INSERT queries, 278
schemas, 401–402
view updates, 425

standards, SQL2
advanced constraints, 315–316
advanced queries. See advanced queries
catalogs, 404
column check constraints, 295–296
constraint types, 315
cross and union joins, 180–182
data types, 589–590
delete rules and, 302–303
DELETE statements and, 284
domain check constraint, 296–297
dynamic queries and, 593–597
dynamic statements, 584–586
extended privileges, 440–442
inner joins, 175–178
integrity constraints, 312–313
multitable joins, 182–185
outer joins, 178–179
schemas, 404–407
SQLDA, 586–593
system catalog, 481–486
system domains, 486
update rules, 304–305

standards, SQL3, 755
star schemas, data warehousing, 766–768
stateful session bean, 781–783, 783–785
stateless session bean, 781–783
statement batches

dblib API, 606–607
ODBC, 661

statement blocks, 713–715
statement elements, 969
statement objects, JDBC, 678, 681–683
statement processing by APIs

CLI, 631–636
dblib API, 606–607
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JDBC, 680–683
OCI, 666–667
ODBC, 661

statements
CLI data structures and, 628
embedded SQL, 502–505
keywords, 74–76
list of, 72–73
potential keywords, 76–77
processing, 494–495
structure of, 72–74
syntax, 76–77

static SQL, 800–801. See also embedded SQL
status routines, CLI, 982–983
storage, physical, 378–379
storage, XML. See XML storage
stored functions, 715–717
stored procedure language (SPL), 703, 865–867
stored procedures. See also SQL/PSM

(SQL/Persistent Stored Modules); triggers
advantages of, 733–734
calling, 708–710
client/server applications and, 829–830
collections and, 865–868
concepts, 703–704
conditional execution, 721–723
creating, 706–708
cursor-based repetition, 726–730
data processing and, 702
DBMS implementations of, 734–735
error handling, 730–732
example application, 704–706
external, 735–736
flow-of-control statements, 725
invoking, 737
methods and, 869–872
object-relational databases and, 841
output parameters, 717–720
repeated execution, 723–725
return values, 715–717, 720–721
SQL/PSM and, 754–755
standards for, 744–745
statement blocks, 713–715
system-defined, 735
variables, 710–713

string constants, 85–86
structure, XML vs. SQL, 882
structured data types. See abstract (structured)

data types
subqueries

ALL test, 234–236
ANY test, 231–234
compared with SELECT statements, 219–220
comparison tests, 223–226
correlated subqueries, 239–241
DELETE with subquery, 280

existence tests, 228–230
HAVING clause and, 241–244
joins and, 236–237
limitations of SQL1, 246
nested subqueries, 237–239
outer references, 222–223
overview of, 218–219
quantified tests, 230
set membership tests, 226–228
UPDATE with subquery, 288–289
WHERE clause and, 220–222

subtypes, 853
SUM( ), 190–191
summary queries, 188–206

AVG( ), 191
column functions, 188–190
COUNT( ), 193–195
DISTINCT keyword, 199–200
grouped, 200–204
HAVING clause and, 211–214
HAVING clause without GROUP BY, 215
MIN( ) and MAX( ), 191–193
multiple grouped columns, 204–207
NULL values, 197–199, 209–210, 215
processing column functions, 195–197
restrictions on group search conditions,

214–215
restrictions on grouped queries, 207–209
SUM( ), 190–191

supertype, 853
Sybase, Inc., 42–43

BLOB data support, 842
database structure, 368
logical database devices, 378
object management, 392
remote database access, 803–804
rise to prominence, 917
stored procedures and, 829
Transact-SQL dialect and, 334
vendor profile, 957–958

symbolic constants, 88
symmetric multiprocessing. See SMP (symmetric

multiprocessing)
synonyms, 386

database creation and, 386–387
remote data transparency, 806–807

syntax diagrams
ALTER TABLE statement, 380–384
CASE expression, 250–251
CAST expression, 248
FROM clause and, 161
CLOSE statement, 538
COALESCE expression, 252
column functions, 190
COMMIT and ROLLBACK statements, 330
comparison tests, 112
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CREATE INDEX statement, 390
CREATE SCHEMA statements, 406
CREATE TABLE statements, 370
CREATE TRIGGER statement, 756
CREATE VIEW statement, 414
DB 2COMMENT statement, 475
DECLARE CURSOR statement, 534, 575
DELETE statement, 279–281
DESCRIBE statement, 572
DROP SCHEMA statements, 407
DROP TABLE statement, 379
EXECUTE IMMEDIATE statement, 551
EXECUTE statement, 559
EXISTS tests, 228
FETCH statement, 536, 578
GET DIAGNOSTICS statement, 513
GRANT statements, 446
IS NULL tests, 128
LOCK TABLE statement, 353
multirow INSERT, 275
NULLIF expression, 253
OPEN statement, 536, 575
pattern matching tests, 120
positioned UPDATE statement, 541
PREPARE statement, 558
range tests, 115
REVOKE statements, 451
row-value constructor, 254
set membership tests, 120
singleton SELECT statement, 525
SQL/PSM block structures, 750
SQL/PSM CREATE PROCEDURE, 747
SQL/PSM cursor-controlled loops, 749
SQL/PSM flow-of-control, 748
subqueries, 220
subquery comparison tests, 224
subquery set membership tests, 226
table-value constructor, 257
UPDATE statements, 285
WHENEVER statement, 515
WHERE clause, 124

syntax reference, SQL, 961–970
basic data manipulation statements, 964–965
cursor-based statements, 965–966
data definition statements, 962–964
expressions, 968
query expressions, 966–967
search conditions, 968
simple elements, 969
statement elements, 969
transaction processing statements, 965

SYSCAT.COLUMNS view, DB2, 469–470
SYSCAT.KEYCOLUSE view, DB2, 477
SYSCAT.REFERENCES view, DB2, 476
SYSCAT.TABLES view, DB2, 464–466
SYSCAT.VIEWS, DB2, 471

SYSCOLUMNS, Informix, 471
SYSOBJECTS table, SQL Server, 467
system catalog

ANSI/ISO standard, 461–462
column information, 468–471
entities in, 462–464
function of, 460–461
other information, 487
privileges information, 480–481
query tools and, 461
relationship information, 475–478
remarks, 474–475
SQL2 information schema, 481–486
table information, 464–468
user information, 478–479
view information, 471–474

system catalogs, 800–801
system-defined stored procedures, 735
System/R project, 29
system tables

application portability and, 36
Codd’s 12 rules and, 66
DBMSs and, 463–464
system catalog and, 460

Systems Application Architecture (SAA), 34
SYSUSERS table, SQL Server, 479

T

T-tree indexes, 391
table aliases, 159–161, 322
table constraints, 313
table definition, 369–384

adding columns, 381–382
ALTER TABLE statement, 380–384
check constraints, 376–377
column definitions, 369–372
CREATE TABLE statements, 369, 369–379
DROP TABLE statement, 379–380
dropping columns, 382–383
missing and default values, 372–373
physical storage, 378–379
primary and foreign keys, 373–375, 383–384
uniqueness constraints, 376

table expressions, SQL1, 247
table extracts, 807–809
table-level locking, 347
table-valued expressions, 257–260

query specification, 259–260
table-value constructor, 257–258
table-valued subqueries, 258–259

TABLE_CONSTRAINTS view, SQL Information
Schema, 998

TABLE_PRIVILEGES view, SQL Information
Schema, 1003
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tables, 59–61. See also multitable queries
contents of, 937–939
embedded SQL, 505–506
foreign keys, 63–65
inheritance, 854–857
multiplication, 163–164
names, 78–79
object-relational databases and, 841
primary keys, 61–62
queries, 140–142, 148–153
replication. See replication
row/column structure, 59–61
as security object, 439
structure of, 934–936
system catalog and, 462, 464–468
system tables, 66, 460, 463–464

TABLES view, SQL Information Schema, 994
tags, HTML, 877
TCP (Transaction Processing Council) benchmarks,

920–921
text node, XQuery, 907
text-only element, DTD, 897–898
three-tier Web site architecture, 777–779
time constants, 86–87
time series, 770
timeout, locks, 356
TimesTen Performance Software, 958
TP1 benchmark, 920
traffic reduction, 733
Transact-SQL, 320, 334, 738–740
transaction models, 332–336
transaction processing

advanced locking techniques, 351
CLI, 636–637
COMMIT and ROLLBACK statements and,

329–332
concurrency, 342–345
cursors and, 544
deadlocks, 348–351
examples, 328–329
explicit locking, 352
inconsistent data problem, 341–342
isolation levels, 352–356
locking levels, 345–347
locking parameters, 356
lost update problem, 338–339
OCI, 669–671
phantom insert problem, 342
shared and exclusive locks, 348
SQL proliferation and, 45
statements, 965
transaction logs and, 336–338
transaction models, 332–336
uncommitted data problem, 339–340
versioning and, 357–361

Transaction Processing Council (TCP) benchmarks,
920–921

transactions logs, 844
TRANSLATIONS view, SQL Information Schema,

1009–1010
transparency, remote data, 806–807
triggers, 736–744

advantages/disadvantages, 323–324, 737–738
data processing trends and, 702
Informix SPL and, 740–742
issues with, 744
Oracle PL/SQL and, 742–744
overview of, 320–322, 736–737
referential integrity and, 322–323
standards, 324–325, 755–756
Transact-SQL and, 738–740

TRUE keyword, 124
Type 1 drivers, JDBC, 673–675
Type 2 drivers, JDBC, 675–676
Type 3 drivers, JDBC, 676–677
Type 4 drivers, JDBC, 677–678
type inheritance, 854

U

uncommitted data problem, 339–340
union joins, SQL2, 180–182
UNION operations, 131–133

duplicate rows and, 133–135
multiple, 135–137
nested, 136
sorting and, 135
SQL2 query expressions, 261–264

UNIQUE constraint, 315
UNIQUE keyword, 390
uniqueness constraints

CREATE TABLE statements and, 376
entity integrity and, 298–299

UNIX-based systems, 42, 43, 797
unmarshalling, XML, 893–895
update access, 818
update cursors, 692–694
UPDATE privilege, 440
update rules, DB2

cascaded updates, 305–308
overview of, 304–305
referential cycles and, 310

UPDATE statements
overview of, 285–287
SET/WHERE clause problems in, 889
table inheritance and, 857
UPDATE with subquery, 288–289
updating all rows, 287–288
updating databases, 21–22
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updateable replicas, 812–813
updates, cursor-based, 539–544
updating views. See views, updating
USAGE_PRIVILEGES view, SQL Information

Schema, 1004–1005
user-defined data types, 840, 868–869
user-ids, 436–439

overview of, 436–437
runtime security and, 500–501
user authentication, 437–438
user groups, 438–439

users
security and, 434
system catalog and, 463, 478–479
user groups, 438–439

V

validation of statements, 494
validity checking, 294–297

columns, 295–296
defined, 292
domains, 296–297
overview of, 294–295

VALUES clause, 271, 274
values, missing and default, 372–373
variables. See also host variables

denoting in XQuery, 909
stored procedures, 710–713

varying arrays, Oracle, 862–863
manipulating, 865
processing, 867–868

vendor independence, 8, 657
vendors. See also database vendors; market trends

application servers, 779
distributed databases, 800–801
object-oriented capabilities, 839–840
remote database access capability, 803–806

Versant Corporation, 959
versioning, 357–361

advantages/disadvantages, 360–361
implementing, 357–360
overview of, 357

vertical bars (|), 962
vertical table subsets, replication architecture,

815–816
vertical views, 416–418
VIEW_COLUMN_USAGE view, SQL Information

Schema, 997–998
views

advantages/disadvantages, 412–413
DBMS handling of, 412
dropping, 428–429
functions of, 410

materialized, 429–431
names and referencing, 412
remote data transparency, 806–807
restricting column access with, 443–444
restricting row access with, 444–445
restrictions on security application of, 445
as security object, 439
source tables and, 410–411
system catalog and, 463, 471–474

views, creating, 413–423
grouped views, 418–421
horizontal views, 414–416
joined views, 421–423
overview of, 413–414
row/column subsets, 418
vertical views, 416–418

views, updating, 423–428
ANSI/ISO standards, 424–425
checking updates, 425–428
DBMS options, 425
overview of, 423–424

VIEWS view, SQL Information Schema, 996
VIEW_TABLE_USAGE view, SQL Information

Schema, 997
virtual tables, 66–67

W

W3C (World Wide Web Consortium)
defined, 876–877
XML standardization, 896
XQuery standardization, 907

WalMart, 925–926
warehouse database, 762
warehouse loading tools, 762
warehouses. See data warehousing
web services, 48–49
Web sites

early implementations of, 776–777
three-tier architecture, 777–779

WHENEVER statement, 512–515
actions, 514
advantages of, 515
exception conditions, 512

WHERE clause, 97
DELETE statements, 280
problems in UPDATE/DELETE

statements, 889
row selection and, 109–110
subqueries and, 218–219, 220–222
two-table queries and, 163
UPDATE statements, 285–286

WHILE loops, 723–725, 729–730
wildcard characters, 120–122
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Windows operating systems
database access and, 914
SQL Server and, 44–45
SQL support in, 9–10
Windows NT workgroup computing, 46

workgroup database management, 45–46
workgroups, Windows NT, 46
workstations, 797
World Wide Web Consortium. See W3C (World

Wide Web Consortium)

X

X/OPEN standards, 34, 623
XA protocol, 824
XML-Data, 896
XML data exchange, 885, 890
XML data integration, 885
XML databases, 885–895

data exchange, 890
input, 888–890
output, 886–888
overview of, 885
storage and integration, 890–895

XML (eXtensible Markup Language)
for data, 880–885
databases, 911–912
defining, 876–877
elements vs. attributes, 882–885
namespaces, 904–905

overview of, 877–880
queries, 906–911
SQL compared with, 881–882
XML input, 885, 888–890
XML output, 885, 886–888

XML metadata, 895–905
DTDs and, 897–899
overview of, 895–896
XML Schema, 899–905

XML Path Language (XPath), 906–907
XML Schema, 896, 899–905
XML storage, 890–895

defined, 885
large objects and parsers, 891–892
marshalling, 892–895
overview of, 890

XPath (XML Path Language), 906–907
XQuery

concepts, 907–909
history of, 906–907
native XML databases and, 911–912
query processing in, 909–911

XSLT (eXtensible Stylesheet Language
Transformation), 906–907

Y

YES message, 826–827
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